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For the routine target detection algorithm in the underwater complex environment

to obtain the image of the existence of blurred images, complex background and

other phenomena, leading to difficulties in model feature extraction, target miss

detectionandotherproblems.Meanwhile, an improvedYOLOv7model isproposed

in order to improve the accuracy and real-time performance of the underwater

target detection model. The improved model is based on the single-stage target

detection model YOLOv7, incorporating the CBAM attention mechanism in the

model, so that the feature information of the detection target is weighted and

enhanced in the spatial dimension and the channel dimension, capturing the local

relevanceoffeature information,making themodelmore focusedon target feature

information, improved detection accuracy, and using the SPPFCSPC module,

reducing the computational effort of the model while keeping the model

perceptual field unchanged, improved inference speed of the model. After a large

number of comparison experiments and ablation experiments, it is proved that our

proposed ACFP-YOLO algorithmmodel has higher detection accuracy compared

with Efficientdet, Faster-RCNN, SSD, YOLOv3, YOLOv4, YOLOv5 models and the

latest YOLOv7 model, and is more accurate for target detection tasks in complex

underwater environments advantages.

KEYWORDS

Underwater Object detection, ACFP-YOLO, YOLOv7, attention, SPPFCSPC
Introduction

Underwater target detection refers to the localization and identification of a specific

target in an underwater scene. The technology is widely used in underwater cable laying,

oil exploration, salvage and rescue, marine fish detection, undersea aquaculture,

underwater navigation, smart fishery farming, underwater target striking and other
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fields (Lin and Zhao, 2020) (YU, 2020) (Klausner and Azimi-

Sadjadi, 2019). Although target detection algorithms for ground

targets are relatively well established, the detection of

underwater targets in the underwater environment still faces

many challenges. The main reason is that the underwater

medium, underwater light conditions, underwater submarine

environment, etc. are more complex than the surface

environment (Qiang et al., 2020) (Lei et al., 2022). Due to the

differential attenuation of different wavelengths of light in water,

scattering of light by plankton and suspended particles in water

(Wei et al., 2021), making the target in underwater images and

videos blurred and with severe color cast, it seriously affects the

features of the target and creates serious obstacles for feature

learning and recognition understanding of underwater targets.

Therefore, underwater target detection continues to face a huge

challenge (Jiang and Wang, 2020).

In order to improve the detection of fuzzy underwater targets

and small underwater targets in the underwater environment,

while maintaining the efficiency of the algorithm and ensuring

good detection of the model. In this paper, based on the

framework of YOLOv7 (Wang et al., 2022) we introduce the

Convolutional Block Attention Module(CBAM) (Woo et al.,

2018) attention mechanism and Cross-Stage Partial Fast Spatial

Pyramid Pooling(SPPFCSPC) module, and propose a detection

model that is suitable for target detection in underwater

environment and has stronger feature extraction ability and

better detection speed in underwater scenes.

Section 2 of this paper introduces the development process

of underwater target detection and the current research

problems in this field. Section 3 introduces the overall

architecture of our proposed ACFP fusion model in detail, and

explains the theory of CBAM attention mechanism and

SPPFCSPC module. Section 4 introduces our experimental

environment, experimental parameters, datasets and evaluation

indicators. Section 5 is the result part. We conduct qualitative

and quantitative analysis through the compatibility comparison

of different attention mechanisms, ablation experiments, and

comparison experiments with mainstream algorithms. Section 6

is a summary of the entire article, illustrating the advantages of

our method for high-accuracy and real-time underwater object

detection scenarios, as well as future research directions.

The contribution of this paper is shown below:
Fron
1. In this paper, we propose a target detection network

model for underwater environment based on the

improvement of YOLOv7. In which we fuse the

CBAM attention mechanism and the SPPFCSPC

module in the YOLOv7 model, this fusion idea

effectively improves the detection accuracy of the

model for underwater fuzzy targets and small targets,

and provides an effective solution for the underwater

target detection task.
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2. On the URPC dataset, the mAP value of ACFP-YOLO is

80.62%, and the detection speed FPS value is 64.21. On

the underwater garbage detection dataset, the mAP

value is 74.92%, and the detection speed FPS value is

65.56. On both datasets, ACFP-YOLO achieves the

highest detection accuracy and has better inference

speed.

3. After a large number of comparative experiments and

ablat ion experiments , we quantitat ively and

qualitatively verify that our model is superior to

classical and state-of-the-art methods in the task of

underwater environmental target detection from

different perspectives. The detailed experiments

provide a detailed idea and an important basis for

other researchers to refer to our work.
Related work

In the early 21st century some researchers started to study

underwater target detection algorithms, and with the

development of artificial intelligence, new branches of research

on underwater target detection algorithms have emerged. For

the present the field is divided into two branches, one is the

traditional algorithm based on the detailed feature analysis of the

image, and the other is the neural network model algorithm

based on the training of a large number of underwater images, by

extracting features, analyzing the image features, extracting the

target information and obtaining the final detection results

(Tinghui et al., 2022).

Traditional target detection algorithms mainly digitize

images and then apply mathematical theoretical knowledge to

analyze and model them. However, the same target from

different angles presents a different shape on the picture, and

there are great difficulties in mathematical modeling of it, and

the established model is difficult to be put into the application of

realistic underwater scenes. QIU et al. (2019) proposed an

underwater motion target detection algorithm based on

surface feature ripples, this algorithm in photoelectric

polarization imaging mode for underwater target detection,

which became a mature masterpiece of traditional algorithms

in underwater target detection. But, the traditional algorithm for

modeling the features of a certain class or a certain target in

underwater targets in different water quality environments is a

major limitation, and the robustness for detecting underwater

images with different complex backgrounds under different

lighting is poor.

With the development of deep learning in recent years,

target detection algorithms based on convolutional neural

networks have been developed (Girshick et al., 2015) and have

achieved better results in recent years, and this type of algorithm
frontiersin.org
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has significant advantages in various detection tasks. Villon et al.

(2016) did a study on the performance of traditional and deep

learning algorithms, which used a two-stage extraction of HOG

features and the use of an SVM classifier to compare detection

on a coral reef fish dataset, and the results showed that the deep

learning algorithm has more advantages. The current

mainstream methods can be divided into two-stage target

detection algorithms and one-stage target detection algorithms.

Among them, the two-stage target detection algorithm performs

the detection task in two stages, generating the suggestion frame

first in the first stage and then making predictions in the second

stage. This type of algorithm has high detection accuracy but is

slow, and its representative algorithms are the Faster R-CNN

(Ren et al., 2015) series. The one-stage target detection algorithm

treats the target detection task as a single regression problem,

and although it is slightly lower in accuracy than the two-stage

algorithm, it has a faster detection speed, represented by the

YOLO family of algorithms, such as YOLO (Redmon et al.,

2016), YOLO9000 (Redmon and Farhadi, 2017), YOLOv3

(Redmon and Farhadi, 2018), YOLOv4 (Bochkovskiy et al.,

2020), YOLOv5 (Jocher, 2020)and SSD (Liu et al., 2016).

Chen et al. (2020) proposed a new sample-weighted super

network (SWIPENET) and a robust training paradigm–

curriculum Multi Class Adaboost (CMA), for underwater

images with small blurred samples. Shi et al. (2021) proposed

an improved Faster-RCNN based underwater detection

algorithm to improve the detection accuracy of Faster-RCNN

in underwater scenes for problems such as low quality of

underwater images, overlapping or occluded targets, and

different sizes or shapes. Zeng et al. (2021) proposed a Faster

R-CNN-AON network for the complex and variable underwater

environment with limited acquired sample images, and

introduced an adversarial network to improve the overall

detection performance of the model. However, the

optimization algorithm based on two-stage algorithm still has

the problems of low efficiency and poor real-time performance.

To address this problem above, Tinghui et al. (2022) proposed

an improved YOLOv5 underwater target detection network

model, the model has unique performance in underwater

target detection and maintains with real-time and accuracy.

Lei et al. (2022) used Swin Transformer as the base backbone

of YOLOv5 for underwater image blurring, making the network

suitable for underwater images with blurred targets.
Attention mechanism and cross-
stage partial fast spatial pyramid
pooling (ACFP)

We present our underwater target detection model in detail

in Section 3. We based on the YOLOv7 framework,

incorporating the CBAM attention mechanism, Using the
Frontiers in Marine Science 03
channel attention mechanism and spatial attention

mechanism, the channel weight of the detection target is

increased, while the perceptual field of the target to the

original image is expanded, allowing the model to pay more

attention to the feature information of the detection target. We

improve the original SPPCSPC module to SPPFCSPC module,

which reduces the computation of the model and improves the

inference speed of the model while keeping the perceptual

field unchanged.
Network model for underwater
target detection

Before feeding the network with images, we first perform a

distortion-free affine transformation of the original input image

to a 640×640 size image, which is then used as the input to the

model. The overall network framework model after our fusion is

shown in Figure 1, where the modules marked with red boxes are

the parts of the model fusion. The input images are first passed

through the backbone network for feature extraction. In order to

retain multi-scale information, the backbone network provides a

variety of different scales and outputs the multi-scale feature

maps to the neck network as the input of the neck network. After

the neck network, the fusion of feature maps containing shallow

fine-grained information and deep semantic information is

combined, thus enhancing the expressive power of the

network and assigning the multi-scale learning task to multiple

detection networks of different sizes. Finally, the feature

information is integrated and transformed into detection

prediction output.

Backbone network is used for feature extraction of images,

such as texture, color and shape of images. It can provide

multiple scales, multiple combinations of sense field sizes and

center steps, thus meeting the requirements of different scales

and categories. The extraction process of backbone network is

shown in Figure 1A, firstly, it goes through 4 CBS modules for

convolution, normalization and activation, and then it is after

the E-ELAN module and MP module to extract features

alternately, leading to the output of the last 3 E-ELAN

modules as the input of neck. Among them, the E-ELAN

module is composed of multiple convolutional layers, and the

MP module is composed of MaxPool and CBS modules as

shown in Figure 2C, D.

In order to enable the model to learn diverse information

and improve the performance of target detection, the role of

neck network is to disperse the multi-scale output learning

provided by backbone network to multiple feature maps and

fuse the learned multi-scale information together, which

improves the perceptual wildness of the model while effectively

separating the most important contextual features and avoiding

the image distortion problem to some extent. As in Figure 1B,

the neck network is a PAFPN structure, consisting of a modified
frontiersin.org
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FPN (Lin et al., 2017) and PANet (Liu et al., 2018) structure, for

extracting features and fusing them. The PAFPN structure is

basically the same as that of YOLOV5, except that the PAFPN

structure of YOLOv7 uses the E-ELAN-L module for feature

extraction and fusion, and the MP module for down sampling,

this makes this structure more capable of strengthening features

than previous PAFPN structures. Finally, after two feature

extractions of the input image by backbone network and neck

network, the 1×1 convolution is used to integrate the feature

information to convert it into the final prediction information,

as shown in Figure 1C, to obtain the prediction results of

the model.
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SPPFCSPC for ACFP

Spatial pyramid pooling is more effective than simply using

maximum pooling to increase the received range of backbone

features, significantly separating the most important contextual

features, and this structure outputs fixed-size feature vectors

after multi-scale feature extraction to increase the perceptual

field of the network.

The SPPCSPC structure and the SPPFCSPC structure are

shown in Figure 3. The SPPCSPC structure in YOLOv7 uses

three independent pooling layers with different sizes of pooling

kernels to compute a spatial pyramid pooling structure. The
B

C

D

E

A

FIGURE 2

Structure diagram of the model part of the module. Where (A) denotes the upsampling module, (B) denotes the composition of different
convolution modules, where k denotes the size of the convolution kernel and s denotes the convolution step size, (C) denotes the basic
structure of the MP module, (D) denotes the basic structure of the E-ELAN module, and (E) denotes the basic structure of the
E-ELAN-L module.
B CA

FIGURE 1

Overall architecture diagram of the model. Where (A) denotes the backbone network for feature extraction, (B) denotes the neck network for
feature fusion, (C) denotes the detect network used to obtain the model prediction results, and C denotes the number of categories in
the dataset.
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relevant pooling part of the equation is shown in equation (1),

but the three pooling have the same input, and the results of the

larger pooling kernel can be calculated on the computational

results of the smaller output results of the pooling kernel,

reducing the computational effort without changing the

perceptual field of the module.

R(F) = MaxPoolp=2k=5(F)⊛MaxPoolp=4k=9(F)⊛MaxPoolp=6k=13(F)

(1)

Where R denotes the output result, ⊛ denotes tensor

stitching, and F denotes the input feature layer.

The SPPFCSPC structure is optimized for the SPPCSPC

structure, and the pooling part is calculated as shown in

equations (2), (3), (4), and (5), linking three separate pooling

uses less computation on the output results of the pooling layer

of the smaller pooling kernel, yielding the pooling layer results of

the larger pooling kernel, gaining speedup while keeping the

perceptual field constant.

R1(F) = MaxPoolp=2k=5(F) (2)

R2(R1) = MaxPoolp=2k=5(R1) (3)

R3(R2) = MaxPoolp=2k=5(R2) (4)
Frontiers in Marine Science 05
R4 = R1 ⊛R2 ⊛R3 (5)

Where R1 denotes the pooling layer result for the minimum

pooling kernel, R2 denotes the pooling layer result for the

medium pooling kernel, R3 denotes the pooling layer result for

the maximum pooling kernel, and R4 denotes the final output

result, ⊛ denotes tensor stitching.
Attention for ACFP

CBAM is an attention mechanism module that incorporates

two dimensions of feature channel information and feature space

information. As shown in Figure 4, CBAM processes the

incoming feature layers by the channel attention mechanism

and the spatial attention mechanism, respectively, and

automatically obtains the importance level for each feature

channel and feature space by learning, and uses the obtained

importance level to enhance features and suppress features that

are not important for the current task. The overall equation of

CBAM is summarized as shown in equation (6)(7):

F0 = Mc(F)⊗ F (6)

F00 = Ms(F
0)⊗ F0 (7)
B

A

FIGURE 3

(A) indicates the SPPCSPC structure diagram, (B) indicates the SPPFCSPC structure diagram.
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The working process of CBAM is to first multiply the input

feature layer F through the channel attention mechanism and the

obtained Mc with the input feature layer F to obtain the output of

strengthening and suppression on the channel F′, and then use F′ as

the input of the spatial attention mechanism, the obtained Ms is

multiplied with F′ to obtain the final output F″ of reinforcement and

suppression in the channel content and spatial location.

The module used for the channel attention mechanism is

shown in Figure 5A, which consists of MaxPool, AvgPool, and

Shared MLP. The related equation is shown in equation (8):

Mc(F) =o MLP(AvgPool(F)) +MLP(MaxPool(F))ð Þ
  =o W1(W0(F

c
avg)) +W1(W0(F

c
max))

� � (8)

Where s denotes the sigmoid function and W0 W1 denote

the two shared fully connected layers that make up the MLP.
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For the input single feature layer F(H×W×C), MaxPool

and AvgPool are performed in the H×W dimension

respectively to compress the feature layer to 1×1×C. The

one-dimensional parameters after MaxPool compression

retain the feature texture of the original feature layer and

converge the important information to distinguish the object

features. The one-dimensional parameters compressed by

AvgPool retain the global visual information of H×W before

compression and have a larger perceptual area. After that, the

results of MaxPool and AvgPool are fed into Shared MLP network

for processing, and then the two processed results are summed to

obtain the feature map channel weights.

The module used for the spatial attention mechanism is

shown in Figure 5B, which consists of MaxPool, AvgPool and

conv layer. The related equation is as in (9):
FIGURE 4

Overall structure of CBAM attention mechanism.
B

A

FIGURE 5

(A) denotes the specific structure of the channel attention mechanism branch and (B) denotes the specific structure of the spatial attention
mechanism branch.
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Ms(F) =o f7�7(½AvgPool(F);MaxPool(F)�)ð Þ
  =o f7�7(½Fsavg ; Fsmax  �)

� � (9)

Where s denotes the sigmoid function and f7×7denotes the

convolution operation with a convolution kernel size of 7 × 7.

For a single feature layer F(H×W×C) input in, MaxPool and

AvgPool are performed in the channel dimension respectively to

compress the feature layer to H×W×1. The compressed feature

layer focuses the effective information of the region in the space

and is used to extract the efficient information region along the

channel, after which the results of both are concat and then

convolutional dimensionality reduction is performed to obtain

the feature map space weights, thus capturing the local relevance

of the feature information.
Loss function

All the experiments in this paper use training without the

auxiliary training head, therefore, we only describe the loss

function when training without the auxiliary training head in

the following, and the overall loss calculation formula is shown

in equation (10):

Lv7(tp, tgt) = o
M

m=0

abal
m aboxo

S2

i=0
o
B

j=0
Iobjkij LCIoU + aobjo

S2

i=0
o
B

j=0
Iobjkij Lobj + aclso

s2

i=0
o
B

j=0
Iobjkij Lcls

" #

(10)

Where M denotes the output feature layer, S2 denotes the

cell, B denotes the number of anchors on each cell. abox, aobj, acls
denote the weights of the corresponding terms, and the values

taken in the experiment are abox=0.05, aobj=1.0, acls=0.03. I
obj
kij is

the control function, which indicates whether the mth output

feature map, the i-th cell, the j-th anchor box is a positive sample,

if it is a positive sample, it is 1, and vice versa, it is 0. tp,tgt is the

prediction vector and ground-truth vector. abalm is used to balance

the weights of the output feature map of each scale, and the

values are [4.0,1.0,0.4], which correspond to 80×80, 40×40, 20

×20 for the output feature maps.

The localization coordinate loss expressed by the Bounding

Box boundary regression loss function, using CIoU loss,

calculates the localization loss of positive samples only, as

shown in (11)(12):

LCIoU(b, bgt) = 1 − CIOU

= 1 − IOU −
d2o
d2c

−
v2

1 − IOU + u

� �
(11)
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u =
4
p2 arctan  

bgt�w

bgt� h
� arctan  

bW
bh

 !2

(12)

Where b,bgt denotes the prediction frame vector bx,by,bw,bh
and the ground-truth vector bgt-x, bgt-y,bgt-w, bgt-h.IOU denotes

the intersection ratio between the prediction frame and the

ground-truth. do denotes the Euclidean distance between the

prediction frame and the center point of the ground-truth. dc
denotes the diagonal distance between the prediction frame and

the smallest outer rectangle of the ground-truth v denotes the

impact factor measuring the aspect ratio.

The target confidence loss function adopts BCE loss, which

only calculates the objective loss of the samples obtained from

positive sample matching, and the specific formula (13):

Lobj(po, piou) = BCEsig
obj;(po, piou; wobj) (13)

Where po denotes the target confidence score in the

prediction frame, piou denotes the prediction frame and the

IOU value of the ground-truth corresponding to it.

The classification loss function, using BCE loss, calculates

the classification loss of positive samples only, and the specific

calculation formula is as (14):

Lcls(cp, cgt) = BCEsig
cls (cp, cgt;wcls) (14)

Where cp denotes the probability of the target category in

the prediction frame, cgt denotes the probability of the

category of the ground-truth to which the prediction

frame corresponds.
Experiments

Experimental environment and
hyperparameter settings

All experimental data in this paper are measured in the same

environment. The hardware environment uses Intel(R) Core

(TM) i7-12700KF@3.61 GHz CPU, 16GB RAM, NVIDIA

GeForce RTX 3080 Ti graphics card. The system environment

is Windows 10 Professional Edition. Python version 3.8,

PyTorch version 1.12.0, CUDA version 11.6.

The relevant parameters in the experiment are shown in the

Table 1. The gradient descent optimizer used to update the

convolution kernel parameters is Adam, and the optimizer

Momentum is 0.937, the learning rate update method during

the training process is step, the maximum learning rate is 0.001,

the frozen training batch size is 8. The epoch of freezing training

is 50, the batch size of unfreezing training is 4, the epoch of

unfreezing training is 50, all experiments only load the pre-

training weights of the backbone network part, and other parts
frontiersin.org
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are trained from scratch, and the total training epoch is 100. The

frozen training model only trains other parts except the

backbone network, and the entire network model is trained

when unfreezing training.
Dataset

There are 2 datasets used in the experiments in this paper.

The main experiments are performed on the URPC (Lab, 2018)

dataset, and the auxiliary verification experiments are performed

on the underwater garbage detection dataset (Fulton et al., 2019).

For the URPC dataset, in order to enable the model to learn

more features, more pictures with the same category are added,

and the category of waterweeds is added. In order to make the

category distribution of the training set and test set more

reasonable, we replace Some pictures of the test set. The

dataset consists of 4571 images, including 3771 training

images and 800 testing images, covering 5 target categories:

scallop, holothurian, starfish, echinus, and waterweeds. The

underwater garbage detection data set has a total of 7337

pictures, including 6206 training pictures, 1461 test pictures,

and 13 categories marked, namely timestamp, Paper, Wood, Bio,

Metal, Rov, Plastic, Unknown, Papper, Platstic, Rubber, Cloth

and Fishing. The pictures of the dataset were taken in the real

marine environment, and the pictures have problems such as

color distortion, low contrast, blurred feature information, etc.,

and there are occlusions, dense targets, and uneven distribution

of the number of targets in different categories, which gives

underwater problems. Object detection brings great challenges.
Evaluation indicators

There are seven main indicators used in this study to test the

performance of the model. Precision(P) represents the

proportion of the positive class that the model considers to be

a positive class, and the calculation formula is in Equation 15.

Recall(R) represents the proportion of the positive class divided

by the model to the total positive class, and the calculation

formula is in Equation 16. Average Precision (AP) means that

each class is composed of Precision and Recall taking different

thresholds The area under the curve, the larger the value, the

better the recognition accuracy of the class, the formula for

calculation is in Equation 17. The mean Average Precision

(mAP) represents the average AP of all classes, and the larger
Frontiers in Marine Science 08
the value, the better the model The better the accuracy of

identifying the target, the calculation formula is in Equation

18. Frame Per Second (FPS) (Liu et al., 2009) represents the

number of frames processed by the model per second, reflecting

the speed of the model inference, the larger the value, the faster

the inference speed of the model, and the better the model

performance. Billions of floating point operations per second

(GFLOPS) is the number of computations required by the model

and measures the complexity of the model. Number of

parameters(params) is the sum of the parameters in the model

and is used to evaluate the model size.

P(Precision) =
TP

TP + FN
(15)

R(Recall) =
TP

TP + FN
(16)

AP =
Z 1

0
P(r)dr (17)

mAP =
1
No

N

n=1
APn (18)

Where TP represents the number of positive samples

predicted by the model correctly, and FP represents the

number of positive samples predicted by the model that are

actually negative samples. FN represents the number of positive

samples predicted by the model to be negative. P represents the

precision of this class, r represents the recall of this class, N

represents the number of all classes, and APn represents the

average precision of class n.
Results

Compatibility of attention mechanisms

SENet (Hu et al., 2018) is a typical implementation method

of channel attention mechanism, which focuses on obtaining the

enhanced weights of the input feature layer on the channel, but

ignores the weight information of the target spatial position.

ECA (Wang et al., 2020) is also an implementation form of the

channel attention mechanism, which obtains the enhancement

weight of each feature layer by obtaining cross-channel

information. Although it has better cross-channel information,

it also ignores the spatial information of the target. The CA (Hou
TABLE 1 Experiment-related hyperparameter settings.

Hyperparameter Freeze_train Epoch Batch_size Max_learning_rate Optimizer Momentum Lr_decay

Value True 1-50 8 0.001 Adam 0.937 Step

False 51-100 4
fro
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et al., 2021) attention mechanism embeds the location

information into the channel attention, decomposes the

channel attention into two feature encoding processes,

aggregates the features along two spatial directions

respectively, and obtains the weight of the fusion channel

information and spatial information. CBAM combines the

channel attention mechanism and the spatial attention

mechanism to deal with the channel weight and the spatial

weight respectively, that is, it pays attention to both the channel

information and the spatial information. Different attention

mechanisms focus on different information directions, and

different models have different compatibility with different

attention mechanisms.

We chose to use the CBAM attention mechanism in our

improved model, and to verify the compatibility of the CBAM

attention mechanism with the model, we compared it with the

models without fused attention mechanism, fused SENet

attention mechanism, fused ECA attention mechanism, and

fused CA attention mechanism in separate experiments.

A visualization method in deep learning was used in the

experiments for qualitative analysis, which is the Gradient

Weighted Class Activation Mapping (Grad-CAM) (Zhou et al.,

2016), used to show the differences in the regions of interest for

the different attention mechanisms introduced by the model,

reflecting the degree of influence of different regions on the

results. In this case, the feature importance increases sequentially

from blue to red light.

As shown in Figure 6, compared with the visualization

results of other attention mechanisms, the overall coverage
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area of the heat map of the CBAM attention mechanism is

larger, indicating that the model focuses on a larger learning area

at locations with targets, and the overall feature extraction of the

targets is more adequate, which is beneficial to the detection of

small targets, and the red area also becomes larger, indicating

that the effective target feature information is enhanced and the

model is more focus on the target information that should have

been focused on. From the experimental results, it can be seen

that the introduction of CBAM attention mechanism makes the

model pay more attention to the feature information of the

target to be recognized, and suppresses the effect of target

features that are not obvious due to the complex underwater

background, and shows better results compared with other

attention mechanisms.

The experiments were quantitatively analyzed with mAP

assessment criteria. We changed only the attention mechanism

module, and then measured the mAP values of each model, and

compared the mAP values of different models to assess the

compatibility of different attention mechanisms with the models,

and the data of the comparison experiments are shown

in Table 2.

The experimental data show that the model incorporating

the CBAM attention mechanism has higher detection accuracy

compared to the models incorporating the SE attention

mechanism, incorporating the ECA attention mechanism,

incorporating the CA attention mechanism, and not

incorporating the attention mechanism. The detection

accuracy of the model with fused SE attention mechanism and

ECA attention mechanism decreased by 0.75% and 0.95%,
FIGURE 6

Heatmap of different attention mechanisms. Original shows the data set image. Detection shows the detection results of Baseline+CBAM, and
the Baseline shows the heat map of YOLOv7. Baseline+XX shows the heat map of YOLOv7 integrated into the XX attention mechanism (XX is SE,
ECA, CA, CBAM).
frontiersin.org

https://doi.org/10.3389/fmars.2022.1056300
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yan et al. 10.3389/fmars.2022.1056300
respectively. The detection accuracy of the model with fused CA

attention mechanism improved by 0.41%. The detection

accuracy of the model with fused CBAM attention mechanism

improved by 1.69%. Compared with the original YOLOv7

model, which is more adaptable to the underwater scenario

and has better model compatibility.
Ablation experiments

As described in Section3, we introduced the CBAM attention

mechanism in the model, as well as the improved SPPCSPC

module. To verify the effectiveness of the improved YOLOV7

model for underwater target detection, we controlled a variable

by the control variable method and quantitatively analyzed the

experimental results. In the experiments, we measured the mAP

and FPS values of each model and compared them by metrics to

verify the importance of the improved module for the model.

Three models were designed for comparison with the improved

model in this experiment, where experiment 1 represents the

original YOLOV7 model, experiment 2 incorporates the CBAM

attention mechanism based on experiment 1, experiment 3

replaces the SPPCSPC module with the SPPFCSPC module

based on experiment 1, and experiment 4 is the improved

model. The experimental data are shown in Table 3.

Comparing the data from Exp.1 and Exp.2, the model with

the introduction of the CBAM attention mechanism improves

the average detection accuracy (mAP) by 1.69% and slightly

reduces the model inference speed, indicating that the CBAM

attention mechanism uses channel attention to establish the

correlation between channels, thus suppressing the non-essential

feature information, while using the spatial attention mechanism

to extract the spatial location of the target more effectively.
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Through the parallel action of both, the model pays more

attention to the feature information of the detection target,

thus improving the quality of the feature mapping and

significantly improving the overall accuracy of the model, but

the CBAM attention mechanism increases the complexity of the

model and reduces the inference speed of the network;

comparing the data of Exp.1 and Exp.3, the model inference

speed (FPS) is improved by 0.85%, indicating that replacing the

SPPCSPC module is replaced with the SPPFCSPC module, the

model inference speed is improved while keeping the perceptual

field unchanged; comparing the data of Exp.1 with Exp.4, the

average detection accuracy (mAP) on the model is improved by

1.64% and the inference speed is slightly reduced, indicating that

the YOLOv7 model that incorporates the CBAM attention

mechanism and replaces the SPPCSPC module sacrifices a

small portion of speed in exchange for higher detection

accuracy, balancing the one-sided performance degradation

brought by using either one alone, and making the overall

performance of the model more superior.
Comparison with mainstream algorithms

Our proposed ACFP-YOLO algorithm has good feature

extraction ability in complex underwater scenes, and has a

faster detection speed, and has better performance in

underwater target detection. In order to verify the superiority

of the ACFP-YOLO algorithm in this paper in underwater

detection, we compare the algorithm in this paper with

Efficientdet (Tan et al., 2020), Faster-RCNN (F-RCNN), SSD,

YOLOv3, YOLOv4, YOLOv5, YOLOv7 target detection

mainstream algorithms, in On the same data set URPC, the

same training method is used for network model training, and

the superiority of different algorithm models is compared

through qualitative analysis and quantitative analysis.

In the experiment, we qualitatively analyze the performance

of the algorithm through the detection renderings of different

models, and we select the model with better detection effect for

analysis. Figure 7 shows Faster-RCNN-ResNet50, YOLOv3,

YOLOv4, YOLOv5-l, YOLOv7 detection renderings. From the

intuitive renderings, it can be concluded that the detection effect

of F-RCNN is better than that of YOLOv3 and YOLOv4, and is

comparable to that of YOLOv5, but the detected target
TABLE 3 The impact of the fusion of different modules of the model on the metrics.

Index CBAM SPPFCSPC Input shape mAP (%) FPS

Exp.1 × × 640x640 78.98 65.94

Exp.2 ✓ × 640x640 80.67 62.29

Exp.3 × ✓ 640x640 78.45 66.50

Exp.4 ✓ ✓ 640x640 80.62 64.21
frontiersi
"✓" indicates that the module is incorporated in the model, and "x" indicates that the module is not incorporated in the model.
TABLE 2 mAP measurements for different attention mechanisms.

Model Attention Input shape mAP(%)

YOLOv7 – 640×640 78.98

YOLOv7 SENet 640×640 78.23

YOLOv7 ECA 640×640 78.03

YOLOv7 CA 640×640 79.39

YOLOv7 CBAM 640×640 80.67
The bold value is the best value in the comparison.
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probability is generally lower than that of YOLOv5, and there is

a target misjudgment. The ACFP-YOLO algorithm in this paper

has better target recognition effect than YOLOv3, YOLOv4 and

YOLOv5, and has fewer misjudgment and recognition compared

with F-RCNN.

In order to better observe and compare the detection effect of

the ACFP-YOLO algorithm, the ACFP-YOLO algorithm is

compared with YOLOv7, and YOLOv7 has the best detection

effect among other algorithms. Figure 8 shows the detection

results of the ACFP-YOLO algorithm and the YOLOv7

algorithm. The target marked by the yellow box in the figure

has blurred edges and distorted colors, which makes it difficult to

identify the features similar to the background. The ACFP-

YOLO algorithm is not obvious for such target features, the

target edge is blurred, the detection effect of small targets is

better, and the detection ability of edge feature information,

overlapping and blurred targets is stronger. From the perspective

of detection effect, the ACFP-YOLO algorithm has better feature

extraction ability in complex underwater scenes, and improves

the detection ability of small targets and targets with indistinct

edge features. At the same time, the fusion of the CBAM

attention mechanism enhances the spatial feature information

of the model for small targets, improves the model’s detection

ability for small targets, and improves the detection ability of

underwater targets at various scales.

In the experiment, we carried out quantitative comparative

analysis of each model by measuring the mAP value, params
Frontiers in Marine Science 11
value, GFLOPS value and FPS value of each model. Efficientdet

used the D1 model for the experiment, and Faster-RCNN used

the VGG backbone network and the ResNet50 backbone

network for the experiment. All model comparison

experimental measurement results are shown in Table 4.

Observing the experimental data, from the perspective of

detection accuracy, the mAP value of the ACFP-YOLO

algorithm is 80.62%, which is much higher than other

mainstream target detection algorithms at present. The

experimental data show that the ACFP-YOLO algorithm has

more advantages in the underwater target detection task. From

the unilateral point of view of detection speed, compared with

models of the same scale, the improved model maintains a

medium-to-high level of detection speed and has good real-time

performance. Compared with the mainstream two-stage target

detection algorithm Faster-RCNN (ResNet50), the improved

YOLOv7 algorithm is 18.0% higher in accuracy and 152.97%

faster in speed. The model size has increased by 9.245M.

Compared with YOLOv5-l, the most widely used one-stage

target detection algorithm in industry, mAP has increased by

3.45%, the detection speed has decreased by 1.29%, and the

model size has decreased by 9.092M. Compared with the

YOLOv7 algorithm, the improved ACFP-YOLO algorithm

mAP increased by 1.64%, the detection speed decreased by

2.62%, and the model size increased by 0.345M. It shows that

the improved ACFP-YOLO algorithm in this paper is an

algorithm with high detection accuracy. While improving the
FIGURE 7

The first row Original represents the original image of the dataset, the second row represents the F-RCNN detection image, the third row
represents the YOLOv3 detection image, the fourth row represents the YOLOv4 detection image, the fifth row represents the YOLOv5 detection
image, and the sixth row represents the YOLOv7 detection image Figure, the seventh row represents the ACFP-YOLO detection map.
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detection accuracy of the model, it loses a small part of the

detection speed.

In order to prove the superiority of the ACFP-YOLO

algorithm in underwater scene performance, we use the same

method to conduct a comparative experiment again on the

underwater garbage dataset. We chose the detection effect of

YOLOv7 and ACFP-YOLO, which has the best detection effect

among other mainstream algorithms, for comparison. The

Figure 9 shows the detection effect of ACFP-YOLO and

YOLOv7 on the underwater garbage dataset. The original data

set images are obtained at different water quality, different

depths, and using different cameras. There are situations
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where the target features are not obvious, the features are

attenuated, and the image background is complex. For this

kind of picture, YOLOv7 shows a good detection effect, but

ACFP-YOLO shows a better effect, we marked a part of the

target objects with black boxes in Figure 9. Some of them were

considered to be backgrounds by YOLOv7 because of the

inconspicuous target features and small targets, and they were

not detected. However, ACFP-YOLO has better detection ability

for targets in this situation, and there is also a situation where the

targets are occluded by each other. ACFP-YOLO can still detect

it, while the detection effect of YOLOv7 is not as good as that of

ACFP-YOLO. Through qualitative analysis, it can be seen that
TABLE 4 Performance metric values of mainstream target detection algorithms on URPC dataset.

Model Input shape mAP (%) FPS GFLOPS (G) params (M)

SSD 416×416 57.73 100.93 116.159 24.146

YOLOv3 416x416 65.40 93.08 65.626 61.545

YOLOv4-tiny 416x416 52.19 215.96 6.84 5.883

YOLOv4 416x416 61.96 68.91 59.982 63.959

ACFP-YOLO 416x416 78.22 67.35 44.439 37.216

Efficientdet-D1 640x640 51.23 32.47 11.544 6.558

Faster-RCNN-VGG 600x600 59.41 36.51 369.817 136.771

Faster-RCNN-ResNet 600x600 62.62 25.40 940.972 28.316

YOLOv5-s 640x640 72.47 101.13 16.511 7.074

YOLOv5-l 640x640 77.17 65.05 114.627 46.653

YOLOv7-tiny 640x640 72.73 132.18 13.215 6.025

YOLOv7 640x640 78.98 65.94 105.182 37.216

ACFP-YOLO 640x640 80.62 64.21 105.191 37.561
FIGURE 8

The detection effect of YOLOv7 and the detection effect of ACFP-YOLO.
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the ACFP-YOLO algorithm has better feature extraction ability

in complex underwater scenes with different water quality and

different depths, and has better detection ability for different

color attenuation and occluded objects.

In the experiment of underwater garbage detection dataset,

we selected consistent models for comparison, measured mAP

value, GFLOPS value, params value and FPS of different

models, and quantitatively analyzed the performance of each

model through different indicators. All the comparative

experimental measurement results in the experiment are

shown in Table 5.

According to the data analysis in Table 5, from the

perspective of detection accuracy, the mAP value of ACFP-

YOLO algorithm on the underwater garbage dataset is 74.92%,
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which is still higher than other current mainstream target

detection algorithms, the superior performance reflected in the

underwater scene. The mAP value of ACFP-YOLO is 1.07%

higher than that of YOLOv7, 2.60% higher than that of

YOLOv5-l, and 4.38% higher than that of Faster-RCNN

(ResNet). In terms of detection speed, the FPS value of the

ACFP-YOLO algorithm is 65.56. Compared with models of the

same scale, the detection speed remains at an upper-middle level

and maintains good real-time performance. In terms of overall

performance, the ACFP-YOLO algorithm improves mAP while

losing a small part of the detection speed. It has better ability to

extract features in complex underwater scenes. Our model is

more suitable for efficient and accurate, and real-time

requirements. Underwater missions.
TABLE 5 Performance Index Values of Mainstream Object Detection Algorithms on Underwater Garbage Detection Datasets.

Model Input shape mAP (%) FPS GFLOPS (G) params (M)

SSD 461x416 60.21 143.85 61.951 25.216

YOLOv3 416x416 62.68 93.96 65.684 61.588

YOLOv4-tiny 416x416 56.03 217.79 6.853 5.902

YOLOv4 416x416 62.33 71.82 60.04 64.002

ACFP-YOLO 416x416 63.97 67.40 44.498 37.259

Efficientdet-D1 640x640 43.69 33.65 11.652 6.564

Faster-RCNN-VGG 600x600 69.89 43.81 370.014 136.935

Faster-RCNN-ResNet 600x600 70.54 26.89 941.071 28.398

YOLOv5-s 640x640 71.40 112.7 16.58 7.096

YOLOv5-l 640x640 72.32 67.30 114.765 46.696

YOLOv7-tiny 640x640 64.47 140.53 13.284 6.046

YOLOv7 640x640 73.85 66.83 105.32 37.259

ACFP-YOLO 640x640 74.92 65.56 105.328 37.604
FIGURE 9

The first line Original is the original image of the dataset, the second line is the detection effect map of YOLOv7, and the third line is the
detection effect map of ACFP-YOLO.
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In summary, the ACFP-YOLO algorithm, which integrates the

CBAM attention mechanism and the SPPFCSPC module, achieves

the highest detection accuracy compared with other mainstream

algorithms in engineering applications, while maintaining

a moderate level of detection and reasoning speed. Accuracy

has a significant advantage in real-time underwater tasks.
Conclusion

In this paper, the ACFP-YOLO target detection model is

proposed to address the problems of blurring and color deviation

of images under the underwater map that make the extraction of

object feature information difficult due to poor image quality. The

model introduces the CBAM attention mechanism to enhance the

extracted features in channel and spatial dimensions, which

reduces the information loss in the feature extraction process

and improves the overall feature extraction capability of the

network, making the YOLOv7 model incorporating the

attention mechanism have higher detection accuracy in

underwater target scenes. The replacement of the SPPFCSPC

module links the original three independent pooling layers

together, reducing the model computation and obtaining faster

model inference while keeping the perceptual field unchanged. By

fusing the above two parts on YOLOv7, the improved ACFP-

YOLO model has better performance in underwater target

detection, and to a certain extent, solves the difficulties caused

by the overlapping targets and complex background of

underwater scenes to underwater target detection.

Our Future Work: Artificial intelligence has developed very

rapidly, with numerous achievements in language translation,

anomaly detection, target detection, and semantic segmentation,

but few applications in intelligent exploitation of marine resources

and underwater operations. In our future work, we will continue to

study networkmodels for underwater target recognition to improve

the accuracy and speed of target recognition, and expand and enrich

the dataset so that the models can be applied to more underwater

scenarios with different conditions, and promote the application of

AI in special underwater scenarios.
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