
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Rui Pereira,
A4F-Algafuel, Portugal

REVIEWED BY

Maxwell A. Ware,
Freie Universität Berlin, Germany
Paulo Cartaxana,
University of Aveiro, Portugal

*CORRESPONDENCE

Di Zhang

zhangdi@ytu.edu.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Aquatic Physiology,
a section of the journal
Frontiers in Marine Science

RECEIVED 13 October 2022
ACCEPTED 06 December 2022

PUBLISHED 22 December 2022

CITATION

Nan G-N, Zhou X-Q, Zhang X-M,
Zhang Q-S, Hu Z-M, Huang R-P and
Zhang D (2022) Xanthophyll cycle-
related non-photochemical quenching
protects Sargassum thunbergii from
high light-induced photoinhibition.
Front. Mar. Sci. 9:1067596.
doi: 10.3389/fmars.2022.1067596

COPYRIGHT

© 2022 Nan, Zhou, Zhang, Zhang, Hu,
Huang and Zhang. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply
with these terms.

TYPE Original Research
PUBLISHED 22 December 2022

DOI 10.3389/fmars.2022.1067596
Xanthophyll cycle-related
non-photochemical quenching
protects Sargassum thunbergii
from high light-induced
photoinhibition

Guo-Ning Nan1†, Xiao-Qun Zhou2†, Xiu-Mei Zhang2,
Quan-Sheng Zhang1, Zi-Min Hu1, Rui-Ping Huang3

and Di Zhang1*

1School of Ocean, Yantai University, Yantai, China, 2Yantai Marine Economic Research Institute,
Yantai, China, 3State Key Laboratory of Marine Environmental Science and College of Ocean and
Earth Sciences, Xiamen University, Xiamen, China
As a common macroalga living in the intertidal zone, Sargassum thunbergii

(Sargassaceae, Phaeophyta) is often exposed to drastic changes in solar

photosynthetically active radiation during a diurnal cycle; thus, the potential

photosynthetic adaptation processes deserve attention. In this work, we

examined the photosynthetic performance and xanthophyll cycle activity of this

alga in response to high light (1,200 mmol photonsm–2 s–1, the average in-situ light

intensity at noon) by using chlorophyll fluorescence and high-performance liquid

chromatography (HPLC). On exposure to high light, a rapid decrease in the

effective quantum yield of photosystem II (PSII) (Y(II)) occurred, indicating down-

regulation of PSII activity; a corresponding increase in non-photochemical

quenching (NPQ) indicated the existence of energy-dissipating cycles. After

turning off the light, Y(II) gradually increased to 0.7, accompanied by a decrease

in NPQ. However, no complete recovery of NPQ was observed, and its value

remained at ≈4, even after an 80-min dark treatment. The size of the xanthophyll

cycle pigments pool was quantified using HPLC and was found to be ≈16 mol

mol−1 Chl a × 100. The activity of the xanthophyll cycle, characterized by a de-

epoxidation state (DPS), could reach up to ≈0.5. Such a large pigments pool and

rapid accumulation of zeaxanthin may allow S. thunbergii to induce high values of

NPQ (≈10). These results were further complemented by inhibitor (dithiothreitol,

DTT) and pre-illumination experiments showing that (1) both NPQ and the

xanthophyll cycle could be inhibited by DTT, and there was always a strong

positive correlation between NPQ and DPS; (2) the previously formed

antheraxanthin exhibited a long retention time and a slow epoxidation; and (3)

the long retention of antheraxanthin contributed to a rapid accumulation of

zeaxanthin. In conclusion, our present study demonstrated that xanthophyll

cycle-induced NPQ can significantly protect S. thunbergii from light fluctuations

in the intertidal zone.
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Introduction

Photoinhibition, characterized by a decrease in

photosynthetic efficiency, is often caused when the harvested

light energy exceeds the utilization of Calvin cycle and/or other

energy-dissipating mechanisms (Powles, 1984; Long et al., 1994).

To cope with diurnal-fluctuating light environments and reduce

the potential damage caused by the accumulation of excess

energy resulting from photosynthesis, photosynthetic

organisms have evolved several mechanisms of light

acclimation, of which non-photochemical quenching (NPQ) is

thought to be the most common and fastest, protecting intertidal

algae in their natural environments., NPQ can be separated into

different components, depending on the timescale, including

high-energy-state quenching, qE; state transitions, qT; and a

photoinhibitory component, qI (Goss and Jakob, 2010; Goss and

Lepetit, 2015). Of these components of NPQ, qE has been

reported to be the fastest and dominant component (Müller

et al., 2001). qE, which is significantly dependent on the proton

gradient across the thylakoid membrane (DpH), induces the

protonation of PsbS in higher plants, of LHCSR (light-harvesting

complex stress-related) proteins in green algae, and of LHCX1

(light-harvesting complex 1) in diatoms (Li et al., 2004; Peers

et al., 2009; Bailleul et al., 2010; Depauw et al., 2012). qT, which

is referred to as the slower component of NPQ, depends on the

phosphorylation and migration of antenna proteins from

photosystem II (PSII) to photosystem I (PSI) (Krause and

Jahns, 2004; Finazzi and Minagawa, 2014, and references

therein). qI, the slowest component of NPQ, is often thought

to be induced by the degradation of the D1 protein (Müller

et al., 2001).

Living in the intertidal zone, the in- and outgoing tides

would expose macroalgae to highly variable changes in

irradiance diurnally. Consequently, they must perform suitable

real-time adjustments in their photosynthetic mechanisms to

avoid photoinhibition. As multicellular macroalgae, brown algae

(Phaeophyceae) mainly inhabit benthic marine communities as

keystone members (Amsler and Fairhead, 2005). Previous

studies have shown that the extent of NPQ in brown algae is

highly variable, and the differences can be found even within one

organism (Harker et al., 1999; Rodrigues et al., 2002). For

example, in Macrocystis pyrifera, a species that forms

aggregations known as kelp forests, NPQ shows high values in

the blades that are located near the seawater surface, whereas the

blades in deeper seawater regions exhibit a much lower capacity

for NPQ (Garcı ́a-Mendoza and Colombo-Pallotta, 2007;

Ocampo-Alvarez et al., 2013). This difference has been shown

to correlate with the size of the xanthophyll cycle pigment

pool (Goss and Lepetit, 2015). Another example is provided

by Laminaria species. The fact that susceptibility to

photoinhibition is higher in L. abyssalis than in L. digitata is

documented to relate to the de-epoxidation capacity of
Frontiers in Marine Science 02
violaxanthin and the reduced size of the xanthophyll cycle

pool in L. abyssalis (Rodrigues et al., 2002). Accordingly,

xanthophyll cycle-induced NPQ should play an important

role in the photoprotection of brown algae against

environmental fluctuations.

Like other terrestrial plants and green algae, the xanthophyll

cycle in brown algae also exhibits de-epoxidation of violaxanthin

to zeaxanthin, with an intermediate pigment, antheraxanthin,

formed in saturating light and a back-epoxidation reaction

occurring in conditions of low light or darkness (Rodrigues

et al., 2002; Goss and Jakob, 2010; Jahns and Holzwarth, 2012).

In some brown unicellular algae, e.g., diatoms, xanthophytes,

haptophytes, and dinoflagellates, a homologous and simple

xanthophyll cycle comprising the one-step conversion of

diadinoxanthin to diatoxanthin occurs, known as the

diadinoxanthin cycle (Goss et al., 2006; Goss and Jakob, 2010;

Brunet and Lavaud, 2010). Although de-epoxidation is 10 times

faster than the epoxidation reaction in terrestrial plants (e.g.,

Hordeum vulgare; Hartel et al., 1996), the de-epoxidation rate is

only twofold faster than the epoxidation rate in brown algae

(e.g., M. pyrifera in Garcıá-Mendoza and Colombo-Pallotta,

2007). However, the large size of the xanthophyll cycle

pigments pool in M. pyrifera is suggested to efficiently protect

the photosynthetic apparatus from photoinhibition and/or

photodamage (Garcıá-Mendoza & Colombo-Pallotta, 2007;

Ocampo-Alvarez et al., 2013). In addition, the fast NPQ

component, i.e., qE, has previously been reported to be lacking

in M. pyrifera (Garcia-Mendoza & Ocampo-Alvarez, 2011);

thus, the xanthophyll cycle-related NPQ in brown algae

deserves to be investigated.

Sargassum thunbergii (Sargassaceae, Phaeophyta), a

common species along the northwestern Pacific coast and the

northern coast of China, is often used as a foundation species for

the restoration of intertidal seaweed beds (Chu et al., 2012; Yu

et al., 2012). On the northern coast of China, S. thunbergii

occupies mainly rocky shores, and thalli are exposed to

considerable variation in incident irradiance resulting from

tidally induced changes in water level and the sun’s changing

position (Yu et al., 2013). In the present study, changes in

photosynthetic traits and xanthophyll cycle of S. thunbergii

were measured, aiming to characterize the variability of

photosynthetic activity and evaluate the regulation of

xanthophyll cycle in response to high light.
Materials and methods

Algal collection and culture

Thalli of Sargassum thunbergii were collected in May and June

from the rocky intertidal zone of Zhanqiao (37°31′44″N, 121°26′4″
E), Yantai, Shandong Province, China, and transported to the
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laboratory in a cooled Styrofoam box within 1 h. Following

collection, surface epiphytes and attached sediments were

removed and only those thalli that appeared healthy, with a

light-brown coloration, were selected as the experimental

material. A total of 150 individual thalli of homogeneous length

of 5 cm were obtained and then placed in Plexiglas aquaria

containing filtered natural seawater. The cultural conditions were

set as 12 : 12 h light : dark photoperiod with a light intensity of 300

mmol photons m–2 s–1 and 15°C (corresponding to the in situ

surface seawater temperature). The seawater was continuously

aerated with air and renewed every day. Before the experiments,

thalli were precultured for 3 days under the conditions mentioned

above. Every fourth blade was stripped from the same position of

each thallus and three independent replicates were used for each

experiment. The blades chosen for the experiments were of equal

size, 1 cm long and 0.5 cm broad.
Chlorophyll fluorescence measurements
and analyses

Chlorophyll fluorescence in S. thunbergii was measured with

a portable pulse-amplitude-modulated (PAM) fluorometer

(Diving-PAM; Walz, Effeltrich, Germany). To mimic the in

situ sunlight conditions, the fiberoptic probe of the PAM

device was applied, at a 60° angle, to thalli during the

measurement of photosynthetic performance. Blades used for

chlorophyll fluorescence were dark-adapted for 20 min before

measurement. After dark adaptation, a saturating light pulse of

intensity >12,000 mmol photons m–2 s–1 (0.8 s) was applied to

obtain the minimum fluorescence intensity (Fo) and the

maximum fluorescence intensity (Fm). The blades were then

exposed to 1,200 mmol photons m–2 s–1 white light, which was

provided by a red–blue LED lamp (the color temperature

ranging from 5,000 to 6,000 K), for 60 mins and followed by

an 80-min recovery under conditions of darkness. During both

the high light treatment and recovery, a saturating light pulse of

intensity >12,000 mmol photons m–2 s–1 was applied

continuously every 5 min to measure the maximum

florescence in the light or dark conditions (Fm′) and the

steady-state fluorescence (F). The effective quantum yields of

PSII (Y(II)) and the non-photochemical quenching (NPQ) were

determined as (Fm′ − F)/Fm′ and (Fm − Fm′)/Fm′, respectively.
Meanwhile, three blades treated with the same conditions were

quickly frozen in liquid nitrogen and stored at –80°C, for later

analysis of the xanthophyll cycle.
Xanthophyll cycle measurement
and analyses

The xanthophyll cycle was measured by an Agilent 1260

Infinity (high-performance liquid chromatography, HPLC)
Frontiers in Marine Science 03
system equipped with an Agilent Zorbax Eclipse Plus C18

column (4.6 × 150 mm, 5 mm) attached to a Zorbax Eclipse

Plus guard column (Agilent Technologies, USA). These

measurements were obtained as described by Colombo-

Pallotta et al. (2006): the mobile phase consisted of 70%

methanol and 30% 28 mM N, N-tetrabutyladipicamide (pH

6.5, solvent A), and methanol (solvent B) was used to gradient

elute at a flow rate of 1.0 ml/min. Before measurement, pigments

were extracted in acetone by grinding each blade in liquid

nitrogen. Pigment peaks were identified and quantified by

comparing retention times and absorption spectra with those

of authentic standards purchased from Sigma Chemical

Company (St. Louis, MO, USA, for zeaxanthin) and

ChromaDex (Irvine, CA, USA, for violaxanthin and

antheraxanthin). Data on the xanthophyll cycle pigments were

normalized to Chl a (mol mol−1 Chl a × 100). As both

antheraxanthin and zeaxanthin are involved in the dissipation

of energy as heat (Goss et al., 2006), the de-epoxidation

state (DPS) of the xanthophyll cycle can be calculated as

[zeaxanthin]+0.5[antheraxanthin]/S[xanthophyll cycle

pigments], where the xanthophyll cycle pigments is the sum of

violaxanthin, antheraxanthin, and zeaxanthin.
Inhibitor treatments

Dithiothreitol (DTT), an inhibitor of the enzyme

violaxanthin de-epoxidase (VDE), has been applied to

determine the relationship between the xanthophyll cycle and

NPQ. Before exposing blades to high light conditions, they were

incubated in darkness for 30 min with different concentrations

of DTT, including 0, 1, 3, and 5 mM. Subsequently, blades were

exposed to 1,200 mmol photons m–2 s–1 for 10 min, and the

activity of the xanthophyll cycle and NPQ were assessed at 1-

min intervals. It is worth noting that the concentration and

incubation time used in this study have previously been shown

to have no effect on PSII activity (Li et al., 2014).
Pre-illumination treatments

To characterize the function of antheraxanthin and

zeaxanthin during the response to high light, a pre-

illumination experiment was applied by exposing S. thunbergii

to high light (1200 mmol photons m–2 s–1) for 0, 1, 3, 5, 7, 10, 13,

and 15 min. Fo and Fm were measured before the illumination

following full (i.e., 20-min) dark adaptation. The treated blades

were collected and analyzed by HPLC to determine the

accumulation of antheraxanthin and zeaxanthin. In addition,

several blades that had been pre-illuminated (for 0, 5, 10, or

15 min) were dark adapted for 5 min and then exposed to high

light again for another 20 min. During the second exposure to

high light, the kinetics of NPQ and xanthophyll cycle pigments
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were measured at 1-min intervals. Three independent blades

were used as replicates for each parameter.
Statistical analysis

All data were analyzed using SPSS for Windows 21. Prior to

all statistical analyses, the homogeneity of variances was verified

using Levene’s test. One-way ANOVA and t-tests were used to

establish differences among treatments. To evaluate the t1/2 of Y

(II), NPQ, and the xanthophyll cycle, the kinetics of NPQ and

xanthophyll cycle pigments during exposure and recovery

periods were fitted using the equation y = A1exp(–t/t) + y0,

where A1 represents the amplitude, t represents the lifetime of

the first kinetic component, and y0 represents the amplitude of

the second component (Ocampo-Alvarez et al., 2013). The rate

constant (k) of NPQ relaxation was calculated from NPQ

(t) = NPQm+(NPQ0 – NPQm)exp(–kNPQt), where NPQ0 and

NPQm are the values measured immediately before the start of

the high-light period and after the de-epoxidation of zeaxanthin,

and kNPQ is the rate constant of NPQ increase (see Serôdio

et al., 2005). De-epoxidation and epoxidation of pigments were

calculated as [zeaxanthin] + 0.5[antheraxanthin]/S[xanthophyll
cycle pigments] (Goss et al., 2006). Fits were performed using the

non-linear curve fit procedure by Origin 2018 (OriginLab,

Northampton, United States). Differences were statistically

significant if the p-value was less than 0.05.
Results

On exposure of S. thunbergii to high light, Y(II) decreased

from 0.68 to 0.15 within 1 h, and the t1/2 was calculated to be

7.02 min (Figure 1A). In contrast, NPQ increased to a maximum

of approximately 10, with a t1/2 of 6.4 min (Figure 1B). Y(II)

gradually increased during recovery in darkness and was

completely recovered after 80 min (Figure 1A), whereas

relaxation of NPQ was incomplete and reached a value of 4

(Figure 1B). The rate constant (k) of NPQ relaxation was

calculated to be 0.04 min–1.

In terms of the xanthophyll cycle, the calculated pigments

pool size, i.e., the sum of the concentrations of violaxanthin,

antheraxanthin, and zeaxanthin, could reach ≈16 mol mol−1 Chl

a × 100. During high light exposure, the concentration of

violaxanthin significantly decreased, from 16.3 to 6.8 mol

mol−1 Chl a × 100 after 60 min (t1/2 reached ≈6 min;

Figure 2A), whereas the concentrations of antheraxanthin and

zeaxanthin significantly increased (Figure 2B, C). Compared

with the rapid accumulation of antheraxanthin (with a

maximum concentration of 3.4 mol mol−1 Chl a × 100 and a

t1/2 of ≈2 min), the t1/2 of zeaxanthin formation (≈8 min) was
Frontiers in Marine Science 04
quite low, but the maximum concentration reached 6.2 mol

mol−1 Chl a × 100. The calculated de-epoxidation state (DPS)

increased from 0.02 to 0.51 (Figure 2D) with an induction t1/2 of

around 6 min. After turning off the light, an increase in

violaxanthin concentration was observed, accompanied by a

decrease in antheraxanthin and zeaxanthin concentrations

(Figures 2A–C). After an 80-min recovery in darkness

conditions, the concentration of violaxanthin remained

≈11.1 mol mol−1 Chl a × 100, accounting for 71% of the

xanthophyll cycle pigments pool, while the concentrations

of antheraxanthin and zeaxanthin were 2.1 and 3.2 mol mol−1

Chl a × 100, respectively (Figures 2A–C). DPS was calculated

to decrease from 0.51 to 0.3, with a relaxation rate of

0.04 min–1 (Figure 2D).

With the addition of DTT at an increasing concentration,

the xanthophyll cycle activity of S. thunbergii was gradually

impaired. Exposure to high light for 10 min resulted in a

significant decrease in Y(II), from 0.32 (control, 0 mM) to 0.2

(1 mM), 0.15 (3 mM), and 0.13 (5 mM), and a corresponding

decrease in NPQ, from 8.3 (control, 0 mM) to 2.0 (1 mM), 0.9

(3m M), and 0.4 (5 mM) (Figure 3A). Linear regression

analysis showed that the high light-induced NPQ was

significantly dependent on DPS (Figure 3B, p<0.05,

R2 = 0.98).
A

B

FIGURE 1

Kinetics of the effective quantum yield of photosystem II (PSII)
(A) (Y(II)) and (B) non-photochemical quenching (NPQ), in
Sargassum thunbergii during high light exposure for 60 min
(1,200 mmol photons m–2 s–1, white points) followed by an 80-
min recovery (darkness, gray points). Each curve represents the
fit (all R2-values > 0.95) to the model of Ocampo-Alvarez and
Garcıá-Mendoza (2013). Data represent the mean ± SD (n = 3).
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To further investigate the function of the xanthophyll cycle

in S. thunbergii to NPQ, a pre-illumination experiment was

carried out. As shown in Figure 4, accumulation of zeaxanthin

was positively related to the pre-illumination time (Figure 4A),

while the relationship between antheraxanthin and pre-

illumination time followed an exponential relationship

(Figure 4B). In terms of NPQ, the longer pre-illuminated

blades always exhibited a rapid induction of NPQ during the

second time high light exposure (Figure 5). The calculated t1/2 of

the 15-min pre-illumination was only 2.6 min, which was five

times quicker than that of a 0- min pre-illumination (13.1 min).

Combined with the data obtained from the pre-illumination
Frontiers in Marine Science 05
experiment, the half-time of NPQ induction was found to be

negatively related to the concentration of zeaxanthin (Figure 6A;

p<0.05, R2 = 0.98), and there was a significant exponential

relationship between the half-time of zeaxanthin accumulation

and the concentration of antheraxanthin (Figure 6B, p<0.05).
Discussion

In our present study, a significant decrease in the effective

quantum yield (Y(II)) in response to high light indicated a

down-regulation of photosystem II (PSII) (Figure 1A), while

the reversible change in Y(II) is a sign that energy-dissipating

mechanisms are highly efficient in protecting Sargassum

thunbergii from photoinhibition. Non-photochemical

quenching (NPQ), a process in which excess absorbed light

energy is dissipated as heat, has been recognized as the first line

of biochemical defense against photodamage (Adams and

Demmig-Adams, 1994; Ruban, 2016). In this study, in S.

thunbergii, we also found an increase in NPQ with exposure to

high light, suggesting light-activated photoprotection around

PSII (Figure 1B). Following high light exposure, Y(II)
A

B

D

C

FIGURE 2

Kinetics of xanthophyll cycle pigments of S. thunbergii, including
(A) violaxanthin (Vio., mol mol–1 Chl a × 100), (B) antheraxanthin
(Anth., mol mol–1 Chl a × 100), (C) zeaxanthin (Zea., mol mol–1

Chl a × 100), and (D) the de-epoxidation state of the xanthophyll
cycle (DPS, mol mol–1 Chl a × 100), during high light exposure
for 60 min (1,200 mmol photons m–2 s–1, white points) followed
by an 80-min recovery (darkness, gray points). Each curve
represents the fit (all R2-values > 0.95) to the model of Ocampo-
Alvarez and Garcıá-Mendoza (2013). Data represent the
mean ± SD (n = 3).
A

B

FIGURE 3

(A) Values of non-photochemical quenching (NPQ) in blades
treated with different concentrations of dithiothreitol (DTT) during
a 10-min high light exposure (1,200 mmol photons m–2 s–1). Gray
squares, white circles, and gray or white tringles represent control
(0 mM DTT), 1, 3, and 5 mM DTT, respectively. (B) Relationship
between NPQ and the de-epoxidation state of the xanthophyll
cycle (DPS). The solid line and gray shadow represent the fit of
data to a linear model (p < 0.01 and R2 = 0.99; n = 33) and the
95% confidence interval, respectively. The data shown in A
represent the mean ± SD (n = 3).
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gradually recovered to ≈0.68 within 80 min, but NPQ remained

at ≈4, which differs from the rapid and full recovery of NPQ that

was observed in the seagrass Zostera marina (Yang et al., 2017)

and the green alga Ulva prolifera (Zhao et al., 2019). In several
Frontiers in Marine Science 06
evergreens, such sustained energy dissipation has been

recognized as qZ, which has been shown to be dependent on

zeaxanthin, and critical for maintaining the balance between

light absorption and utilization in winter (Ottander and Öquist,

1991; Verhoeven et al., 1998; Verhoeven, 2014). Similarly, the

observed sustained NPQ in S. thunbergii is also thought to

correlate with the level of zeaxanthin.

The xanthophyll cycle, including the processes of both de-

epoxidation of violaxanthin and epoxidation of zeaxanthin,

wi th the product ion of an intermediate pigment ,

antheraxanthin, has previously been reported to play an

important role in different algal species in their natural

environments (Goss and Jakob, 2010, and references therein;

Goss and Lepetit, 2015). In our present study, xanthophyll

cycle activity was rapidly induced by high light, characterized

by a decrease in violaxanthin concentration and accumulation

of antheraxanthin and zeaxanthin, as well as a significant

increase in de-epoxidation state (DPS) (Figure 2). As

documented, the function of the xanthophyll cycle in

photoprotection depends mainly on the formation of

zeaxanthin, which can (1) interact directly with the Chl a

molecule in the excited state and dissipate the energy as heat

(Josue and Frank, 2002; Holt et al., 2005); and (2) enhance

light-harvesting complex II (LHCII) aggregation and

indirectly transform the antenna system of PSII into a state

that efficiently dissipates excess excitation energy (Ruban

et al., 1997; Horton and Ruban, 2005; Horton et al., 2008).

In S. thunbergii, accumulation of zeaxanthin during the
A

B

FIGURE 4

Concentrations of (A) zeaxanthin (Zea., mol mol–1 Chl a × 100)
and (B) antheraxanthin (Anth., mol mol–1 Chl a × 100) during the
pre-illumination time (1200 mmol photons m–2 s–1). The solid
line and gray shadow in A represent the fit of data to a linear
model (p < 0.01 and R2 = 0.99; n = 24) and the 95% confidence
interval, respectively. The solid line in B represents the fit of data
to an exponential model (p < 0.01 and R2 = 0.99, n = 24).
FIGURE 5

High light (1200 mmol photons m–2 s–1)-induced non-photochemical quenching (NPQ) after 0 min (gray squares), 5 min (white circles), 10 min
(gray tringles), and 15 min (white tringles) pre-illumination. Each curve represents the fit (all p < 0.01 and all R2 > 0.95) to the model of Ocampo-
Alvarez and Garcıá-Mendoza (2013). Data represent the mean ± SD (n = 3).
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previous high light treatment was considered to be responsible

for the sustained NPQ. A similar finding has been reported in

the brown alga M. pyrifera (Garcia-Mendoza and Ocampo-

Alvarez, 2011). As mentioned above, the ratio between

violaxanthin de-epoxidation and zeaxanthin epoxidation in

brown algae was lower than that of terrestrial plants (Jahns,

1995; Hartel et al., 1996; Garcıá-Mendoza and Colombo-

Pallotta, 2007 and references therein); however, the observed

size of the xanthophyll cycle pigments pool in brown algae

[i.e., ≈25 mol mol−1 Chl a × 100 in M. pyrifera (Garcıá-

Mendoza & Colombo-Pallotta, 2007) and ≈16 mol mol−1 Chl a

× 100 in S. thunbergii (present study)] was much larger than

that of terrestrial plants (≈8.8 mol mol−1 Chl a × 100 for pea in

Jahns, 1995). The larger xanthophyll cycle pigments pool, i.e.,

a high concentration of violaxanthin under darkness

conditions, promotes zeaxanthin accumulation at the onset

of illumination, which compensates for the lower ratio of

violaxanthin de-epoxidation to zeaxanthin epoxidation and

may endow brown algae with a high photoprotective capacity.
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To confirm the conclusion that high light-induced NPQ is

highly related to the xanthophyll cycle, inhibitor and pre-

illumination experiments were carried out. Dithiothreitol

(DTT), an inhibitor of the enzyme violaxanthin de-epoxidase

(VDE), is widely used to characterize the role of the xanthophyll

cycle in photoprotection (Demmig-Adams et al., 1990; Garcıá-

Mendoza and Colombo-Pallotta, 2007; Li et al., 2014). In our

present study, both NPQ and the xanthophyll cycle in S.

thunbergii were found to be DTT sensitive; in fact, 5 mM DTT

could totally block (≈95%) induction of NPQ and the formation

of zeaxanthin (Figure 3A). The observed positive linear

relationship between NPQ and DPS indicated that high light-

induced NPQ was strongly dependent on the formation of

zeaxanthin (Figure 3B). In pre-illumination experiments,

zeaxanthin accumulation was correlated with pre-illumination

time, while antheraxanthin concentration increased rapidly on

initial pre-illumination and remained high (≈3 mol mol−1 Chl a

× 100) after 3 min (Figure 4). When the pre-illuminated blades

were exposed to high light again, the fastest induction of NPQ

was found in those blades that were pre-illuminated for 15 min,

with a t1/2 of only 2.6 min (Figure 5). The negative correlation

relationship between the t1/2 of NPQ induction and the

concentration of zeaxanthin (Figure 6A) confirmed that the

zeaxanthin accumulated during pre-illumination could

effectively protect S. thunbergii from high light-induced

photoinhibition. The t1/2 of zeaxanthin accumulation

(Figure 6B) was found to be correlated to the concentration of

antheraxanthin, implying that the sustained antheraxanthin may

also contribute to the rapid induction of NPQ. Such a typical

response has also been observed in M. pyrifera and Chlorella

vulgaris (Goss et al., 2006; Ocampo-Alvarez et al., 2013), but in S.

thunbergii, a slower epoxidation of antheraxanthin and larger

retention (≈70%) were observed. These findings suggest that S.

thunbergi i is endowed with a higher capacity for

photoprotection in response to drastic light fluctuations in the

intertidal zone.

In conclusion, our present study demonstrates that (1) the

sustained NPQ in S. thunbergii under darkness conditions is

highly related to the presence of zeaxanthin formed during the

previous high light treatment; (2) the rapid formation and slow

epoxidation of antheraxanthin are prerequisites for the rapid

accumulation of zeaxanthin; and (3) xanthophyll cycle-induced

NPQ could significantly protect S. thunbergii from high light.
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FIGURE 6

(A) Correlation between the half-time of non-photochemical
quenching (NPQ) (min) and retained zeaxanthin content (Zea.,
mol mol–1 Chl a × 100). (B) Correlation between the half-time of
zeaxanthin accumulation (min) and retained antheraxanthin
content (Anth., mol mol–1 Chl a × 100). All these data are
collected from the high light treatments (1200 umol photons
m-2 s-1) with pre-illuminated blades of S. thunbergii. The solid
line and gray shadow in A represent the fit of data to a linear
model (p < 0.01 and R2 = 0.97; n = 24) and the 95% confidence
interval, respectively. The solid line in B represents the fit of data
to an exponential model (p < 0.01 and R2 = 0.97, n = 24).
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Exploring the molecular basis of responses to light in marine diatoms. J. Exp. Bot.
63 (4), 1575–1591. doi: 10.1093/jxb/ers005
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