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Transcriptome analysis of
gonads and brain of giant
freshwater prawn
(Macrobrachium rosenbergii):
screening and validation of
genes related to germ
cell development

Jie Wei1,2, Kunhao Hong1, Qiaoyan Zhou1, Yakun Wang1,
Wei Li1, Xiaoli Liu1, Xiaoyou Hong1, Chen Chen1, Lingyun Yu1*

and Xinping Zhu1,2*

1Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of
Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery
Sciences, Guangzhou, China, 2National Demonstration Center for Experimental Fisheries Science
Education, Shanghai Ocean University, Shanghai, China
Macrobrachium rosenbergii is an important cultured shrimp worldwide, and its

precocious puberty has led to serious economic losses. Although reproductive

sterilization can avoid this problem, little is known about the molecular

mechanisms underlying gonadal development and gametogenesis in M.

rosenbergii. Here, we conducted transcriptome analysis of the ovaries,

testes, and male/female brain tissues of M. rosenbergii to discover germ cell

development-related genes. A total of 60,607 unigenes were identified, of

which 20,963 unigenes could be functionally annotated. Eighteen candidate

genes were identified by Venn diagram analysis, keyword, and known marker

search, followed by elimination of low-expression and repetitive genes.

Subsequent real-time quantitative reverse transcription polymerase chain

reaction and in situ hybridization identified five genes (RAD51, vasa, SPDS,

MRR, and Fem-1C) associated with germ cell development—RAD51, vasa, and

SPDS were expressed in both male and female gonads, whereas Fem-1C was

specifically expressed in the ovary and MRR in the testis. In the ovary, vasa,

SPDS, and Fem-1C were mainly expressed in stage 1–3 oocytes, while RAD51

was expressed in stage 2–3 oocytes. In testis, vasa were significantly expressed

in spermatogonia and primary spermatocytes, whereas RAD51 and SPDS were

only enriched in spermatogonia and MRR in vas deferens. Our research

indicates that these five genes are important germ cell development-related
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genes, of which RAD51, SPDS, and Fem-1C were proven to function in germ

cells of this species for the first time. The discovery of these genes could help

develop molecular breeding techniques to overcome precocious puberty in

M. rosenbergii.
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1 Introduction

Giant freshwater prawns (Macrobrachium rosenbergii) are

native to the Mekong River basin in Southeast Asia. Because of

its rapid growth, large size, and delicious flavor, it has gradually

become one of the main shrimp species in freshwater

aquaculture in Asia. In China, the total annual output reached

171, 263 tons in 2021 (China Fishery Statistical Yearbook, 2022).

Recently, the production of M. rosenbergii in China has

increased to a certain extent; however, some key problems

such as germplasm degradation and various diseases still affect

the aquaculture industry of M. rosenbergii in China, and its

industrial development has encountered certain bottlenecks.

Initially, our research team conducted a series of market

research in China to identify the key bottlenecks in the industrial

development of M. rosenbergii. Our research revealed that in

addition to the traditional problems such as the lack of seed

supply caused by the degradation of germplasm and the low

emergence rate, there is a frequent occurrence of gonadal

precocity (female shrimp weighing only 6 g already held eggs

in their abdomen, and males weighing only 2 g held mature

sperm in their testes) was a major factor hindering the healthy

development M. rosenbergii. Precocious maturity leads to

stagnated growth, compromised health, and flesh quality

(O’Brien, 1984; Jin and Xie, 2001), as the resources and energy

are diverted to gonadal development, gamete production,

mating, and reproduction. Reproductive sterilization strategies

such as sterile or single-sex group breeding can preclude the

deterioration of growth and stagnated size associated with

precocious maturation (Basavaraju et al., 2002). In mollusks

and fish such as Crassostrea hongkongensis (Zhang et al., 2017),

Crassostrea rivularis (Yang et al., 2008), and Oncorhynchus

mykiss (Wang et al., 2005), chemical or physical tools have

been used to induce triploids to construct sterile populations.

However, the progress in developing a sterile population in M.

rosenbergii is limited. M. rosenbergii has a special reproductive

mode: egg holding and hatching, and at present, there is no

established technology for in vitro culture of fertilized eggs.

Although in vitro embryo shock treatment is easy to perform,

it may lead to high mortality. In addition, the gonads of
02
artificially induced triploid individuals can still develop

normally and produce normal functional aneuploid gametes,

which have potential ecological risks. Therefore, researchers

attempted to obtain a neo-female M. rosenbergii population by

removing the gonads of immature maleM. rosenbergii to build a

unisexual population (Sagi et al., 1990). However, this method is

difficult to operate and has a high threshold, making it difficult to

popularize on a large scale.

With the continuous advancements in molecular

biotechnology and sequencing technologies, the focus of

aquatic animal-related research has shifted to the genome and

transcriptome levels. RNA interference (RNAi) has become a

new effective tool to induce infertility in aquatic animals and has

been widely used in various species. For example, in teleost fish,

the agate phenotype of loach (Fujimoto et al., 2010) and sturgeon

(Linhartová et al., 2015) has been achieved by inactivating the

mRNA necessary for the formation of primordial germ cells

using the morpholino method, in which the dsRNA of vasa was

injected into the ovaries of the fully mature female Pinctada

fucata, and the mother was induced to lay eggs 6 h later. The

gonads of the injected offspring were significantly smaller than

those of the control group (Iwai et al., 2015). In Eriocheir

sinensis, a crustacean, RNAi with the DMRT-like gene

inhibited the normal development of the testis (Zhang and

Qiu, 2010). In Fenneropenaeus chinensis, closely related to M.

rosenbergii, interference with the doublesex (DSX) gene

significantly reduced the expression of the androgen-

promoting gene (AGH) (Li et al., 2018). In M. rosenbergii,

RNAi has been successfully used for silencing of insulin-like

AG (Mr-IAG) gene of male M. rosenbergii to reverse its sex into

full-functional neo-female individuals, which could mate with

normal male individuals to produce an all-male population

(Ventura et al., 2012). Levy et al. (2016) successfully

constructed an all-female population by injecting hyperplastic

gonad (hAG) cells into female juvenile M. rosenbergii to obtain

neo-male individuals. Recently, Xu et al. (2022) obtained a fully

functional neo-female individual by RNAi-based silencing of

MroDmrt11E, which is upstream of Mr-IAG in M. rosenbergii.

However, these studies focused on developing parthenogenetic

populations ofM. rosenbergii, and reports on sterile populations
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of M. rosenbergii are scarce. Collectively, these results indicate

that mRNA inhibition required for reproductive development at

various stages of the life cycle of various animals can affect their

normal reproductive development and even change their sex

phenotypes. However, the limited knowledge of the gonad

development and gametogenesis mechanism of M. rosenbergii

and the lack of the corresponding breakthrough point hinders

the application of potential tools such as RNAi to achieve

reproductive sterilization in this species.

Therefore, screening and identifying key genes that play a

role in germ cell development, then clarifying the developmental

molecular mechanisms of germ cells is an important prerequisite

for the future development of sterility induction methods in M.

rosenbergii. Recently, related research has made certain progress

on other crustacean species: Wei et al. (2021) found that PIWI

plays a role in the formation of germ cell nucleus of E. sinensis,

and can maintain the apoptosis of abnormal germ cells to

remove abnormal germ cells, which is different from its

function in mammals; In Penaeus vannamei, a newly

discovered maternal gene MnTdrd has been proved to

function in the formation and differentiation of reproductive

cells in P. vannamei, and can be used as a new germ cell marker

to track the origin and migration of germ cells (Dong et al.,

2021); Meanwhile, KIFC1 was found to be possibly involved in

mitosis of spermatogonia, meiosis of spermatocytes, and

acrosomal formation during spermatogenesis in Penaeus

japonicus, and its reduced expression may induce abnormal

assembly of microtubules and lead to apoptosis of

spermatogonia and spermatocytes (Hao and Yang, 2019).

Additionally, the research of foxl2 (Wan et al., 2022), IAG2

(Liu et al., 2021) and DDX52 (Li et al., 2018) genes in the germ

cells of crustaceans has also made considerable achievements.

However, recent research on M. rosenbergii are scarce, and the

isolation of germ cell-related key marker genes needs to be

further promoted.

Previously, the conventional method for isolating genes in

non-model organisms was polymerase chain reaction (PCR)

amplification based on the conserved sequences of

homologous genes. Because this method is time-consuming,

inefficient, and probably not applicable to highly differentiated

target genes in different species, screening for target genes has

been a major bottleneck in molecular biology research (Bar et al.,

2016). In recent years, large-scale parallel transcriptome

sequencing platforms, such as ABI solid, Roche 454, and

Illumina Solexa platforms, have been gradually popularized,

providing new methods and ideas to encounter various

research problems (Oghenekaro et al., 2016). In addition to

model organisms, large-scale transcriptome sequencing has been

applied to different types of research on an increasing number of

aquatic species such as Thunnus maccoyii (Bar et al., 2016),

Sepiella japonica (Wang et al., 2020), Fenneropenaeus

merguiensis (Prasert et al., 2021) and Salmo salar (Trine et al.,

2021). In Macrobrachium nipponense, large-scale transcriptome
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sequencing technology was used to explore the molecular

mechanisms of stress resistance (Li et al., 2021), sex

differentiation (Abu Abayed et al., 2019), and immunity (Ou

et al., 2021). In contrast, transcriptome resources of M.

rosenbergii are scarce, which is the main obstacle to the

molecular biology research of this species— As of September

27, 2022, there were only 4,576 expressed sequence tags (ESTs)

in the National Center for Biotechnology Information (NCBI)

database. In this study, we aimed to explore and discover genes

in the key regulatory organs of M. rosenbergii, which may be

related to germ cell development. To this end, we performed

transcriptome sequencing and analysis of the brain and gonad

tissues in M. rosenbergii. We employed different strategies, such

as various gene screening methods, quantitative real-time PCR

(qRT-PCR), and in situ hybridization (ISH), to identify the

target genes. The findings will provide key information about

germ cell development and contribute to the sustainable

development of RNAi research on M. rosenbergii.
2 Materials and methods

2.1 Ethics statement, experimental fish
and sample collection

All experiments were conducted at the Pearl River Fisheries

Research Institute of the Chinese Academy of Fishery Sciences

(Guangzhou, China). The study was approved by the Animal

Experiment Ethics Committee of Pearl River Fisheries Research

Institute, Chinese Academy of Fishery Sciences (Guangzhou, China).

To avoid the gonadal atrophy caused by over-ripening, and

ensure that the sample contains germ cells at different

developmental stages, 30 males and 30 females were obtained

from Foshan Sanshui Baijin Seedling Co., Ltd. (Foshan, China)

as normal three-month-old M. rosenbergii specimens with a

body weight of 10.3 ± 2.1 g and a body length of 7.6 ± 1.5 cm.

The brains, gonads, and other tissues (including intestine, gills,

muscle, stomach, liver, and heart) of specimens were

immediately collected on ice with disinfected scissors and

tweezers. Every tissue group had three sets of biological

replications; and each replication contained samples from 30

individuals. All tissue samples were soaked in RNAlater

(Thermo Scientific, Waltham, MA, USA) and stored at -20°C

for transcriptome sequencing and expression analysis. A portion

of gonad samples was soaked in Bouin’s solution for 4 h and

stored in 70% ethanol at 4°C for ISH.
2.2 RNA extraction, library construction,
and illumina sequencing

Total RNA was extracted from tissues using TRIzol reagent

(Invitrogen, Waltham, MA, USA) according to the
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manufacturer’s protocol. Then the sample mRNA was enriched

with Oligo (dT) magnetic beads. Fragmentation buffer was

added to break mRNA into short segments, mRNA was used

as a template to synthesize the first cDNA strand with six-base

random primers, and then buffer, dNTPs, RNase H, and DNA

polymerase I were added to synthesize the second cDNA strand.

After purification with QiaQuick PCR kit (Qiagen, Venlo,

Netherlands) and elution by EB buffer, terminal repair,

addition of poly(A) and connection of sequencing linker were

carried out, then fragment size selection was carried out using

agarose gel electrophoresis, and finally PCR amplification was

carried out. The built sequencing library was sequenced by

Illumina HiSeqTM instrument at SAGENE Biotech Co., Ltd.

(Guangzhou, China).
2.3 Illumina read processing and assembly,
functional annotation, and classification

To obtain high-quality reads for further analysis, reads

containing adapters or poly(A) sequences and low-quality reads

were removed from the raw data using the FastQC v0.11.5

software to generate clean data. The N50 and GC percentages of

the cleaned data were calculated. Then, high-quality reads were

reconstructed and assembled into a single genome using Trinity

v2.2.0 with default parameters (Cabau et al., 2017). First, Trinity

was used to connect the reads with a certain length of overlap into

longer segments, and these assembled segments without N

obtained through the relationship of reads overlap were used as

the assembled unigenes. Lastly, the National Center for

Biotechnology Information non-redundant (Nr, ftp://ftp.ncbi.

nih.gov/blast/db/), Swiss-Protein (SwissProt, https://www.

uniprot.org/), Kyoto Encyclopedia of Genes and Genomes

(KEGG, https://www.genome.jp/kegg/), and Gene Ontology

(GO, http://geneontology.org/) databases were used to obtain

the feature and annotation information for all assembled

unigenes (Figure 1A).
2.4 Gene expression distribution and
identification of candidate genes

Reads in RNA-Seq analysis were normalized to the

fragments per kilobase of transcript per million mapped reads

(FPKM) to estimate gene expression levels (Mortazavi et al.,

2008). Results were subjected to multiple-test correction using

an error-finding rate (FDR) threshold < 0.05 (Benjamini and

Yekutieli, 2001; Lu et al., 2015). A gene is defined as specifically

expressed in a single tissue (SEGs) if FDR in that single tissue is ≤

0.05 and log2 ratio = 0 (the FPKM value of the gene in one

sample is at least twice that of the gene in the other sample).
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Genes with FDR ≤ 0.05 and log2 ratio < 2 in multiple tissues were

classified as co-expressed genes (CEGs). The Venn diagrams

were constructed from annotated gene expression profiles of

single genes in single or multiple tissues. (Figure 1B).

Subsequently, candidate genes were obtained by screening

keywords (Figure 1C), comparing expression levels (Figure

1D) ,sequences and species origin (Figure 1E).

The FPKM values were also used to estimate gene expression

levels using the StringTie software (Pertea et al., 2016).

Differentially expressed genes (DEGs) between female brain

(FB), female gonad (FG), male brain (MB), and male gonad

(MG) groups were analyzed using DESeq 2 (Love et al., 2014)

with a threshold FDR < 0.05 and absolute fold change (FC)≥2

(log 2 | FC |≥1). Log2(FC) > 0 indicated upregulation, and log2
(FC) < 0 indicated downregulation.
2.5 Quantitative real-time PCR (qRT–
PCR) analysis

The qRT-PCR was performed to verify the sequencing

results of ten randomly selected DEGs and the expression

levels of the candidate genes in the male and female gonads,

intestine, gills, brain, muscle, stomach, liver, and heart tissues.

RNA from each sample (in 3 triplicates) was collected using

TRIzol Reagent (Invitrogen, Waltham, MA, USA), as described

in section 2.2. First-strand cDNA was synthesized from 1 mg of

total RNA using an Evo M-MLV RT Premix for PCR Kit

(Accurate Biology, China). The specific qRT–PCR primers

shown in Supplementary Tables S1 and S2 were designed

using online Primer-BLAST from NCBI (https://www.ncbi.

nlm.nih.gov/tools/primer-blast/). The reaction mix comprised

1 mL (50 ng/mL) cDNA, 10 mL iTaq Universal SYBR® Green

Supermix (BIO-RAD, CA, USA), 2 mL of upstream and

downstream primer, and 7 mL of nuclease-free water to adjust

the final volume to 20 mL. Reactions were performed using the

QuantStudio 6 Real-Time PCR System (Applied Biosystems,

CA, USA) using the following protocol: 95°C for 5 min; 37 cycles

of 95°C for 30 s, 58°C for 30 s, and 72°C for 20 s; and 72°C for

10 min for data acquisition. Each sample was tested in triplicates.

b-Actin gene (AY651918.2) was used as the internal reference to

normalize the Ct values of each reaction using the 2−DDCt method

(Livak and Schmittgen, 2001) (Figure 1F).
2.6 In situ hybridization

Sense and anti-sense RNA probes labeled with digoxigenin

were synthesized from the corresponding regions (Table 1). The

cDNA fragment of the final candidate gene was subcloned into

pGEM T-easy vector. DIG-labeled uridine triphosphate (Roche,
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Basel, Switzerland) and T7 RNA polymerase (Promega, WI, USA)

were used to transcribe sense and antisense probes in vitro. For ISH,

tissue samples from gonads were fixed in Bouin’s solution at 4°C for

4 h (GenXion, China). After dehydration under the condition of

increasing ethanol concentration, a part of each sample was

embedded in paraffin, and cut into 7-mm slices with Leica

RM2016 Microtomes (Leica, Weztlar, Germany). Then, paraffin

sections were placed on Thermo adhesive glass slides (Thermo

Scientific, Waltham, MA, USA), dewaxed, and dehydrated by

dipping in xylene-ethanol series. Staining sections with

hematoxylin-eosin (HE) solution (Nanjing Jiancheng

Bioengineering Institute, China), or ISH treatment with DIG-

labeled RNA probes, followed the previously described protocol

(Nagasawa et al., 2009). For subcellular localization of the candidate

genes, gonad samples were obtained and pretreated as described in

2.1. We divided oogenesis in the obtained samples into four stages

and spermatogenesis into three stages, following the method

described in previous studies (Luo et al., 1999; Deng and Hu,

2002; Meeratana and Sobhon, 2007). The resulting ISH sections

were observed under a Nikon Eclipse ci upright microscope (Nikon,

Japan) equipped with a Nikon DS-U3 digital camera

(Nikon, Japan).
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2.7 Statistical analysis

Microsoft Excel 2021 (Microsoft Corporation, Redmond, WA,

USA) and Graphpad Prism 9 (Graphpad Software, San Diego, CA,

USA) were used to sort and analyze the experimental data.
3 Results

3.1 Transcriptome sequencing and assembly

For the use of transcriptome databases for M. rosenbergii,

four cDNA libraries were produced by applying the stringent

quality assessment and data filtering of sequences from the

female/male brain, ovary, and testis samples. We obtained

110.7, 104.5, 91.9, and 83.4 million high-quality clean reads,

respectively. Using the Trinity assembly program, 60,607

unigenes were generated by hybrid de novo assembly with

lengths ranging from 301 to 21,012 bp (average length: 1,420

bp) (Table 2). The raw transcriptome sequences generated in this

study were uploaded to the NCBI Sequence Read Archive (SRA)

with the accession number PRJNA884099.
B

C

D

E

F

A

FIGURE 1

Assembly and analysis pipeline of Giant freshwater prawn Macrobrachium rosenbergii gonadal transcriptome. (A) Workflow of transcriptome
data analysis. (B) Expression analysis and construction of Venn diagram. (C) Identification of reproduction-related genes by searching databases
with 11 reproduction-related keywords and 52 known gene names (FG/FB and MG/MB areas were not shown because no candidate genes were
obtained in them.). (D, E) Filtering the candidate genes by analyzing the FPKM value, sequence length, ORF and source. (F) Obtaining and
verifying the final candidate genes using qRT-PCR and in situ hybridization. FG, female gonad (ovary); MG, male gonad (testis); CO-E, Co-
expression (ovary, testis, female brain and male brain).
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3.2 Functional annotation and classification

For functional annotation of the 60,607 unigenes obtained,

these genes were used as query sequences and the nr, SwissProt,

KEGG, and KOG (evaluate < 1e-5) protein databases were

searched using blastx. The results showed that only 34.6%

(20,963 in total, NR: 20,792; Swissprot: 14,885; KEGG: 7,387;

KOG: 14,063) of the unigenes showed high sequence similarity in

these protein databases. The functions of given unigenes were

determined by comparing the proteins which had the highest

homology with these genes, such as nuclear autoantigenic sperm

protein (Unigene045489), round spermatid basic protein 1

(Unigene018151) and male reproductive-related microfibril-

associated protein (Unigene026230). Furthermore, using the

Blast2GO software, 12.6% of the annotated unigenes (2,642)

could be assigned a GO ID (Table 3). According to the GO

classification table, the GO annotations of unigenes are analyzed.

Among these three ontologies: molecular function, cellular

component; biological process, cellular process, cell and catalytic

activity are the most gene-rich level 2 GO terms in the three

ontologies (Figure S1). Meanwhile, in the KEGG database, the
Frontiers in Marine Science 06
pathways with the most annotated gene entries are Ribosome,

RNA transport, and Spliceosome, all of which belong to Genetic

Information Processing in KEGG A Class (Figure S2).
3.3 Verification of DEGs using qRT-PCR

DEGs of six comparison groups were acquired by FDR and

log2FC (Table S3). Ten DEGs were randomly selected from

different groups for the qRT-PCR analysis. All the tested genes

showed similar expression patterns (Figure 2) with their FPKM

values, indicating the reliability and accuracy of our

transcriptome data and subsequent analysis.
3.4 Gene expression distribution and
identification and screening of germ
cell-related candidate genes

Normalization of the reads in the RNA-Seq analysis to the

FPKM identified a total of — SEGs (FG: 755; MG: 197; FB: 32;

MB:12) and—– CEGs (15,627) in four tissues: FG, MG, FB, and

MB. Venn diagram identified 256 unigenes expressed in FG and

MG, 755 specifically expressed in FG, and 197 in MG. In

addition, 15,627 unigenes were co-expressed in FG/MG/FB/

MB (Figure 3A).

Next, to identify the germ cell-related candidate genes, genes

identified in the four key regions in the Venn diagram (FG/MG,

FG, MG, and FG/MG/FB/MB) were screened using 11 gonadal-

related keywords, namely, oocyte, sperm, fertilization, sex,

meiosis, male, gonad, germ cell, gamete, female, and egg. In

addition, 52 known sex-related gene markers and genes related

to gonadal development (Matsumoto et al., 2013; Chen et al.,

2015; Yue et al., 2015), including vasa, nanos, SPATA, DMC1,

Sox, and RAD51, were searched in Venn diagrams and unigene

databases to obtain data on homologous genes. The analyses
TABLE 2 Summary of M. rosenbergii transcriptome data.

Search item Number

Total number of clean reads in female brain library 110,724,220

Total number of clean reads in male brain library 104,532,856

Total number of clean reads in ovary library 91,876,886

Total number of clean reads in testis library 83,384,930

GC percentage of unigenes (%) 39.17

Total number of unigenes 60,607

Mean length of unigenes (bp) 1,420

N50 length of unigenes (bp) 2,389

Max length of unigenes (bp) 21,012

Min length of unigenes (bp) 301
TABLE 1 Primers for probe synthesis for in situ hybridization.

Gene ID Sequence (5′ to 3′) Region Product length (bp)

Unigene028604_01 AGCTTTGGCAAACGGGTACT 71-498 428

GGCTGTGGTTGGGTAAGTGA

Unigene041990_01 ACATCAGCTTCAGACGGTCG 494-1,018 525

CCAGCAGGAGATTGACGGTT

Unigene059162_03 TGGTCAAGTTGGGTCTTGCT 225-809 585

GTACCGCCGTAAACCACCTT

Unigene063191_01 GACTCGCCTTTCCCAACTCA 228-731 542

TTCAGGGCTAGAAGTGCGTG

Unigene064862_02 CCGCCCTTAAGCCAGTACAA 1,330-1,828 499

GTGGTGTTGAAAGGCGTGAC

Unigene041623_04 CCCACTCTTACCTCTTCCTCT 144-329 186

GGGAAAGTCAATGAGCCATGC
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identified 60 candidate genes in FG/MG/FB/MB region, 4 in

MG, 2 in FG, and 1 in FG/MG (Figure 3A and Table S4).

Furthermore, to locate candidate genes that participate in

germ cell development, genes with low FPKM values were

eliminated by querying the statistical data on their expression

levels in the transcriptome database, which identified 32

candidate genes (Table S5). Then the sequence assembly of

these genes and gene sources were analyzed and compared.

Genes with a length of less than 500 bp or without a complete

open reading frame were removed. Simultaneously, to further

improve the reliability of candidate genes, homologous genes

from vertebrates with relatively distant genetic relationships

were removed (Table S5). Finally, 18 candidate genes were

identified (Figure 3B and Table 4). Among them, 17 genes,

including Sox14, sex determination protein fruitless-like isoform

X47(SDPF), Fem-1A, RAD51, vasa, spermidine synthase-like

(SPDS), and ER degradation-enhancing alpha-mannosidase-

like 3(ER3), were found in the FG/MG/FB/MB co-expression

region. Only the male reproductive-related (MRR) gene was

identified in the MG region. In addition, no qualified candidate

genes were found in the FG region after screening.
3.5 Validation of target genes related to
germ cell development

Next, to validate the 18 candidate genes, their specific

expression in the tissues of adult male and female M.

rosenbergii were verified using qRT-PCR. As shown in Figure 4,

12 genes , inc luding ER (Unigene038520_03) , ER3

(Unigene045914_01), NAS (Unigene045489_07), SN1A

(Unigene037486_01), SPATA7 (Unigene052170_01) and

SPDSCRF (Unigene052832_05) showed significantly lower

expression in ovary and testis tissues than those in some other

hermaphroditic tissues. Only RAD51 (Unigene041623_04), vasa

(Unigene059162_03), and SPDS (Unigene064862_02) showed

specific expression in both FG and MG, and their expression in

other body tissues was extremely low or undetectable. Fem-1C

(Unigene041990_01) and SDPF (Unigene028604_01) specifically

expressed in FG were only slightly expressed in the liver, heart,

and other body tissues of male M. rosenbergii. In addition, the
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expression of MRR (Unigene063191_01) was more significant in

the testis than in other hermaphroditic body tissues.

According to the qRT-PCR results, five candidate genes

(Fem-1C, SDPF, RAD51, vasa, and SPDS) were selected for

further analysis to determine the subcellular localization of

these genes in the gonads. A previous study in M. rosenbergii

has shown thatMRR is specifically expressed in secretory cells in

the inner wall of vas deferens, which may be related to sperm

maturation and sperm pod formation (Cao, 2006). Therefore, we

did not analyze the localization of MRR. Compared with gonad

sections after HE staining (Figures 5A, D, G, J; Figures 6A, D, G,

J; Figures 7A, D, G, J; Figures 8A, D, G, J;), ISH results showed

hybridization signals with the anti-sense probes of RAD51, vasa,

SPDS, and Fem-1C in the germ cells ofM. rosenbergii. However,

no signals were observed in any germ cells using the anti-sense

probe of SDPF (data not shown). Vasa mRNA was detected in

stage 1–3 oocytes of the ovaries (Figures 8B, E) and

spermatogonia and primary spermatocytes of the testes

(Figures 8H, K). RAD51 mRNA was detected in stage 2–3

oocytes (Figures 5B, E) and spermatogonia (Figures 5H, K).

SPDS mRNA was mainly enriched in the cytoplasm of stage 1–3

oocytes (Figures 6B, E) and spermatogonia (Figures 6H, K).

Fem-1C mRNA was only detected in stage 1–3 oocytes

(Figures 7B, E), whereas no signal was detected in any germ

cells in the testes (Figures 7H, K). In addition, hybridization

signals were not observed in any germ cells using the vasa,

RAD51, Fem-1C, and SPDS sense probes (Figures 5C, F, I, L;

Figure 8C, F, I, L; Figures 6C, F, I, L; Figures 7C, F, I, L).
4 Discussion

The development of hermaphroditic germ cells is an

important physiological process in the life history of sexually

reproducing animals. In the recent decade, large-scale

transcriptome sequencing has gradually become a powerful,

highly repeatable, and cost-effective tool for biomolecular

research to understand various molecular mechanisms

involved in the development of gonadal germ cells. This study

obtained more than 300 million high-quality reads and

assembled them into more than 60,000 unigenes. Of these,

approximately 20,000 were functionally annotated in the

protein database. Compared to other recent studies on the M.

rosenbergii transcriptome (Jiang et al., 2019; Yang et al., 2022),

the average length of unigenes obtained in this study was longer

(Our study: 1,420 bps; Jiang et al.’s: 1,196 bps; Yang et al.’s: 1,133

bps). However, the total number of unigenes obtained was

slightly lower than those obtained in previous studies (Our

study: 60,607; Jiang et al.’s: 115,338; Yang et al.’s: 75,887). This

difference could be due to the different versions of the protein

database used for functional annotation or different criteria to

delete short and partially overlapping sequences to obtain non-

redundant sequences.
TABLE 3 Functional annotation of unigenes of M. rosenbergii
transcriptome.

Databases Annotated transcripts

Total Unigenes 60,607

NR 20,792

Swissprot 14,885

KEGG 7,387

KOG 14,063

Annotated genes 20,963

Without annotated gene 39,644
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FIGURE 2

Validation of the 10 differentially expressed genes profiles using quantitative real-time PCR (Columns with the same letter above indicate that
there is no significant difference between them, if not, there is significant difference).
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The construction of the Venn diagram provides a convenient

way to query the tissue distribution of target genes and identify

candidate genes in key regions. In this study, we used twomethods

to search the Venn map to screen sex-related candidate genes

involved in gonadal development in M. rosenbergii. As our

purpose was to identify genes involved in gonadal development

and sex, we focused on genes that were mainly or specifically
Frontiers in Marine Science 09
expressed in the FG and MG regions. First, based on their

functional classification, genes were searched using gonadal,

reproductive, or gender-based keywords. Second, based on

genes related to germ cell development found in other species,

potential cognate genes for these genes were obtained in our

species. Some genes are obtained by both methods, such as sex-

lethal 1 (Sxl1), gametocyte-specific factor 1(GTSF1), MRR, and
BA

FIGURE 3

(A) The number of annotated unigenes present in each area of the Venn diagram. (B) Distribution of final candidate genes on Venn diagram
(Bold font represents known gene markers).
TABLE 4 List of candidate genes found in the databases.

Gene ID Total length (bp) CDS region CDS Length Hit species Description

Unigene027658_01 3,610 2,328-3,533(-) 1,206 Scylla paramamosain Sox14 protein

Unigene028604_01 5,608 44-2,113(+) 2,070 Fopius arisanus Sex determination protein fruitless-like isoform X47

Unigene036788_03 6,463 2,016-2,780(-) 765 Daphnia pulex Female lethal d-like protein

Unigene037486_01 1,983 883-1,848(-) 966 Atta cephalotes Spermidine/spermine N(1)-acetyltransferase-like protein 1

Unigene037876_01 3,534 1,356-3,314(-) 1,959 Eriocheir sinensis Fem-1A

Unigene038520_03 6,058 1-1,755(+) 1,755 Hyalella azteca ER degradation-enhancing alpha-mannosidase-like protein
1

Unigene039854_02 4,253 2,122-4,176(-) 2,055 Macrobrachium
nipponense

Fem1b

Unigene041623_04 1,919 2-394(+) 393 Habropoda laboriosa DNA repair protein RAD51 like protein 4

Unigene041990_01 1,984 652-1,983(-) 1,332 Eriocheir sinensis Fem-1C

Unigene045489_07 2,123 444-1,754(+) 1,311 Penaeus monodon Nuclear autoantigenic sperm protein

Unigene045914_01 8,178 4,928-8,077(-) 3,150 Zootermopsis nevadensis ER degradation-enhancing alpha-mannosidase-like 3

Unigene052170_01 2,810 1-783(+) 783 Stegodyphus mimosarum Sperm-associated antigen 7-like protein, partial

Unigene052832_05 6,048 4,714-5,832(-) 1,119 Fenneropenaeus chinensis Spermatogonial stem-cell renewal factor

Unigene059036_08 2,781 419-1,186(+) 768 Macrobrachium
nipponense

Sex-lethal 1

Unigene059162_03 1,519 130-1,383(-) 1,254 Macrobrachium
nipponense

vasa-like protein

Unigene062016_01 9,197 7,036-9,066(-) 2,031 Hyalella azteca Mannosyl-oligosaccharide 1,2-alpha-mannosidase IA-like

Unigene063191_01 5,474 98-3,133(+) 3,036 Macrobrachium rosenbergii Male reproductive-related protein

Unigene064862_02 12,623 9,694-12,477(-) 2,784 Hyalella azteca Spermidine synthase-like
(+: towards the 3’ end; -: towards the 5’ end).
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FIGURE 4

Tissue expression pattern of the final candidate genes in adult female/male M. rosenbergii using qRT-PCR (Boxes indicate that these genes are
specifically expressed in female/male gonads. Red box represents the genes with high expression only in ovary, blue box represents the genes
with high expression only in testis, black box represents the genes with high expression in both ovary and testis).
FIGURE 5

Localization of vasa mRNA in the ovary (A–F) and testis (G–L) of M. rosenbergii. HE staining of ovary (A, D) and testis (G, J) used for in situ
hybridization. Anti-DIG signals obtained by vasa-antisense probes (B, E, H, K) and vasa-sense probes (C, F, I, L). (D–F, J–L) High-magnification
images of areas enclosed in red boxes in the images to the top (A–C, G–I). Og, oogonia; St1, stage-1 oocytes; St2, stage-2 oocytes; St3, stage-
3 oocytes. Sc: spermatogonia; Sg: primary spermatocyte; ST: spermatids. Scale bars 100 mm (A–C, G–I); 20 mm (D–F, J–L).
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Sperm-associated antigen 7-like (SPATA7). Nevertheless, the first

method complemented the second; it identified additional genes,

such as SPDS, which could be important for screening new target

genes. In addition, it was noted that most of the final candidate

genes (17/18) were distributed in the FG/MG/FB/MB region,

which might be because the brain of M. rosenbergii had certain

regulatory effects on gonadal development. The role of brains in

gonadal development has previously been reported in several

species, such as mammals (Plant, 2015), birds (Tsutsui et al.,

2003), fish (Zohar et al., 2010), and insects (VanWielendaele et al.,

2013), including sex differentiation and regulatory maturation;

however, related topics have not been well studied in aquatic

crustaceans. The transcriptome data of this study (PRJNA884099)

can provide helpful information for future relevant studies on the

neuroendocrine regulation of reproduction of M. rosenbergii.

Through the series of studies described above, we finally

obtained five genes that are closely related to germ cells. RAD51
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is one of the genes that has been shown for the first time to play a

role in the germ cells of M. rosenbergii. RAD51 originates from

the RecA of cell biological ancestors (Lin et al., 2006). It

participates in DNA damage repair during meiosis and plays a

key role in guiding recombination. When double-strand breaks

(DSBs) occur, 5’-3’ nucleic acid exonuclease hydrolyzes the

single strand end of the broken DNA, and replication protein

A (RPA) binds to DSBs (Lewandoski, 2001). RAD51 replaces

RPA and combines with the 3’ end of DNA to form ssDNA-

RAD51 nucleoprotein filament, recognizing and mediating the

recombinant exchange between the two chains (Takzare et al.,

2016). Previous studies on the effect of RAD51 on meiosis have

mostly been conducted in plants and a few model organisms,

and deletion of RAD51 has been confirmed to cause

chromosome pairing and synapse defects in Arabidopsis

thaliana (Li et al., 2004) and Zea Mays (Franklin et al., 2003).

It also affects the meiotic recombination of Saccharomyces
FIGURE 6

Localization of Rad51 mRNA in the ovary (A–F) and testis (G–L) of M. rosenbergii. HE staining of the ovary (A, D) and testis (G, J) used for in situ
hybridization. Anti-DIG signals obtained by Rad51-antisense probes (B, E, H, K) and Rad51-sense probes (C, F, I, L). (D–F, J–L) High-
magnification images of areas enclosed in red boxes in the images at the top (A–C, G–I). Og, oogonia; St1, stage-1 oocytes; St2, stage-2
oocytes; St3, stage-3 oocytes. Sc, spermatogonia; Sg, primary spermatocyte; ST, spermatids. Scale bars 100 mm (A–C, G–I); 20 mm (D–F, J–L).
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cerevisiae and causes cell cycle arrest (Rockmill et al., 1995). The

directional knockout of RAD51 in male germ cells of Mus

musculus inhibited meiosis and led to the development of

reproduction sterility. These studies have revealed multiple

effects of RAD51 on meiotic recombination in various

organisms. In this study, the existence of RAD51 in M.

rosenbergii was first discovered, and its tissue expression and

subcellular localization were obtained, preliminarily revealing

the expression pattern of RAD51 in M. rosenbergii. RAD51 was

widely expressed in male and female germ cells ofM. rosenbergii,

especially in spermatogonia and stage 2–3 oocytes, suggesting

that this gene plays a functional role in gamete production ofM.

rosenbergii, which would be of great value for further research.

Another gene that specifically develops color in germ cells

through ISH experiments is vasa. It was first discovered in
Frontiers in Marine Science 12
Drosophila melanogaster by Schüpbach in 1986 and is

involved in forming abdominal segments and developing

germ cells in Drosophila (Schüpbach and Wieschaus, 1986).

Since then, due to its conservation, vasa has been successively

identified in several other species, including Caenorhabditis

elegans (CEU62772), Fenneropenaeus chinensis (EF206693),

Danio rerio (AF461759), Parhyale hawaiensis (EU289291),

and Scylla paramamosain (GU187045) and is expressed

specifically in germ cells in the vast majority of species.

Previously, Nakkrasae and Damrongphol (2007) discovered

a vasa-like gene (ABC87271) inM. rosenbergii, and the results

of the neighbor-joining tree showed that the vasa-like gene in

M. rosenbergii was adjacent to D. rerio and Mus musculus.

Molecular phylogenetic analysis of the amino acid sequences

of vasa family genes, including vasa, obtained using the
FIGURE 7

Localization of SPDS mRNA in the ovary (A–F) and testis (G–L) of M. rosenbergii. HE staining of the ovary (A, D) and testis (G, J) used for in situ
hybridization. Anti-DIG signals obtained by SPDS-antisense probes (B, E, H, K) and SPDS-sense probes (C, F, I, L). (D–F, J–L) High-
magnification images of areas enclosed in red boxes in the images to the top (A–C, G–I). Og, oogonia; St1, stage-1 oocytes; St2, stage-2
oocytes; St3, stage-3 oocytes. Sc: spermatogonia; ST: spermatids. Scale bars 100 mm (A–C, G–I); 20 mm (D–F, J–L).
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neighbor-joining method, showed that vasa in our study was

clustered with those of Macrobrachium nipponense and P.

vannamei (Figure S3). This result indicates that vasa

identified in this study was the actual vasa of M.

rosenbergii. Moreover, vasa has been used as a reliable

molecular marker for germ cell lineages (Raz, 2000). In this

study, we demonstrated the subcellular localization of vasa in

the mature gonads of M. rosenbergii, and its expression

pattern was similar to that of homologous genes of D. rerio

(Sun et al., 2013), F. chinensis (Zhou, 2007), Chlamys farreri

(Shao, 2007), and S. paramamosain (Zhang et al., 2010).

Taken together, these results indicated that vasa played a

vital role in the development of the germ cell lineage of M.
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rosenbergii and could be used as a marker for germ cells in

this species.

Fem-1 (Feminization-1) gene family, first discovered in

Caenorhabditis elegans, plays a crucial role in regulating

spermatogenesis in male/hermaphroditic reproductive lines

(Doniach and Hodgkin, 1984). The Fem-1C gene obtained in

this study is a member of the Fem-1 family. A few studies have

shown that Fem-1C is involved in the sex regulation of some

species and is highly conserved, but its role and mechanism in

different organisms are quite different. For example, Xiong et al.

(2014) found that HsFem-1C was highly expressed in the testes

of Hyriopsis schlegelii, but it was also expressed in oocytes of

Hyriopsis cumingii (Wang, 2018). Here, we confirmed that Fem-
FIGURE 8

Localization of Fem-1C mRNA in the ovary (A–F) and testis (G–L) of M. rosenbergii. HE staining of ovary (A, D) and testis (G, J) used for in situ
hybridization. Anti-DIG signals obtained by Fem-1C-antisense probes (B, E, H, K) and Fem-1C-sense probes (C, F, I, L). (D–F, J–L) High-
magnification images of areas enclosed in red boxes in the images to the top (A–C, G–I). Og, oogonia; St1, stage-1 oocytes; St2, stage-2
oocytes; St3, stage-3 oocytes. Sc: spermatogonia; ST: spermatids. Scale bars 100 mm (A–C, G–I); 20 mm (D–F, J–L).
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1C was significantly enriched in the ovaries of M. rosenbergii

using qRT-PCR and ISH. This result is similar to those of

previous studies on Fem-1C in Procambarus clarkii (Zheng

et al., 2022) and Fem-1 in M. rosenbergii (Zhou et al., 2020).

These findings suggest that Fem-1C probably plays a key role in

the ovary of M. rosenbergii by regulating the development of

female germ cells in the middle and late stages.

Spermidine, a natural polyamine, plays an important

regulatory role in the animal breeding process, together with its

upstream product putrescine and its downstream product

spermine. Polyamine levels in human and rat seminal plasma

are much higher than those in any other body fluid or tissue

(Mann, 1974). Polyamines are widely present in germ cells, Sertoli

cells, and Leydig cells of the rat testis, and their concentrations

increase during puberty (Shubhada et al., 1989). Furthermore, the

activity of ornithine decarboxylase (ODC), the rate-limiting

enzyme for polyamine synthesis in female mammals, can be

regulated by changes in related estrogen hormones (Moulton

and Leonard, 1969; Ramos et al., 2014). Injection of exogenous

polyamines into aging female mice significantly reduced their

embryonic chromosomal aneuploidy, indicating the importance

of polyamines in maintaining female reproductive capacity (Liu

et al., 2017). These studies suggested that spermidine and SPDS

play an important role in the formation of male and female

gametes in mammals. The qRT-PCR results of this study showed

that SPDS was specifically expressed in the gonads of M.

rosenbergii, but its expression in the ovary was significantly

higher than that in the testes. However, ISH showed that SPDS

mRNA could also be detected in the testis ofM. rosenbergii. These

results indicate that SPDS may be conservative and participate in

the generation of male and female gametes in this species.

In conclusion, the present study reports the transcriptome of

the gonad and brain tissues of M. rosenbergii. It provides an in-

depth insight into the process of germ cell development in M.

rosenbergii at the molecular level. It identified 18 germ cell

development-related genes, of which five genes were validated.

These validated genes include one testis-related gene (MRR), one

ovary-related gene (Fem-1C), and three genes (RAD51, vasa, and

SPDS) related to both male and female germ cells in M.

rosenbergii. Among these five genes, RAD51, SPDS, and Fem-

1C were proven to function in germ cells of this species for the

first time. The findings of this study will assist in developing

suitable methods for producing sterile populations, which can be

applied in practical production to preclude precocious puberty.

In the future, we plan to silence these genes using RNAi and

assess their effect on the development of germ cells and upstream

and downstream genes. These potential studies will contribute to

exploring a theoretical foundation for future related research in

M. rosenbergii. However, the research progress is still a long way

from causing sexual reversal or infertility in M. rosenbergii at

present. In addition, the way to obtain sterile population on a
Frontiers in Marine Science 14
large scale continuously and stably has not been clarified, and a

lot of exploration is still needed.
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SUPPLEMENTARY FIGURE 1

Level2 GO terms of four tissues in Macrobrachium rosenbergii.
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SUPPLEMENTARY FIGURE 2

Primary KEGG Pathway of four tissues in Macrobrachium rosenbergii.
SUPPLEMENTARY FIGURE 3

Molecular phylogenetic analysis of the amino acid sequences of vasa
family genes using the neighbor joining method. Sources (accession

number) for vasa gene sequences: Macrobrachium rosenbergii

(DQ339110), Macrobrachium nipponense (JF917240), Penaeus
monodon (HQ385221), Litopenaeus vannamei (DQ095772), Carassius

auratus (AY773078) , Danio rerio (NM_131057) , Mus musculus
(NM_001145885). Sources (accession number) for PL10 gene

sequences: Carassius auratus (AY842133), Macrobrachium nipponense
(JF917241), Danio rerio (Y12819) and Mus musculus (J04847).
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