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Differences in selective pressures and the energetic cost of gametes in

gonochoristic corals should vary with the sex of the colony, which may lead

to sexual dimorphism. Coral colonies are composed of subunits (corallites) that

create a complex morphological architecture. If corallite features are distinct

between sexes, then the degree of coordinated change among these subunits

may also vary (phenotypic modularity). This study tested for sexual dimorphism

in the corallites of the reef-building coral Porites lobata, a gonochoric

broadcast spawner, and compared this with previously demonstrated sexual

dimorphism in its congener P. panamensis, a gonochoric brooder. Corallite

area in P. lobata was 17% larger for males than for females (p < 0.05).

Phenotypic modularity analysis showed that the integration of skeletal traits

differs between sexes in both P. lobata and in P. panamensis. In P. lobata,

females showed a higher trait integration than males, while the opposite

pattern was observed in P. panamensis. Our results demonstrate corallite

traits differentiate between sexes and suggest that between-sex differences

in the degree of corallite integration may vary with reproductive mode.

KEYWORDS

reproduction, morphometrics, Porites, corallite, Eastern Tropical Pacific (ETP),
phenotypic modularity
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1 Introduction

Sexual dimorphism is widespread among animals but has

been considered rare in colonial marine taxa (Levitan, 2010).

Recent studies on scleractinian corals, however, have found

sexual dimorphism in size (Kramarsky-Winter and Loya,

1998; Loya and Sakai, 2008), calcification rates (Cabral-Tena

et al., 2013; Tortolero-Langarica et al., 2016; Tortolero-

Langarica et al., 2017; Mozqueda-Torres et al., 2018; Cruz-

Ortega et al., 2020), skeletal isotopic signals (Cabral-Tena

et al., 2013), and corallite morphologies (González-Espinosa

et al., 2018). From these studies (Table 1), corallite differences

have been found for only one species (González-Espinosa

et al., 2018), leading us to ask whether the dimorphism

previously observed (primarily in growth) could be seen in

corallite’s traits.

While inter-sexual differences may be more subtle in

marine invertebrates (both clonal and unitary) than the

conspicuous sexual dimorphism seen in many terrestrial

animals (Berns, 2013), differences in mating strategies and

the energetic cost of gametes (Parker, 1979) remain and should

select for different trait optima between sexes (Parker, 1979;

Levitan, 2008). In brooding gonochoristic corals, females both

capture sperm for internal fertilization and, critically, brood

larvae within their polyps, while males merely release sperm

(Baird et al., 2009; Harrison, 2011). These differences may

explain the divergent morphologies of their corallites

(González-Espinosa et al., 2018). Meanwhile, in gonochoristic

broadcast spawning corals, both sexes release their gametes and

fertilization occurs externally (Baird et al., 2009; Harrison,

2011), with females freed of any larval care beyond

provisioning eggs. This dissimilarity between reproductive

mode could lead to different levels of sexual dimorphism in

the corallites of reef-building species.

In modular plants, both morphology and integration of traits

can differ between sexes (Barrett and Hough, 2013). As corals are

modular organisms, sexual dimorphism could appear not only

in the most fundamental unit of colony morphology (a single

tentacled polyp and its underlying skeleton, the corallite) but

also in the degree of integration among these units (Lasker et al.,

2003; Shaish et al., 2007). The environment can induce

morphological changes in colony architecture (phenotypic

plasticity) (Todd, 2008) and in the integration between these

traits (e.g., branch density and length, polyp aperture and

distance between them), as seen in octocorals (Sánchez and

Lasker, 2003; Sánchez et al., 2007) and scleractinian corals (Paz-

Garcıá et al., 2015). Such integration of traits (modularity) has

not been compared between sexes in corals.

Different reproductive modes carry different energetic costs

among reef corals (Ward, 1995; Hall and Hughes, 1996), which
Frontiers in Marine Science 02
in turn may lead to different levels of sexual dimorphism among

reef-building species. In this study, we tested for sexual

dimorphism in the corallite features and phenotypic

modularity of two congeneric corals with separate sexes but

different modes of reproduction: Porites lobata and P.

panamensis. P. lobata is a broadcast spawner that shows sexual

dimorphism in skeletal growth rates (Tortolero-Langarica et al.,

2016; Table 1) but whose corallite morphology has not been

previously tested for sexual dimorphism. Meanwhile, P.

panamensis broods its larvae (Carpizo-Ituarte et al., 2011). Its

corallites show sexual dimorphism in their diameter, density,

and number of neighboring corallites (González-Espinosa et al.,

2018) but the integration of these traits has not been

analyzed before.
2 Materials and methods

2.1 Sample collection and
sex identification

Porites lobata is one of the most abundant massive coral

species in the eastern tropical Pacific (Glynn et al., 2017). We

collected samples at Isla Isabel National Park in the central

Mexican Pacific (Figure 1) in October 2013 (permission number:

DGOPA.04552.040711.1798). All colonies (~70 cm in diameter

size) were collected using a hammer and chisel from the same

habitat at depths 3–5 m to minimize phenotypic differences

caused by different light or flow microenvironments. We

collected 18 colonies total: 12 males and 6 females. Species

identification was based on visual taxonomical characteristics

(Veron, 2000). P. lobata is a gonochoric broadcast spawner

(Glynn et al., 1994; Neves, 2000) whose gametes mature

throughout the year along the eastern Pacific (Glynn et al.,

1994; Glynn et al., 2011). A small percentage of hermaphroditic

colonies have been reported in Costa Rica (Glynn et al., 1994),

although reproductive season and hermaphroditism have not

been documented in Mexico.

Colony sex was determined using the histological

procedure of Cabral-Tena et al., 2013 and Tortolero-

Langarica et al (2016). Briefly, two subsamples were used

from each colony (previously collected in Tortolero-

Langarica et al., 2016). One (~ 5 x 5 cm) was decalcified to

obtain tissue, dehydrated, and stained using Masson’s

trichrome protocol. Each colony was sexed by inspecting for

the presence of oocytes or spermaries using a Zeiss AxioVision

R1 microscope. The second fragment (~ 10 x 10 cm) was used

for morphological analysis of the skeleton and its constituent

corallites. Tissue was removed with 5% sodium hypochlorite to

characterize their morphological traits.
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TABLE 1 Evidence of sexual dimorphism in coral reef-building species. Males (m), hermaphrodites (h), females (f), Eastern Tropical Pacific (ETP).

Coral
species

Type of
Reproduction

Type of sexual
dimorphism

Number and type of traits
supporting sexual dimorphism

Study location Reference

Fungia
scutaria

Gonochoric
spawner

Size dimorphism 1 trait:
Diameter of the coral (f > m)

Eilat, Israel (Kramarsky-Winter
and Loya, 1998)

Ctenactis
echinata

Gonochoric
spawner*

Size dimorphism 2 traits:
Length of coral (f > m)
Wet weight of the coral (f > m)

Sesoko, Okinawa, Japan (Loya and Sakai,
2008)

Porites
panamensis

Gonochoric
brooder

Skeleton growth 2 traits:
Extension rate (m > f)
Calcification rate (m > f)

Gulf of California
(ETP)

(Cabral-Tena et al.,
2013)

Skeleton growth 4 traits:
Tissue thickness (m > f)
Extension rate (m > f)
Calcification rate (m > f)
Skeletal density (m > f)

Central Mexican Pacific
(ETP)

(Tortolero-Langarica
et al., 2017)

Skeletal isotopic signals 2 traits:
d18O (f > m)
d13C (m > f)

South Gulf of
California (ETP)

(Cabral-Tena et al.,
2013)

Morphological traits 3 traits:
Corallite diameter (f > m)
Corallite density (m > f)
Number of adjacent corallites (m > f)

South Gulf of
California (ETP)

(González-Espinosa
et al., 2018)

Phenotypic integration 1 trait:
Trait integration (m > f)

Central Mexican Pacific
(ETP)

This study

Porites
lobata

Gonochoric
spawner

Skeleton growth 3 traits:
Tissue thickness (m > f)
Extension rate (m > f)
Calcification rate (m > f)

Central Mexican Pacific
(ETP)

(Tortolero-Langarica
et al., 2016)

Gonochoric
spawner

Morphological traits and
phenotypic integration

3 traits:
Corallite area (m > f)
Corallite diameter (m > f)
Trait integration (f > m)

Central Mexican Pacific
(ETP)

This study

Pavona
gigantea

Hermaphrodite
spawner

Skeleton growth 3 traits:
Tissue thickness (h > m > f)
Skeletal density (m > h > f)
Calcification rate (h > m > f)

Central Mexican Pacific
(ETP)

(Tortolero-Langarica
et al., 2017)

Montastraea
cavernosa

Gonochoric
spawner

Skeleton growth 3 traits:
Tissue thickness (m > f)
Skeletal density (m > f)
Calcification rate (m > f)

Southern Mexican
Caribbean (Caribbean)

(Mozqueda-Torres
et al., 2018)

Dichocoenia
stokesi

Gonochoric
spawner

Skeleton growth 2 traits:
Extension rate (m > f)
Calcification rate (m > f)

Southern Mexican
Caribbean (Caribbean)

(Cruz-Ortega et al.,
2020)

Dendrogyra
cylindrus

Gonochoric
spawner

Skeleton growth 2 traits:
Skeletal density (m > f)
Calcification rate (m > f)

Southern Mexican
Caribbean (Caribbean)

(Cruz-Ortega et al.,
2020)

* protandrous bidirectional sex change.
F
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2.2 Morphological traits and analysis
of modularity

2.2.1 Morphological traits and comparison
between sexes

Five morphological traits were selected for analysis (Table 2)

based on their potential to delimit between Porites species

(Brakel, 1977; Weil, 1992; Budd et al., 1994) and reveal sexual

dimorphism in P. panamensis (González-Espinosa et al., 2018).

A Nikon D5300 digital camera was used to capture images for

corallite density (Figure 2A). Due to the small size of corallites of

P. lobata (Figure 3C), high-resolution images were also obtained

using a Hitachi S-3000N Scanning Electron Microscope (SEM).

Those SEM images were used to measure morphological traits in

10 random corallites per colony (Figure 2B; Table 2). Previous

studies done on extinct and extant Porites species have found an

average from 5-10 corallites best represent the colony by

tempering the variability among single corallites (Foster 1986;

Weil, 1992; López-Pérez 2013; González-Espinosa et al., 2018;

Tisthammer and Richmond, 2018). We selected only mature

corallites and avoided the smallest corallites as they could be new

corallites recently formed by extratentacular budding (Pichon,

2011) or broken corallites that would give imprecise

measurements. Morphological traits were analyzed using
Frontiers in Marine Science 04
ImageJ ver. 1.60 software (https://imagej.nih.gov/ij/ )

(Schindelin et al., 2015). Images were calibrated with a grid

with standard dimensions. Statistical analyses were performed

using colony means. After testing the data for normality

(Kolmogorov–Smirnov test) and homogeneity of variances

(Levene test), the Student’s t-test was used to determine trait

differences between sexes in P. lobata.

We performed a canonical discriminant analysis (CDA)

comparing sexual dimorphism observed in P. lobata (this

study) with data for P. panamensis (https://doi.org/10.5061/

dryad.5d6sp) from González-Espinosa et al (2018). We

performed a random partition of 50% of the total colonies of

P. panamensis from the dataset to perform analysis with a

similar sample size in both Porites species. We used four out

of five morphological traits (corallite density, corallite diameter,

distance of adjacent corallites, and number of adjacent corallites;

Table 2) to perform the CDA. Corallite area was not used

because it was not measured by González-Espinosa et al.

(2018) All statistical analyses were conducted with

STATISTICA 7 software (www.statsoft.com).

2.2.2 Analysis of modularity
The four morphological traits used in the CDA (Table 2:

traits 1-4) were also used for the modularity analysis. Integration
FIGURE 1

Study sites in the central Mexican Pacific. Black star denotes collection sites. Collection sites were Bahıá de La Paz (LPZ) for P. panamensis and
Isla Isabel National Park (IINP) for P. lobata. Colonies from P. panamensis were collected and described in previous study done by González-
Espinosa et al (2018).
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between morphological traits was analyzed using conditional

independence tests and independence graphs (Magwene, 2001).

This method reveals the interaction between two traits after

removing the effect of other traits and provides insight into

whether traits are evolving in a coordinated manner or

independently. Due to the number of traits measured in each

species, second-order partial correlation coefficients (PCC) for

both Porites species were computed from log-transformed data.

The PCC was estimated for each set of two variables, controlling

for the remaining variables (two). The PCC analyses were

performed using STATISTICA 7.

Weak trait interactions were removed from the model by

statistically comparing the PCCs for edge exclusion deviance

(Magwene, 2001). The strength of the interactions was calculated

by the edge strength (Magwene, 2001; Paz-Garcıá et al., 2015).
Frontiers in Marine Science 05
For this model, we used four categories to classify the strength of

the interactions based on the edge strengths results: weak

integration (0-0.2), regular integration (0.21-0.4), strong

integration (0.41-0.6), and very strong (>0.6) integration

between traits. A graphic model was constructed for each

species and sex (2 species × 2 sex), resulting in 4 different

models in total. The resulting graphical model represents

morphological traits in nodes and integration among traits by

lines. The edge strength was represented in the graphical model

as followed: weak integration (thin dotted line), regular

integration (thick dotted line), strong integration (thin

continuous line), and very strong integration (thick

continuous line). The modularity level in each graphical model

will depend on the strength (line thickness) and the number of

trait connections (lines) for each model.
TABLE 2 Morphological traits descriptions used in this study.

Morphological
trait

Abb. Description Sampling
per colony

Unit Measurement
method

1. Corallite density CDe Total number of corallites per cm2. 3-6 squares of
1 cm2

Count Fragment image

2. Corallite
diameter

CDi Mean value between the linear distance from the initial-point of the dorsal
septum to the initial-point of the ventral septum, and from the initial-point of
the lateral septum to the end of the other lateral septum.

10 corallites
(20
measurements)

mm SEM image

3. Adjacent
corallites

AC Count of the total number of adjacent corallites. 10 central
corallites

Count SEM image

4. Distance of
adjacent corallites

DaC Average of the lineal distance from the centre of the corallite to the centre of
the closest and farthest adjacent corallite.

10 corallites
(20
measurements)

mm SEM image

5. Corallite Area CAr Area of the whole corallite. 10 corallites mm2 SEM image

References: Multiple studies used previously for Porites delimitations along geographical locations: Brakel (1977); Weil, 1992; Budd et al. (1994); González-Espinosa et al. (2018). Abb.,
Abbreviation.
All morphological traits were averaged to colony means (one measurement per trait per colony) to avoid corallite variability (more details in Materials and Methods).
BA

FIGURE 2

Morphological traits used to detect sexual dimorphism. (A) corallite density (CDe) (B) corallite diameter (CDi), number of adjacent corallites
(AC), distance of adjacent corallites (DaC), and corallite area (CAr). Descriptions of each morphological trait are summarized in Table 2.
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3 Results

3.1 Corallite traits

We analyzed 49 colonies for the CDA and modularity

analysis: 18 from Porites lobata (12 males, 6 females) and 31

from Porites panamensis (12 males, 19 females). In P. lobata, two

morphological traits were significantly larger in male colonies

than female colonies (Figure 3; Supplementary Table S1). Male

colonies had larger corallite areas (by 17%; p = 0.047) and

diameters (by 10%; p = 0.024) than females (Figure 3;

Supplementary Table S1). For P. panamensis, González-

Espinosa et al. (2018) found the opposite: females had wider

corallite diameters than males (p = 0.020), while males had

higher corallite density (p = 0.016) and number of adjacent

corallites (p = 0.005).

Sexual dimorphism in corallite size was statistically

supported for both species in the CDA (Wilk’s l= 0.11596, F

(12,111) = 11.676, p 0.0001, Figure 4, Supplementary Table S2).

For the CDA, the first axis explained 86.1% of the variance and

the second axis explained an additional 10.4% between the

species and sexes (Figure 4). The CDA resulted in a correct
Frontiers in Marine Science 06
classification rate above 66%, with an average of 77% for males

and females from both species (Supplementary Table S3).
3.2 Modularity

Patterns of modularity differed between sexes for both

species (Figure 5; Supplementary Tables S4, S5). The distance

between adjacent corallites (DaC) showed the highest level of

integration between traits in all four models (Figure 5), while

corallite density (CDe) also showed higher coordination between

traits in both species (Figure 5). Female colonies showed higher

trait integration (i.e., higher strength and number of trait

connections) than male colonies in P. lobata, while P.

panamensis showed the opposite pattern.

For P. lobata, while the number of integrated traits was

similar between sexes (two integrated traits for males, three for

females), the connections between traits were different

(Figures 5A, B; Supplementary Table S4). Corallite density was

integrated with adjacent corallites (AC) in both sexes, but the

other associations varied between the sexes. Corallite density, the

distance of adjacent corallites, and the number of adjacent
B

C

A

FIGURE 3

Sexual dimorphism in morphological and corallite traits of Porites lobata corals (A, B). Mean values (± standard error) of male (blue) and female
(red). Black dots represent the data points per colony. Numbers in parenthesis indicate the number of colonies. Significance level: t-test, * p <
0.05. Visual representation of corallites of P. lobata (C).
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corallites were the most integrated traits in female colonies,

showing two connections (Figure 5B). In contrast, male colonies

showed a unique connection between corallite diameter (CDi)

and the distance of adjacent corallites (Figure 5A).

While females of P. lobata showed slightly higher integration

than males, the pattern was reversed in P. panamensis, where

males showed a higher integration of traits (4 connections

between traits; Figure 5C, Supplementary Table S5) than

females (1 connect ion between tra i ts ; F igure 5D,

Supplementary Table S5). Corallite density and distance

between adjacent corallites were the most integrated traits in

both sexes (Figures 5C, D).

4 Discussion

4.1 Sexual dimorphism in corals

The broadcast spawning coral Porites lobata is sexually

dimorphic both in corallite morphology and at the level of

correlated change among corallite traits (Figures 3–4B,

Supplementary Tables S1, S4, S6). Sexual dimorphism in

scleractinians has been reported for corallite size in solitary

corals (Kramarsky-Winter and Loya, 1998; Loya and Sakai,

2008; see Table 1), for skeletal growth, and for calcification rates

(see Table 1), as well as for corallite morphology (González-

Espinosa et al., 2018). In two gonochoric broadcast spawners from

the family Fungiidae (Kramarsky-Winter and Loya, 1998; Loya

and Sakai, 2008), small individuals are males whereas large
Frontiers in Marine Science 07
individuals were females. In three massive Caribbean species

(Mozqueda-Torres et al., 2018; Cruz-Ortega et al., 2020),

skeletal growth rates are higher for male colonies than female

colonies. Likewise, in the eastern Pacific, P. lobata (Tortolero-

Langarica et al., 2016), P. panamensis (Cabral-Tena et al., 2013;

Tortolero-Langarica et al., 2017), and the hermaphrodite

broadcast spawner Pavona gigantea (Tortolero-Langarica et al.,

2017) show sexual dimorphism in annual skeletal growth, all with

faster growth in male colonies. Carricart-Ganivet et al. (2013)

found differences between sexes in skeletal growth and density

banding in Siderastrea siderea, although a more recent study on

this same species employing smaller sample sizes (and at a

different location) failed to reveal any differences (Benson

et al., 2019).

Previous studies have suggested that female colonies may

have less energy to invest in growth due to the high energetic

cost of producing eggs (Hall and Hughes, 1996; Cabral-Tena

et al., 2013. Males, in contrast, may be able to invest more energy

in growth due to the lower energetic cost of sperm production.

These previous studies (Table 1), along with our new results

for corallite morphology, suggest that sexual dimorphism in

corals may be common, regardless of phylogenetic lineage

(seven genera), geographical location (Red Sea, East China Sea,

Caribbean, and eastern Pacific) or spawning mode

(broadcast spawner and brooder, this study), and that

intersexual differences in corallite integration may facilitate

plasticity that allows species to acclimate to different

environmental conditions.
FIGURE 4

Canonical discriminant analysis between Porites lobata and Porites panamensis morphological traits. Each symbol represents one colony. P.
panamensis: Male (N= 12), Female (N= 19), P. lobata: Male (N= 12), Female (N= 6). CDe, corallite density; CDi, corallite diameter; AC, adjacent
corallites; and DaC, distance of adjacent corallites.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1068391
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Pedraza-Pohlenz et al. 10.3389/fmars.2022.1068391
4.2 Sexual dimorphism in corallite size

Sexual dimorphism tied to corallite size operates differently in

the broadcast spawner P. lobata (this study) than in its brooding

congener P. panamensis (González-Espinosa et al., 2018). In P.

lobata, corallite area was larger in male colonies than in female

colonies (Figure 3; Supplementary Table S1). In contrast, P.

panamensis showed larger corallites in female colonies

compared to male colonies (González-Espinosa et al., 2018).

Gamete production in different coral species is influenced by the

number and size of gamete-producing mesenteries in each polyp,

which in turn are limited by the space available inside a polyp

(Hall and Hughes, 1996). As a result, a larger polyp in male or

female (correlated with a larger corallite area) could increase

fecundity (Hall and Hughes, 1996; Shlesinger et al., 1998;

Leuzinger et al., 2003), as in other broadcast spawning

invertebrates (Evans and Sherman, 2013). The patterns observed

between species may be due to different constraints imposed on

females in the two spawning modes. Broadcast spawning females
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produce far smaller eggs and there is no higher energy investment

in larvae development within their polyps as brooders (Shlesinger

et al., 1998; Glynn et al., 2017). If broadcast spawning females are

already near their energetic limits of gamete production, there

may be little selective pressure for larger female corallites, while

larger male colonies may still be favored to increase sperm

production to avoid low fertilization success due to sperm

dilution (Oliver and Babcock, 1992). These could explain the

differences between sexes in corallite size of P. lobata (Figure 3).

Corallite area has also been linked to trophic strategy, with

variation in polyp size resulting from a trade-off between

optimizing for autotrophy (small size) or heterotrophy (large

size) (Conti-Jerpe et al., 2020). Porites species employ both

autotrophic and heterotrophic nutritional sources (Palardy

et al., 2005; Grottoli et al., 2006). A larger corallite area in

males could enhance the capture of particulate organic matter

and planktonic prey. Such heterotrophic nutrition sources, and

the greater energy reserves they confer, may lead to a higher

tolerance to bleaching when the autotrophic benefits of
B

C D

A

FIGURE 5

Modularity differences between sexes of Porites lobata (A, B) and of Porites panamensis (C, D) Graphical models of the level of modularity of
male (A, C) and female (B, D) colonies, where modularity is indicated by the number of trait connections (lines) and their strength (thicker=
stronger coordination).
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symbiosis are disrupted (Conti-Jerpe et al., 2020; Liu et al., 2022).

As stressful warming events occur more frequently (Sully et al.,

2019), future studies should test whether corallite size

dimorphism results in physiological responses such as

calcification rates and bleaching threshold between sexes.

The production of gametes is the most energetically costly

physiological activity for corals, especially for female colonies

(Hall and Hughes, 1996), sometimes limiting other processes

such as skeletal extension and calcification (Cabral-Tena et al.,

2013; Tortolero-Langarica et al, 2016; Tortolero-Langarica et al,

2017). While reproductive output increases with polyp size, the

ratio of reproductive output to somatic tissue decreases with a

higher polyp diameter (Leuzinger et al., 2003). Larger polyps

require thicker skeletal elements for support, thereby reducing the

space available for reproductive tissue (Leuzinger et al., 2003).

Based on this inverse relationship and the high energetic cost of

gamete production, if there is no selective pressure for female

corals to increase their corallite size (as the pressure of larger sizes

in female brooders), a reduced size in corallite size should be

favored. Interestingly, the opposite trend has been observed in two

solitary broadcast spawning fungiids, where females have larger

polyps than males (Kramarsky-Winter and Loya, 1998; Loya and

Sakai, 2008). Sexual size dimorphism can vary depending on

different selective pressures as seen in P. panamensis (González-

Espinosa et al., 2018). Further studies should bring more insight

into sexual dimorphism in scleractinian corals.
4.3 Sexual dimorphism in
corallite modularity

The integration of corallite traits in P. lobata was slightly

higher for females than for males (Figures 4A, B; Supplementary

Table S4). Integration may constrain the elements of a module

(the corallite here) to evolve in concert due to directional

selection on just one or a few traits in the module (Magwene,

2006; Villmoare, 2013; Klingenberg, 2014). Integration between

corallite traits in P. lobata was much lower overall than in P.

panamensis (Figure 5, Supplementary Tables S4, S5). Less

integration, and thus weaker constraints, could allow for

greater morphological plasticity in this broadcasting species

(Klingenberg, 2014). Indeed, high morphological plasticity is

characteristic of the corallites and whole colonies of P. lobata

(Forsman et al., 2009). Intraspecific corallite variation is also

high, showing differences between inshore and offshore colonies

(Tisthammer and Richmond, 2018).

In contrast, in the brooding P. panamensis, corallite trait

integration was lower in females than in males (Figure 4, Table

S4). Each polyp in a female colony of P. panamensis can brood a

single larva that can reach a diameter of 800 µm (Carpizo-Ituarte

et al., 2011), potentially placing selective pressure on females to

increase the internal space within each corallite to harbor larger

larvae (González-Espinosa et al., 2018). Strong selection for
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larger corallites in females could alter the degree of integration

of traits between colonies of different sexes and allow female

colonies independence of trait change and greater morphological

plasticity. Such plasticity could free them to vary their corallite

structure depending on the environment (Todd, 2008) to cope

with energetic constraints. This potential plasticity could include

(1) increase in the size to accommodate larger larvae, (2)

increase their energy supply by having a higher density of

dinoflagellate algal symbionts, and (3) enable the polyps to

feed on bigger particles. These hypotheses could be tested by

measuring larvae size, Symbiodiniaceae density, and total lipid

content and fatty acid composition as proxies for food uptake.

Liu et al. (2022) tested two factors of the three proposed and

found that corallite area increases the food uptake (i.e., higher

levels of total lipid content and unsaturated fatty acids) but is not

correlated with Symbiodiniaceae density in massive corals.

Sexual dimorphism in P. lobata and P. panamensis was

supported by morphological and modularity analyses. Our

findings also indicate that corallite diameter and area may be

used to identify the sex of P. lobata colonies with modest

accuracy. Due to this, these traits can potentially serve as

target characteristics in other corals to better understand their

reproductive biology. The distinct patterns of sexual

dimorphism observed between reproductive modes (larger

females in a brooder vs. larger males in a spawner) may be

related to the different selective pressures that each sex faces.
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Aguilera, L., Norzagaray-López, O., et al. (2013). Different calcification rates in
males and females of the coral Porites panamensis in the gulf of California. Mar.
Ecol. Prog. Ser. 476, 1–8. doi: 10.3354/meps10269
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