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de Estudios Avanzados del Instituto Politecnico Nacional (CINVESTAV)-Mérida, Merida,
Yucatán, Mexico
Oil extraction and transport activities in the Gulf of Mexico (GoM), along with

major marine oil spills and riverine inputs, are exerting environmental pressure

on this system by increasing the concentration of oil-related pollutants such as

polycyclic aromatic hydrocarbons (PAHs). To fully identify these changes

related to oil activities, current PAH levels should be established. Here, we

present the PAH concentration and the low molecular weight/high molecular

weight (LMW/HMW) ratios obtained in the Perdido Fold Belt area in surface and

bottom water at four cruises from May 2016 to September 2017. The Perdido 1

(P1) cruise was conducted in May 2016, the Perdido 2 (P2) cruise in September–

October 2016, the Perdido 3 (P3) cruise in June 2017, and the Perdido 4 (P4)

cruise in September 2017. Samples were taken during each cruise at up to

3,500-m depth, the deepest ever recorded for the GoM. Results show that the

highest concentrations of PAH, LMW PAHs, and HMW PAHs were found in the

P4 cruise (1.15, 1.05, and 0.10 µg/L, respectively), well below the 300 µg/L

guideline for acute exposure. LMW/HMW ratios show that only the P1 cruise

indicates pyrogenic hydrocarbons, while P2, P3, and P4 were petrogenic. The

spatial distribution of total PAH, LMW, and HMW showed higher values in the

southern and northeastern areas, except for P4, which showed high values

related to riverine inputs. The complex hydrodynamic in the region was found

to have a significant effect on PAH seasonal changes, river contributions, eddy

circulation, and fronts to promote their dispersion.
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Introduction

The Gulf of Mexico (GoM) is one of the largest marine

ecosystems in the world (Yáñez-Arancibia and Day 2004a;

Toledo Ocampo, 2005), supporting important ecosystems as well

as economic activities such as tourism, fisheries, and the extraction

of hydrocarbons. Specifically, in the Western GoM, the Perdido

Fold Belt (PFB) is located in the deep waters of the exclusive

economic zones of the USA and Mexico, which has the structural

capacity to contain oil and gas reservoirs (Patiño Ruiz et al., 2003).

Population increase creates further stress on the environment,

particularly on the coast of the Gulf of Mexico. The two closest

Mexican states to our study zone are Tamaulipas, with a

population in 2020 of 3,527,735 inhabitants, and Veracruz, with

a 2020 population of 8,062,579 inhabitants (Instituto Nacional de

Estadistica e Informatica [INEGI], 2020).

The presence of oil in the southern GoM is common since

there are natural oil seeps (locally known in Mexico as

“chapopoteras”), mainly located in the southwestern part of the

GoM, where also lies the main Mexican oil extraction industry

(Miranda et al., 2004; Murawski et al., 2018). Mitchel et al. (1999);

National Research Council Committee on Oil int the Sea (2003),

and MacDonald et al. (2015) mentioned that the natural oil input

to the GoM ranges between 250,000 and 1.4 million barrels per

year. Also, large-scale exploration, transport (Wankhede, 2019),

and refining of hydrocarbons are present in its coasts and deep

waters (Yáñez-Arancibia and Day 2004a and Yáñez-Arancibia and

Day 2004b), since the Burgos basin is the main oil province

producing non-associated gas in Mexico (PEMEX, 2013). In

addition, extractive activities, transport activities, and also

pollutant input by rivers significantly contribute to hydrocarbon

concentrations in the GoM (Gracia et al., 2014; Gracia et al., 2016a;

Gracia et al., 2016b). Also, two of the main marine oil spills have

occurred in the GoM: Ixtoc 1 in 1979–1980 and the Deepwater

Horizon in 2010 (Gracia et al., 2016a). Interest in oil pollution in

the GoM increased after the Deepwater Horizon accident in 2010,

leading to the creation of the Gulf of Mexico Research Initiative

(GoMRI), which channeled $300 million to research the spill. The

Mexican federal government also funded three series of

oceanographic cruises, covering all the GoM once per year in

2010, 2011, and 2012.

Extraction activities exert significant pressure on marine and

coastal areas in addition to being a source of different pollutants,

whose impact on the natural environment (Salcedo et al., 2017;

Soto et al., 2017) is evidenced by the decline of coastal and

marine water quality (Botello et al., 2015). Specifically, regarding

crude oil, the most toxic compounds that constitute it are the

polycyclic aromatic hydrocarbons (PAHs), which are present in

3% to 7% of the crude oil, but they are recognized as

carcinogenic and toxic to the environment (ATSDR (Agency

for Toxic Substances and Disease Registry), 2005). These PAHs,

once released to the water column, could be transported

(dispersed or accumulated); in the area, there is a tendency to
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dispersion related to a constant and rapid forcing of surface

water and eddy circulation (Luo et al., 2016; Enrıq́uez et al.,

2017; Meza-Padilla et al., 2019). Therefore, transportation to and

from the coastal zone is expected, but there is also the presence

of eddies and fronts caused by vertical mixing, seasonal changes,

and river input. Therefore, the present research aimed to

determine the presence and space and time changes of

dissolved/dispersed PAHs in the Perdido Fold Belt area in two

consecutive years and seasons to evaluate the current pollution

status and the processes related to it. In particular,

concentrations of dissolved/dispersed PAHs are reported for

the first time in the deep areas (over 1,000-m depth) of the GoM.
Materials and methods

The PFB area occupies approximately 27,230 km2 in the

Western GoM. It is located within the Deep Gulf of Mexico Oil

Province (PEMEX, 2013; CNH, 2015) and is home to numerous

active systems that produce oil and gas emissions (CNH, 2015).

Water samples were collected in four oceanographic cruises:

Perdido 1 (P1), Perdido 2 (P2), Perdido 3 (P3), and Perdido 4

(P4), onboard the B/O Justo Sierra along the Western Gulf of

Mexico. Water samples at the surface (5 m) and the bottom were

collected at 27 sampling stations during cruise P1 in May 2016,

P2 September–October 2016, P3 in June 2017, and P4 in

September 2017 (Table 1). Cruises in May or June are

considered to be in the dry season, and those in September or

October are considered to be in the rainy season.

Water samples from the surface (between 1 and 10 m) and

bottom (see Figure 1 for depth reference) were collected in 2-L

glass bottles previously cleaned with gas chromatography (GC)-

grade hexane (Omnisolv, Sigma-Aldrich Corp., St. Louis, MO,

USA), extracted on board (see Herzka et al., 2017 for complete

methods), and the extracts were taken to the Marine

Geochemistry laboratory (Cinvestav, Merida) for further

analysis following the method of Zhendi et al. (1994) (for full

methods, please refer to Herguera et al., 2017). Briefly, extracts

were separated into fractions in an activated silica gel column.

The aromatic fraction was eluted with a 50/50 (vol/vol) mixture

of GC-grade dichloromethane and hexane (Omnisolv). Analysis

was performed in a Perkin Elmer Clarus 500 GC–mass

spectrometry (GC-MS) in selected ion monitoring (SIM)

mode. Helium was used as a carrier (1.0 ml/min), injector

temperature was 290°C with an initial ramp of 25°C to 160°C

and a second ramp of 8°C/min to 290°C with a final time of 15

min. A DB% (30 m × 0.25 mm ID, 0.25 µm film) was used. The

PAH standards were from Ultra Scientific (North Kingstown, RI,

USA). Internal and surrogate standards (terphenyl-d14,

acenaphthene-d10, phenanthrene-d10, chrysene-d12, perylene-

d12, and pyrene-d10) as well as external standards were

obtained from Ultra Scientific. The limits of detection were

between 0.003 and 0.0027 µg/L for individual compounds.
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Recoveries of surrogate compounds were between 60%

and 120%.

Distribution maps were performed with “Ocean Data View”

version 5.3 (Schlitzer, 2020). Effect sizes were calculated using

the package “sjstats” version 0.18.0 (Lüdecke, 2020) in R version

4.0.2 (R Core Team, 2020).
Results and discussion

The highest mean PAH, LMW PAH, and HMW PAH

concentrations were found in the Perdido 4 cruise, whereas

the lowest mean concentrations for the three fractions were
Frontiers in Marine Science 03
found in the second cruise (Table 2). The highest concentrations

of PAH, LMW PAHs, and HMW PAHs were found in the

Perdido 4 cruise (1.15, 1.05, and 0.10 µg/L, respectively). The

lowest concentrations of PAH, LMW, and HMWwere below the

detection limit on cruises Perdido 2 to Perdido 4.

To test for the effect sizes of the two categorical variables

(“cruise” and “depth”), F-tests produced low values (lower than

1) for the factor “depth” and the interaction term in a two-way

ANOVA, suggesting that temporal differences were more

important than depth differences, and thus the focus here is

on the F-tests for factor “cruise” only. The w2 effect size was

chosen because w2 effect sizes indicate the proportion of variance

explained by the independent variables and is a less biased effect
TABLE 1 Sampling stations for all four cruises.

Station Latitude (degrees north) Longitude (degrees west) Depth (m)

B1 25.6242 −96.8412 50.4

B2 25.6255 −96.5115 97.6

B3 25.7406 −96.2548 372.5

B4 25.4595 −96.1125 1,000.0

B5 25.6230 −95.4812 1,448.0

B6 25.6408 −95.4115 1,998.0

C1 25.2664 −97.0334 47.0

C2 25.2519 −96.6985 105.8

C3 25.2492 −96.3490 503.8

C5 25.2508 −95.9295 1,644.5

C6 25.2508 −95.6368 1,971.0

C7 25.2505 −95.3462 2,676.8

D1 24.8688 −97.2857 44.0

D2 24.8710 −96.8917 107.0

D3 24.8701 −96.5999 473.4

D5 24.8723 −96.1100 1,280.0

D6 24.8737 −95.9042 2,215.0

E7 24.4978 −95.6681 2,984.7

F1 23.9944 −97.5335 49.7

F2 24.0000 −97.3060 93.0

F3 24.0065 −97.0845 537.0

F4 24.0020 −96.6835 1,616.0

F5 24.0101 −96.4269 1,760.0

F7 23.9990 −95.6100 3,254.7

F8 24.0025 −95.1752 3,548.0

I 24.9922 −96.2857 1,065.7

III 24.7635 −96.4994 826.0
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size measure than h2 (Nakagawa and Cuthill, 2007; Lakens,

2013; Calin-Jageman and Cumming, 2019). Percent variance

explained by the factor “cruise” for PAH, LMW PAHs, and

HMW PAHs is low in all cases, with 22% for HMW being the

highest (Table 3). The 95% confidence interval is also higher for

the HMW PAH fraction, which indicates a higher dispersion of

values. The 95% confidence interval for w2 does not include zero

for any of the three fractions, which means a “significant”

difference in the usual hypothesis testing framework.
Frontiers in Marine Science 04
Based on differences in their physical characteristics and

environmental behavior, some PAH indices could suggest their

origin. One such index is the ratio of low-molecular-weight

(LMW PAHs with 2 or 3 benzene rings) to high-molecular-

weight compounds (HMW, four or more benzene rings). A ratio

higher than 1 indicates a petrogenic origin (PAH originates from

petroleum), and a ratio lower than 1 indicates a pyrogenic origin

(from incomplete combustion of organic matter) (Soclo et al.,

2000; Magi et al., 2002; Freitas da Silva et al., 2007). LMW/HMW
TABLE 2 Mean total PAH, low molecular weight (LMW), and high molecular weight (HMW) PAH concentrations (in µg/L) ( ± standard error of the
mean) of each cruise.

Cruise PAH [µg/L] LMW PAH [µg/L] HMW PAH [µg/L]

Perdido 1 0.02 ( ± 0.002) 0.005 ( ± 0.001) 0.015 ( ± 0.0005)

Perdido 2 0.0006 ( ± 0.0001) 0.0004 ( ± 0.00008) 0.0002 ( ± 0.00004)

Perdido 3 0.007 ( ± 0.007) 0.004 ( ± 0.0003) 0.003 ( ± 0.0006)

Perdido 4 0.09 ( ± 0.03) 0.08 ( ± 0.03) 0.011 ( ± 0.003)
PAH, polycyclic aromatic hydrocarbon.
TABLE 3 F-test, effect size (w2), minimum, maximum, and 95% confidence interval for the “cruise” factor in a two-way ANOVA for the three PAH fractions.

Fraction F3,54 w2 Minimum Maximum 95% CI

PAH 7.3 0.082 0.013 0.156 0.143

LMW 7.6 0.085 0.015 0.16 0.145

HMW 21.3 0.224 0.125 0.313 0.188
fron
PAH, polycyclic aromatic hydrocarbon; LMW, low molecular weight; HMW, high molecular weight.
FIGURE 1

Map of the study zone showing the sampling stations (black dots) and isobaths.
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ratios were below 1 for the P1 cruise (Table 4), and the ratio was

higher than 1 for the other three cruises, indicating that these

compounds are from petroleum inputs.

Percent variance explained by the factor “cruise” for the

LMW/HMW ratio, as indicated by w2, is low at 8% (Table 5).

The 95% confidence interval for w2 does not include zero for any

of the three fractions, which means a “significant” difference in

the usual hypothesis testing framework.

The spatial distribution of total PAH, LMW, and HMW

(Figure 2) shows a consistent spatial trend for the surface and

bottom samples, with higher values in the southern and

northeastern parts of the study zone, except for the P4 cruise,

which shows high values in front of the Mexican Laguna Madre.

There is no obvious oceanographic feature to explain this

(Figure 3), although Luo et al. (2016); Enrıq́uez et al. (2017);

Meza-Padilla et al. (2019), and Arcega-Cabrera et al. (2021)

mentioned that the transport to and from the coastal zone is

expected to be related to river input, vertical mixing, and seasonal

changes. There is a secondary maximum for the P1 cruise across

the Mexican Laguna Madre for total and low-molecular-weight

PAH, which coincides with lower salinity values (Figure 3),

suggesting a terrestrial input. This agrees with the mean LMW/

HMW ratio for this cruise (0.313, Table 3), which indicates a

pyrogenic origin for PAH in this cruise. This same pattern was

shown by Arcega-Cabrera and Dótor-Almazán (2021), using the

fluoranthene/fluoranthene+pyrene index, finding that for surface
Frontiers in Marine Science
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and near the bottom water, PAHs from oil source (petrogenic)

and from wood, plants, and mineral carbon (pyrogenic) were

corroborated, agreeing with our results.

The dissolved/dispersed PAH concentrations obtained in

this study are higher than those reported by Botello et al. (2015)

for the coast of Tamaulipas on two cruises made in 2010 and

2011, right after the Deepwater Horizon spill. Botello et al.

(2015) reported that all water samples they collected had total

PAH concentrations below their detection limit (around 0.03 µg/

L), while in this study, they were in an approximate range from

undetected to 1.15 µg/L. For the Northern Gulf of Mexico, Wade

et al. (2016) analyzed the results of more than 20,000 water

samples collected before and after the Macondo well spill. They

reported that 84% of the samples analyzed had results lower than

1 µg/L and consider this to be the “natural” or “background”

concentration for the Gulf of Mexico. Wade et al. (2016) also

reported that 79% of the samples analyzed had concentrations of

less than 0.056 µg/L, while in this study, they were in an

approximate range from undetected to 1.15 µg/L. To assess

possible risk to marine organisms, the concentrations found in

this study for total, LMW, and HMW PAHs were compared to

the guidelines suggested in the Screening Quick Reference

Tables (Buchman, 2008). Only the acute exposure level is

reported for marine waters, and it is the same for all three

fractions, 300 µg/L. This value is higher than the maximum

concentrations reported here, and thus, the risk to aquatic

organisms is very low.

Differences for the previous and actual concentrations of

hydrocarbons, and in particular PAH, can be caused by several

factors, from differences in analytical methods (although

analytical quality controls assure the quality of results

diminishing the significance of this factor) or sampling times

up to real regional differences for the concentrations of these

compounds. Hydrocarbon analyses in any of its fractions in the

GoM are complicated by the presence of many natural seeps,

known in Mexico as “chapopoteras”. MacDonald et al. (2015)

reported the presence of 914 natural seeps in the Gulf of Mexico,

which in total discharge to the surface 2.5 to 9.4 × 104 m3 year−1,

while they calculated that the Macondo spill in 2010 discharged

22.6 × 103 m3 to the surface. The high input of hydrocarbons

from natural sources to the Gulf of Mexico produces a high

background concentration, which makes it more difficult to

assess human impacts.

Also, in the Perdido Fold Belt area, there are contributions of

agricultural and industrial activities, as well as wastewater inputs
TABLE 4 LMW/HMW ratios for all four Perdido cruises.

Cruise LMW/HMW

Mean P1 0.313

P2 2.21

P3 1.4

P4 1.77

Standard error of the mean P1 0.0646

P2 0.559

P3 0.153

P4 0.384

Minimum P1 0.01

P2 0

P3 0

P4 0

Maximum P1 2.61

P2 17

P3 4.28

P4 12.2
LMW, low molecular weight; HMW, high molecular weight.
TABLE 5 F-test, effect size (w2), minimum, maximum, and 95%
confidence interval for the “cruise” factor in a one-way ANOVA for
the LMW/HMW ratio.

Term F3,212 w2 Minimum Maximum 95% CI

Cruise 5.41 0.082 0.013 0.156 0.143
fron
LMW, low molecular weight; HMW, high molecular weight.
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through local river systems (Arcega-Cabrera et al., 2021), and

according to Reilly et al. (1991); Le Blanc (1994), and Murawski

et al. (2020), there are significant hydrocarbon and metal inputs

from the discharge of 140 × 10 6 m3 of production wastewater

from approximately 3,000 platforms in the GoM. Also, Vidal-

Martinez (2021) showed that some of the sampled fish in the

area had a medium-to-high metabolite concentration related to

exposure and probable damage from PAH that could be stressful

for the organisms.

In addition to this, an intriguing possibility is that spatial and

temporal differences observed in hydrocarbons and other

pollutant concentrations in the Western Gulf of Mexico may

be due, at least in part, to east-to-west transport by eddies that

promote a rapid and constant forcing of surface water (Luo et al.,
Frontiers in Marine Science 06
2016; Enrıq́uez et al., 2017 and Meza-Padilla et al., 2019;

Guerrero et al., 2020). Therefore, transport to and from the

coastal zone is common in this area caused by the vertical mixing

and seasonal changes in contributions from river discharges as

reported by Arcega-Cabrera et al. (2021) for metals. In addition,

a continental water influence, including contributions from the

continental shelf and southern part of the GoM, has also been

reported by Enrıq́uez et al. (2017) and Meza-Padilla et al. (2019).

Transport in the deep gulf by eddies has been inferred from

modeling studies and observational campaigns (Morey et al.,

2020). During the time of the Perdido cruises, there were two

active eddies in theWestern Gulf of Mexico, the Olympus (active

from June 2015 to June 2016) and Poseidon (active from April

2016 to April 2017) eddies (Woods Hole Group, 2020).
FIGURE 2

Spatial distribution of total polycyclic aromatic hydrocarbons (PAHs), LMW (low molecular weight), and HMW (high molecular weight) for the
Perdido 1, 2, 3, and 4 cruises. First = surface sample (ca. 1–10 m); Last = bottom sample (please refer to Figure 1 for approximated depth).
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All of the abovementioned factors could be promoting the

PAH observed seasonal changes, causing dispersion of the PAH

by being forced from river contributions and also eddy

circulation and fronts.
Conclusions

PAH concentration showed significant differences between

cruises (seasons), and some of the samples showed a higher

concentration than the ones previously reported. These seasonal

changes could be related to the presence of natural seeps,

riverine input, and oil extraction and transport activities.

Therefore, these factors could be promoting changes in the

system that could turn out to be stressful for the system at

the GoM.

The source of polycyclic aromatic hydrocarbons was mainly

petrogenic with exception of the first cruise, suggesting that

inputs are mainly from the oil industry in the area, although
Frontiers in Marine Science 07
riverine input is also present and varies according to

hydrological season.

The complex hydrodynamic and diverse sources inputs in

the Perdido area are directing the seasonal changes of PAH.

Transport from and to the coast, eddies, and fronts are working

together to disperse the PAH from riverine input and oil

extraction and transport activities.

The results of this research constitute an invaluable reference

for PAH behavior at the GoM given the spatial, time, and

economic effort made with the extensive sampling; this allows

us to achieve a set of robust data, although further research

should be performed to better understand the processes affecting

the concentration and transport of hydrocarbons in the complex

and environmentally relevant system of the GoM.
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FIGURE 3

Spatial temperature and salinity variations for the Perdido 1, 2, 3, and 4 cruises. First = surface sample (ca. 1–10 m); Last = bottom sample
(please refer to Figure 1 for approximated depth).
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R. A. Zaragoza Álvarez, E. M. Peters and G. Hernández Cárdenas CICESE
Carretera Ensenada-Tijuana No. 3918, Zona Playitas, CP. 22860, Ensenada, B.C.
México. Available at: https://www.cicese.edu.mx https://atlascigom.cicese.mx
ISBN: 978-607-8811-04-5. Available at: https://atlascigom.cicese.mx/map_
data/T004/ATLAS-TOMO-04.pdf.

Arcega-Cabrera, F., Gold−Bouchot, G., Lamas−Cosıó, E., Dótor−Almazán, A.,
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www.cnh.gob.mx.

Enrıq́uez, C., Mariño-Tapia, I., Meza-Padilla, R., Ruiz Angulo, A., and
Appendini, C. (2017). “Condiciones termohalinas y de circulación en el polıǵono
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