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Environmental variables
affecting Sargassum distribution
in the East China Sea and the
Yellow Sea
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Boo-Keun Khim1 and Young-Heon Jo1*

1BK21 School of Earth and Environmental System, Pusan National University, Busan,
Republic of Korea, 2Department of Ocean Engineering, University of New Hampshire,
Durham, NH, United States
Floating Sargassum horneri has flowed into Jeju Island and the coast of the

Korean Peninsula every year between February and May since 2015, causing

considerable damage to aqua-farming sites and navigation. This study aimed to

address the relationship between Sargassum distribution in the Yellow Sea (YS)

and the East China Sea (ECS) and environmental variables for determining

Sargassum distribution toward the Korean Peninsula. From feature importance

ranking, we found that sea surface temperature (SST) is the most influential

environmental variable in Sargassum distribution. From variables such as sea

surface height (SSH), eastward seawater velocity (uo), and northward seawater

velocity (vo), it was observed that Sargassum patches were not distributed in

the southeast below 29 °N. Subsequently, we employed bagged tress models

to evaluate the specific sensitivity of each environmental variable to Sargassum

distribution. This model showed the best quantitative and qualitative

performance when trained with physical and geographical variables. When

estimating expanded areas of Sargassum distribution over timewith the change

in SST, a sider distribution range of Sargassum patches than usual and an early

inflow into the Korean Peninsula were observed when the SST increased from

the original. In addition, we found that the tolerable and favorable SST for

Sargassum was 12–20 and 18°C, respectively. These results will enhance the

understanding of the relationship between environmental variables and

Sargassum distribution and provide valuable data for establishing a pre-

disaster system for Sargassum blooms flowing toward the Korean Peninsula.

KEYWORDS

Sargassum horneri, GOCI, particle-tracking experiment, machine learning, feature
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Introduction

The golden tides found in the East China Sea (ECS) and

Yellow Sea (YS) have been attributed to Sargassum horneri (Liu

et al., 2018; Xing et al., 2018; Zhang et al., 2019). The floating

golden tide has been reported in the ECS since the early 2000s

and has frequently appeared in the YS (Qi et al., 2017). The gas-

filled bladder-like vesicles on the thalli of Sargassum provide

buoyancy and allow them to float (Xu et al., 2016). Komatsu

et al. (2007a); Komatsu et al. (2007b) observed pelagic Sargassum

on a research vessel during a field survey in the ECS and the

Kuroshio Current. It has been increasingly sighted over the past

two decades. In 2015, a large amount of Sargassum flowed into

waters around the Korean Peninsula. It can be wound around

ship screws and cause loss of Pyropia yezoensis aquaculture

(Zhuang et al., 2021). In addition, its odor harms the sightseeing

and scenery of the beach. Therefore, if Sargassum is collected

before it enters a coastal area or fish farm, its effect can be

reduced. Sargassum has been collected in Korea by the Ministry

of Oceans and Fisheries (MOF). After its appearance in 2015, the

disposal cost of Sargassum was $ 1.6 million to remove 33,439

tons by 2020, although it has varied from year to year (Press).

Despite the pledge for detailed preparation and preemptive

response to the massive influx of Sargassum, clear guidelines

for damage prevention and response still need to be provided.

Several studies have attempted to identify the migration

pathways of golden tides using field surveys, satellite detection,

and particle tracking models (Chen et al., 2019; Kim et al., 2019;

Yuan et al., 2022). Mizuno et al. (2014) investigated the

distribution and migration of golden tides through field surveys

using a research vessel. Considering the surface currents and

geophysical distribution of Sargassum during that period, they

assumed that the central and southern coasts of China were the

origin. Qi et al. (2017) traced the source of floating algae blooms

using satellite images and numerical particle-tracking

experiments. They suggested that one of bloom origin is in

offshore of the Zhejiang coast in 2017. Subsequently, they found

that the initial Sargassum patches move to northeast YS. Using

particle tracking numerical experiments, Lee (2018) reported that

Sargassum patches found on Jeju Island originated from two

regions of China. Patches found on northern Jeju Island

originated from the Shandong Peninsula between December

and January, while patches found on southern Jeju Island

originated from the Jiangsu province between late January and

mid-February. Kwon et al. (2019) reproduced the trajectories of

Sargassum patches using Lagrangian particle-tracking simulations

and three-dimensional circulation modeling. They attempted

backward particle tracking from May to April 2017 to

determine the location of Sargassum patch a month earlier and

found that the synthetic particles were translated southwestward.

In addition, some studies have revealed various

environmental factors that may affect the distribution and

migration of Sargassum. Wu et al. (2019) reported that
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temperature had a significant impact on photosynthesis, carbon

assimilation, growth, and the life cycle of Sargassum. Komatsu

et al. (2007a) observed drifting Sargassum in areas where the sea

surface temperature (SST) was 20–24 °C. Qi et al. (2017) reported

that a higher SST in 2017 could stimulate faster Sargassum growth

compared to that in previous years, thereby leading to an

unprecedented bloom in 2017. In particular, they suggested that

a slight increase of SST by 0.5–1 °C along Zhejiang coast in 2017

may stimulate initial Sargassum growth. Zheng et al. (2022)

analyzed the correlation between the sea surface temperature

anomaly (SSTA) and the growth rate of Sargassum. They

reported that the growth rate of Sargassum increased with

increasing SSTA in May. In addition, the trajectories and

distribution of Sargassum patches are controlled by wind and

surface currents. Employing a sensitivity simulation of the particle

tracking model, Kwon et al. (2019) confirmed that southern wind

contributed to the further northward movement of Sargassum

patches to the YS in May 2017. Kim et al. (2019) analyzed the

migration of Sargassum patches using Hybrid Coordinate Ocean

Model (HYCOM) surface current data. Yuan et al. (2022)

examined the impacts of wind vectors on the development and

drifting offloating Sargassum in the YS and ECS. They found that

the drifting direction of the floating patches was consistent with

the prevailing wind vectors. These studies have investigated the

individual environmental factors of the waters where Sargassum

patches were observed in an approximate spatial and time-series

rather than focusing on the instantaneous environmental factors

of the waters where Sargassum patches exist. Therefore, it is

essential to determine the importance by considering all

possible factors rather than individual environmental factors

that affect Sargassum distribution. Furthermore, it will be

necessary to analyze the relationship between Sargassum

distribution and factors and understand how much each factor

affects Sargassum distribution.

This study addresses the relationship between Sargassum

distribution and environmental factors that may affect

Sargassum distribution in the YS and ECS. We first generated

a daily Sargassum map using a particle tracking model and

satellite images. The feature importance of the environmental

data affecting Sargassum distribution was investigated. A

machine learning model was trained and tested to estimate

Sargassum distribution from the environmental data. We then

analyzed Sargassum distribution according to the changing

environmental variables.
Study area

The study area includes the ECS and the YS, 119–129°E and

26–35°N (Figure 1A). The ECS is an arm of the western Pacific

Ocean that extends directly from East China. The northern

extension between mainland China and the Korean Peninsula is

the YS. The Yangtze River, the biggest river in China, is the
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largest in East Asia (Yang et al., 2011). As the major channel

connecting the Yangtze River and the ECS, the Yangtze River

Estuary is influenced by strongly varying river discharges and

moderate tides (Yun, 2004). In addition, the Kuroshio is a
Frontiers in Marine Science 03
western boundary current in the North Pacific that flows

northeastward after entering the southeast ECS (Kang and Na,

2022). It has significant effects on both the physical and

biological processes of the North Pacific, including nutrient
FIGURE 1

Study area and schematic diagram in this study. (A) The study area covers the East China Sea (ECS) and the southern Yellow Sea (YS) including
Jeju Island in Korea. (B) Rayleigh-corrected reflectance (RhoC) pseudo-color composite image generated from Geostationary Ocean Color
Imager (GOCI) acquired on April 23, 2017 at 02:16 UTC. The patch in red is recognized as Sargassum (yellow arrow). (C) Schematic showing the
relationship between Sargassum distribution and environmental factors. There are the four steps are: (1) The daily Sargassum maps were
generated using ground-truth Sargassum data and particle tracking model, (2) feature importance ranking was performed for investigating the
importance between environmental factors affecting Sargassum distribution, (3) machine learning model was trained and tested for predicting
Sargassum distribution through environmental factors, and (4) Sargassum distribution was predicted according to changing environmental
variables using the machine learning model.
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and sediment transport, regional climate, and Pacific mode

water formation (Hu et al., 2015; Das et al., 2021). The

Tsushima Current diverges from the Kuroshio Current in the

ECS, flows into the East Sea in Korea, and moves northward

along the East Sea. Most of the ECS is shallow, with

approximately three-fourths less than 200 m deep, with an

average depth of 350 m. Within the study area, the origin of

Sargassum bloom is generally offshore from the Zhejiang coast.

Patches along the Kuroshio Current and Taiwan Warm Current

move to the northeast. Then, it reaches Jeju Island or the YS. The

Geostationary Ocean Color Imager (GOCI) image in Figure 1B

was obtained on April 23, 2017, when a large-scale Sargassum

patch appeared in the study area. The patch was red in the

Rayleigh-corrected reflectance (RhoC) pseudo-color composite

(R: 865 nm; G: 680 nm; B: 555 nm). However, it was difficult to

recognize Sargassum patch clearly due to the cloud and turbid

waters white color.
Materials and methods

Figure 1C shows a schematic diagram of the relationship

between Sargassum distribution and environmental factors. We

generated a daily Sargassum map from 2015 to 2019 using the

ground-truth Sargassum map derived from GOCI image and

particle tracking model. Feature importance ranking (FIR) was

conducted to investigate the feature importance among the eight

environmental factors affecting Sargassum distribution. The

environmental factors were divided into two groups based on

physical factors. The first group includes SST and seawater

salinity (SS), which affect the physiology of Sargassum. The

second group is composed of sea surface height (SSH), seawater

density (rho), seawater current, and wind stress, which can affect the

migration of Sargassum patches. We used matching pairs between

environmental data and Sargassum or non-Sargassum pixels of the

ground truth. Thereafter, the machine learning models were trained

and tested using Sargassum and non-Sargassum pixel pairs. These

pairs consist of Sargassum or non-Sargassum pixels extracted from

daily Sargassum maps and the corresponding environmental data.

Finally, we predicted Sargassum distribution according to changing

environmental variables using the trained machine learning model.
Particle tracking model for daily
Sargassum map

To generate a daily Sargassummap, we conducted a particle-

tracking experiment developed by Choi et al. (2018) based on the

fourth-order Runge-Kutta scheme. They derived new velocity

fields based on satellite measurements and calculated the velocity

fields by combining Ekman currents and geostrophic currents

based on an analytical solution of an approximated momentum
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equation (Welander, 1957). The trajectories of surface-floating

substances estimated from new velocity fields can be reasonably

simulated experimentally. The initial distribution of Sargassum

patches is essential to estimate the trajectory of Sargassum patch

using a particle tracking model. For this purpose, we used GOCI

images as ground truth data. Although satellite observations

have the advantage of providing information over a wide area,

they are often hampered by weather conditions (Zhang et al.,

2019). Therefore, in this study, GOCI images were used to

provide the initial distribution and validation of the particle-

tracking model. We used RhoC GOCI products downloaded from

the Korea Ocean Satellite Center (https://kosc.kiost.ac.kr/).

GOCI image has a spatial resolution with 500 m. Images were

obtained eight times per day between 0 to 7 UTC. We used

GOCI images taken at 2 UTC. The total coverage of the image

was 2500 × 2500 km in Northeast Asia. The normalized

difference vegetation index (NDVI) (Rouse et al., 1974), which

expresses the optical properties of Sargassum, was used to extract

Sargassum pixels from GOCI images. The NDVI was calculated

using the following equation:

NDVI  =   Rhoc,NIR –  Rhoc,RED

� �
 =  Rhoc,NIR +  Rhoc,RED

� �
(1)

where NIR is the near-infrared wavelength band (865 nm),

and RED is the red wavelength band (680 nm). A pixel with

positive value was identified as Sargassum. Table 1 lists

information related to Sargassum pixels extracted from GOCI

images. A total of 10,996 pixels were extracted between 2015 and

2019. The distribution of the pixels extracted from GOCI image,

where Sargassum patch was first found every year, was set as the

initial distribution. The remaining images were used to validate

the model. To generate Sargassum map, the latitude and

longitude data of extracted Sargassum pixels were converted to

1/12° consistent with spatial resolution of environmental data.

To set the model parameters, the time step and number of

calculation steps over 100 days were set to 150 min and 960,

respectively. The time step is expected to sufficiently satisfy the

stability condition of advection given by max(j~uj)△ t=△ x < 1

. eremax(j~uj) ≈ 1  m=s. the maximum speed of the current, D t is

the time step, and △x≈20 km . the spatial resolution of the

velocity field. We conducted a particle-tracking experiment to

trace Sargassum patches. Synthetic particles were released on the

initial date each year. Daily Sargassum maps from 2015 to 2019

were generated using this model. To validate the location of

Sargassum pixels derived from the model domain, buffer areas

were designated by two pixels around each Sargassum pixel. We

calculated a confusion matrix between the synthetic particle and

the matched Sargassum patch for each synthetic particle

(Kohavi, 1998). Notably, if the distance was more than 40 km,

the synthetic particles were considered with inconsistent

matching Sargassum pixels. Sargassum pixels in the ground

truth were either true (sr) or false (nsr), whereas the synthetic

particles were designated as true (SR) or false (nSR). This
frontiersin.org
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consists of four categories: (1) sr classified as SR (true positive),

(2) sr classified as nSR (false negative), (3) nsr classified as SR

(false positive), and (4) nsr classified as nSR (true negative). The

performance of the particle tracking model was evaluated using

sensitivity ((1)/[(1)+(2)]) and precision ((1)/[(1)+(3)]). In

addition, F-measure was used to describe the total accuracy as

the following equations:

F −measure  =  ½(2   � Precision   

� Sensitivity) =  Precision  +  Sensitivityð Þ�
(2)

Total accuracy  =   1ð Þ  +   4ð Þ½ � =  1ð Þ  +   2ð Þ  +   3ð Þ  +   4ð Þ½ � (3)

We evaluated the performance of the particle tracking model

for estimating the daily Sargassum map. As a result, the

sensitivity and precision of the model were 0.36 and 0.46,

respectively. The F-measure and total accuracy showed a good

level with 0.41 and 0.82, respectively.
Environmental data

The Global Ocean Physics Reanalysis of the Copernicus

Marine Environment Monitoring Service (CMEMS) product

(GLOBAL_MULTIYEAR_PHY_001_030) was used in this

study (Gounou et al., 2020) (https://resources.marine.

copernicus.eu/products). This product includes daily and

monthly mean files for temperature, salinity, currents, sea

level, mixed layer depth, and ice parameters from top to

bottom. The global ocean output files were displayed on a

standard regular grid at 1/12° (approximately 8 km) and 50

standard levels. We used SST, SS, SSH, eastward horizontal

velocity (uo), and northward horizontal velocity (vo) with a

depth of 0.49 m. The European Center for Medium-range

Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) provides
Frontiers in Marine Science 05
an eastward component of 10 m wind and a northward

component of 10 m wind datasets at approximately 25 km ×

25 km (1/4° × 1/4°). We calculated the eastward (wsu) and

northward wind stress (wsv) from the wind data using the

following equation:

t = ra � CD � V2
a :(4)

where ra is the air density, CD is the drag coefficient, and Va

is the wind speed 10 m above the sea surface (Trenberth et al.,

1990). The data period was from January 1, 2015 to December

31, 2019, per day. To match the spatial resolution between the

CMEMS and ERA5 data, we resampled the spatial resolution of

both data into daily 8 km × 8 km. To calculate rho, we used the

Gibbs-SeaWater (GSW) v3.06 Oceanographic Toolbox (https://

www.teos-10.org/). It contains the thermodynamic equation of

seawater (TEOS)-10 subroutines to evaluate the thermodynamic

properties of pure water and seawater. TEOS-10 is based on a

Gibbs function formulation in which all thermodynamic

properties of seawater can be derived in a thermodynamically

consistent manner (McDougall and Barker, 2011). We

calculated rho from SST, SS, and sea pressure using the GSW

function. Here, the sea pressure was assumed to be at the sea

surface and set to 0.
Feature importance ranking

For the FIR, the pairs between Sargassum or non-Sargassum

pixels of the ground truth and the corresponding environmental

data were matched. Non-Sargassum pixels were randomly

extracted five times (54,980 pixels) from 10,996 Sargassum

pixels (Table 1) from each image. A total of 10,994 Sargassum

and 53,398 non-Sargassum pixels were used for the FIR, except

for the number value among the matched pairs. In machine

learning, FIR refers to a task that measures the contributions of

individual input variables to the performance of a supervised
TABLE 1 Information of ground-truth data obtained from GOCI images.

Years Acquisition dates Number of Sargassum pixels Years Acquisition dates Number of Sargassum pixels

2015 February 14
March 29
April 22
May 16

337
1,201
1,603
173

2018 March 10
March 28
April 20
May 4

159
1,218
1,136
279

2016 March 2
March 28
April 19
April 30

352
406
384
371

2019 March 12
April 12
April 20

343
93
421

2017 February 17
March 1
April 23
May 26

157
373
1,397
593

Total number of Sargassum pixels 10,996
Sargassum pixels were used for generating and validating daily Sargassum map derived from particle tracking model.
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learning model (Samek et al., 2017). FIR is a powerful tool in

explainable or interpretable artificial intelligence to facilitate

understanding of decision-making by a learning system

(Wojtas and Chen, 2020). Among the feature-ranking

algorithms, we used the minimum redundancy maximum

relevance (mRMR) algorithm (Ding and Peng, 2005). The

mRMR algorithm determines an optimal set of features that

are mutually and maximally dissimilar. It minimizes the

redundancy of a feature set and maximizes relevance of a

feature set to the response variable. The algorithm quantifies

the redundancy and relevance using the mutual information of

the variables (Ding and Peng, 2005).
Machine learning model for estimating
Sargassum distribution

We trained and tested the machine learning model to

estimate Sargassum distribution from the environmental data.

Table 2 summarizes the machine learning models used in this

study. We selected bagged trees (BT) with the learner type of

decision tree. Bagging represents bootstrap aggregation. Every

tree in the ensemble was grown on an independently drawn

bootstrap replica of the input data (Breiman, 2001). We trained

the three BT models using different input variables (Table 2).

SST, SS, and rho were used as input variables common to the

three models (BT-1). SST and SS are physiological and physical

variables that govern the growth and extermination of

Sargassum. As SST and SS calculate rho variable, it was

regarded as a similar variable and used as an input for the BT-

1 model. Moreover, uo, wo, and SSH related to the movement of

Sargassum were added to the second model (BT-2), whereas

geographical (longitude and latitude) and date information were

added to the second model (BT-3). The daily Sargassum map

was used as the output variable for 50 days from the start of

Sargassum occurrence for each year. Further, we used 195 and 55

days of map training and testing, respectively, for a total of 250

days. For the training and test datasets, 831,540 and 223,902

pixel pairs were composed of daily Sargassum maps as ground-

truth data and the corresponding environmental data,

respectively. The ratios for the training and test were 79 and

21%, respectively. The non-Sargassum pixels were extracted five
Frontiers in Marine Science 06
times using Sargassum pixels. BT-3 model with the most input

variables took the longest training time of 881.76 s. The

maximum number of splits and number of learners were

831,539 and 30, respectively. Bayesian optimization was used

as the optimizer. In addition, three trained models were

quantitatively and qualitatively tested using a test dataset.

Finally, to reveal the impact of environmental factors on

Sargassum distribution, we analyzed Sargassum distribution

according to environmental factors using the selected model.
Results

Environmental variables affecting
Sargassum distribution

To identify the importance of environmental variables

affecting Sargassum distribution, we calculated the FIR using the

mRMR algorithm. The top eight features of the mRMR are shown

in Figure 2. It was observed that the SST was the most important

factor affecting Sargassum distribution, accounting for 20.8%

(0.065) of all variables. The second and third most important

factors were rho and uo, accounting for 14.4% (0.045) and 13.9%

(0.04), respectively. The combined ratio of the top three factors

was 48.1%, accounting for approximately half of the total

importance. The importance scores of the factors differed up to

2.55 times. However, the remaining five factors showed similar

importance in the range of 0.025–0.039. Among these factors, SSH

showed a lower importance score (0.025). These results showed

that not only the SST with the highest importance score, but also

the remaining factors can affect Sargassum distribution.

To confirm the characteristics of the environmental variables

in Sargassum and non-Sargassum groups, we investigated the

distribution of eight environmental factors corresponding to

these groups (Figure 3). Figure 4 shows the spatial distributions

of Sargassum patches and environmental variables on April 23,

2017, when Sargassum patches were widely distributed around

the Jeju coast, moving from the Zhejiang coast to the coast of the

Korean Peninsula. In the case of the SST variable, the non-

Sargassum group ranged from 5 to 25 °C with a bimodal

distribution, while Sargassum pixels had a value between 10

and 25 °C with a normal distribution (Figure 3A). The SST
TABLE 2 Summary of machine learning models for estimating Sargassum distribution from environmental data.

Input variables Training time (s) Training summary

BT-1 SST, SS, rho 296.19 Preset: Bagged trees

BT-2 SST, SS, rho + uo, vo, SSH 402.36 Ensemble type: Bag

BT-3 SST, SS, rho + uo, vo, SSH
+ Lon, Lat, Date

431.37 Learner type: Decision tree

Maximum number of splits: 831,539

Number of learners: 30

Optimizer: Bayesian optimization
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histogram of Sargassum group showed a symmetrical bell-

shaped distribution, whereas that of the non-Sargassum group

showed a double-peak distribution. Most of Sargassum group

were distributed between 14 and 18 °C. Previous studies have

reported that Sargassum can grow at a wide range of

temperatures between 15 and 25 °C, while the optimal growth

of adult Sargassum is 14–16 °C (Mikami et al., 2006; Choi et al.,

2007; Pang et al., 2009; Yuan et al., 2014; Lin et al., 2017). Yuan

et al. (2022) reported that a mean SST of 8–20 °C in Sargassum

blooms areas corresponded to in situ temperature range for

vegetative growth and floating Sargassum. In addition, they

found that SST higher than 22 °C in July-September prohibits

Sargassum from blooming or completing its life cycle. In the SST

distribution in Figure 4, Sargassum patches were distributed

between 14 and 20 °C, which is consistent with previous results.

By confirming the distribution of Sargassum at different times,

we found that Sargassum patches were distributed in the same

SST range even if the geographical location of Sargassum was

different. The spatial distribution of SSH was similar to that of

SST. The SSH of Sargassum group was mostly distributed

between 0 and 0.6 m, while those of non-Sargassum group

ranged from 0 to 1.2 m. In particular, Sargassum group

showed low values between 0.8 and 1.2 m. These distributions

show the results associated with the uo and vo distributions.

Both uo and vo showed similar histogram; however, only the

non-Sargassum group showed a distribution between 0.5 and

1 m/s. These results were consistent with those reported by

Hsiung et al. (2022). They reported that the mean velocity of the

Kuroshio along the Pacific coast of Japan was approximately

0.7–1.4 m/s. In the spatial distribution shown in Figure 4, the

distribution of the high values is the point where the Kuroshio
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Current passes, which can be clearly identified in the uo and vo

maps. Similarly, in the SSH map, the distribution of high values

is shown at the same location as in the uo and vo maps. These

results suggest that the distribution of Sargassum cannot move

southeast due to the influence of the Kuroshio Current. As

shown in Figures 4, the value range and distribution of SS were

similar to those of rho. The non-Sargassum group had a lower

value than Sargassum group, which was low-salinity waters

around the Yangtze River (Figure 4). In the case of wind stress

variables, the distribution of histograms between Sargassum and

non-Sargassum groups for each variable showed no significant

differences. However, the non-Sargassum groups of wsu and wsv

showed a high frequency with a negative wsu value and a positive

wsv value. These characteristics are shown in the wsu and wsv

maps of April 23, 2017 (Figure 4).
Performance of machine learning
models for Sargassum distribution

Table 3 and Figure 5 show the quantitative and qualitative

performance evaluation of the three BT models with different

input variables using the test dataset. In terms of quantitative

evaluation, the BT-1 model showed poor performance, whereas

the BT-3 model showed the best performance with an F-measure

of 0.8. The sensitivity (0.76), precision (0.84), and total accuracy

(0.94) of the BT-3 model were the highest among the models.

Figure 5 shows the spatial distribution of the ground truth and

predicted Sargassum patches using the BT models during 2016

every 15 days. We first found patches of Sargassum near the

coast of Zhejiang on March 2, 2016. They were transported
FIGURE 2

The rank of features in minimum redundancy maximum relevance (mRMR) algorithm for identifying the importance between environmental
variables affecting Sargassum distribution. Environmental variables include sea surface temperature (SST), seawater density (rho), seawater
salinity (SS), sea surface height (SSH), eastward seawater velocity (uo), and northward seawater velocity (vo), eastward wind stress (wsu), and
northward wind stress (wsv).
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along the coast of the Korean Peninsula. Consistent with the

results of the quantitative assessment, the BT-3 model trained

with physical and geographical variables showed the most

reasonable distribution. In contrast, the BR-1 model trained

with only SST, SS, and rho variables showed a fairly scattered

distribution, which did not simulate the movement of Sargassum

patches over time. In addition to the variables used in the BT-1

model, the BT-2 model trained with the SSH and ocean currents

showed an aggregated distribution compared to that of the BT-1

model. However, the initial patches still exhibited a scattered

distribution. This allows us to recognize that not only physical

variables, but also geographical variables have a significant

impact on the performance of the model.
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Sargassum distribution according to
changing sea surface temperature

Through FIR analysis, we found that SST was the most

important factor affecting Sargassum distribution. Therefore, to

reveal the impact of SST on Sargassum distribution, we

simulated five cases: (1) SST + 4 °C, (2) SST + 2 °C, (3)

original SST, (3) SST − 2 °C, and (4) SST − 4 °C. These cases

considered the range of SST distribution in Sargassum group.

These options were applied to the BT-3 model by adjusting only

the input value of the SST. We obtained continuous daily

Sargassum maps for these four options. Figure 6 shows

Sargassum maps according to the changing SST every 15 days
A B

D E F

G H

C

FIGURE 3

The histograms of Sargassum and non-Sargassum pixel groups corresponding to (A) SST, (B) SSH, (C) SS, (D) rho, (E) uo, (F) vo, (G) wsu, and (H)
wsv. The pixels for each group extracted from GOCI images as ground truth data are shown in Table 1.
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in 2016. Compared with the original case (Figure 6), all cases

showed a similar distribution by period. However, in the case of

(1) and (2), which increased the SST from the original,

additional patches were found in the initial distribution on

March 2, 2016, especially around 30°N. However, this did not

appear in the original distribution. Compared to cases (3) and

(4), there are more patches that appear around the Korean

Peninsula above 32°N over time in cases (1) and (2). In contrast,

cases (3) and (4) showed a distribution in which the distribution

density was reduced although the pattern was similar to that of

the original patch. In particular, in case (4), the patches were

closer to Jeju Island in Korea.

Additionally, we calculated the expanded area of Sargassum

and fitted curves according to the changing SST variable for each

case (Figure 7). The equation for calculating the expanded are of

Sargassum according to the yearday for each case is as follows:

Sargassum   expanded   area =   aeb*yearday + ced*yearday (7)
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Table 4 shows the coefficient of the empirical polynomial

regression for each case. The case (3) had the highest R2 (0.79)

and the lowest RMSE (4,675). In contrast, cases (4) and (5)

showed low R2. This means that the fluctuation of the area over

time is quite large. Except for case (2), in all cases, the area tends

to increase and then decrease over time. However, the area of the

initial patch and the increase rate were different. These results

are consistent with Sargassum distribution map in Figure 7.
Discussions

Until now, previous studies have focused only on analyzing the

tendency of Sargassum patches to move or the tendency of

qualitative environmental factors such as mainly SST, ocean

current, and wind data (Qi et al., 2017; Kim et al., 2019; Kwon

et al., 2019). In fact, with these studies, it is difficult to quantitatively

recognize environmental information on the location where the
FIGURE 4

The distribution maps of Sargassum patches and environmental variables in the study area. Sargassum distribution as ground-truth was
extracted from GOCI image on April 23, 2017.
TABLE 3 Performance evaluation of three machine learning models using test dataset.

Model (1) (2) (3) (4) Sens. Prec. FM Accu.

BT-1 171,611 23,593 14,974 13,724 0.37 0.48 0.42 0.83

BT-2 177,208 18,473 9,377 18,844 0.51 0.67 0.58 0.88

BT-3 181,208 8,803 5,377 28,514 0.76 0.84 0.80 0.94
frontier
(1): true negative; (2): false negative; (3) false positive; (4): true positive; Sens, sensitivity; Prec., precision; FM, F-measure; Accu., total accuracy.
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entire Sargassum patches exist in the East China Sea. Therefore, we

quantitatively analyzed the relationship between environmental

data and Sargassum distribution from 2015 to 2019 through a

statistical approach, and generated Sargassum distribution

estimation model through environmental data, and developed a

machine learning model to estimate Sargassum distribution

through environmental variables. In addition, it was possible to

analyze the change in Sargassum distribution according to the

adjustment of environmental variables. The following is a

discussion of the results of this study.
Uncertainties of daily Sargassum map

The particle tracking model used for this study showed a

good level with F-measure of 0.41. We attempted to compare the
Frontiers in Marine Science 10
model used in Kwon et al. (2019) with the accuracy of our

model. However, since the validation indexes of the two models

are not the same, quantitative comparisons could not be

performed. Alternatively, when comparing Sargassum

distribution in 2017, we confirmed that Sargassum distribution

in the ECS and YS by date were similar. Meanwhile, we analyzed

the model accuracy in detail. Sargassum blooms began in

February or March, and they were observed in GOCI image

that lasted until April or May every year. Therefore, from the

initial patch to the patch used for validation, the time difference

ranged from 40 days in 2019 to 99 days in 2017. In 2017, the F-

measure of Sargassum patch 13 days after the initial patch was

0.59, but the F-measure of the patch 99 days after from the initial

patch was considerably reduced to 0.26. In addition, the F-

measure and the sensitivity of patches observed in March in

2015 and 2019 were 0.43 and 0.55, respectively, while those of
A

B

D

C

FIGURE 5

Sargassum map as ground truth and estimated maps derived from machine learning models (A) Daily Sargassum map was generated
fromparticle tracking model. The estimated Sargassum maps generated from (B) BT-1, (C) BT-2, and (D) BT-3 models. In 2016, Sargassum
patchesfirst appeared in the ECS on March 2 and gradually moved toward the Korean Peninsula. The maps are displayed every 15 days since
thepatches occurred.
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patches in May were 0.3 and 0.28, respectively. These results

suggest that the accuracy of the daily Sargassum distribution

decreased over time from that of the initial patch.

Several factors affect model performance. The uncertainty of

the ground truth data extracted from GOCI may affect the

performance. In 2016, we first found Sargassum patch on the

coast of Zhejiang on March 2, using GOCI image. However, sea

fog and cloud can detect only a partial distribution of Sargassum.

As this model tracks the distribution of Sargassum based on

initial patches, the inaccuracy of the initial patches affects the

performance of the model. Sargassum pixels were extracted from

GOCI dataset using the NDVI threshold. Moreover, as the

extraction of pixels through a threshold does not consider

various environmental factors such as submerged Sargassum, it

often leads to overestimation or underestimation. Even the
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growth rate of Sargassum slows and sinks below seawater as it

moves. Hence, when Sargassum patches approach the coast of

the Korean Peninsula, complicating the ocean current system,

they are extracted as satellite images, and the inaccuracy of

extraction increases compared with that of the initial patches.

Kwon et al. (2019) mentioned that because satellite images con

not detect all patches, unmatched patches between synthetic

particles and observed patches may appear. In addition, the

particle tracking model used in this study failed to consider the

physiological factors of Sargassum. For long-term particle

tracking simulations, it is essential to consider the factors

related to the growth and mortality of Sargassum (Putman

et al., 2018; Wang et al., 2019). These limitations may reduce

the accuracy of the model over time. Therefore, patches up to 50

days from the initial patch were used to develop a machine
A

B

D

C

FIGURE 6

Sargassum maps according to changing SST in 2016 every 15 days. From the top to the bottom, the maps showed the results after applying four
options: (A) SST + 4 °C, (B) SST + 2 °C, (C) SST − 2 °C, and (D) SST − 4 °C. The original case is represented in Figure 6.
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learning model that estimated Sargassum distribution from

environmental variables.
Additional environmental variables

In addition to environmental variables used in this study,

there are other environmental factors that affect Sargassum

distribution. Qi et al. (2017) speculated that Photosynthetically

active radiation (PAR) affect the occurrence of Sargassum bloom

of the ECS. They argued that both SST and PAR are a major

factor in determining the size of Sargassum patch. Wang et al.

(2021) found that a higher temperature and lower light intensity

exerted a negative influence on Sargassum through its

cultivation. Zheng et al. (2022) reported that moderate light

conditions can accelerate the growth and reproduction of

Sargassum. Nutrients can affect Sargassum distribution. Bao

et al. (2022) investigated the physiological responses of
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attached and pelagic Sargassum populations cultivated with

different nutrient concentrations and PAR. They reported that

nutrient restrictions and high PAR accelerate the senescence of

pelagic populations while traveling on the sea surface from their

point of origin. Qi et al. (2017) suggested that the early

Sargassum on the Zhejiang coast may be the result of

nutritional enrichment due to aquaculture. Due to the

significant expansion of Prophyra aquaculture industry along

the Zhejiang coast in recent years (China Fishery Statistical

Yearbook (CFSY), 2009), it is possible that the nutrient-rich

environment has been created due to increased fertilizer. The

completion of the Three Gorges Dam (TGD) significantly

impacted river discharge flowing into the ECS. Gong et al.

(2006) suggested that the ECS ecosystem may respond

sensitively to changes in the nutrient supply arising from the

TGD project. It may cause changes in primary production,

phytoplankton community structure, and biodiversity of the

ECS (Wu et al., 2003; Fu et al., 2010). This change could
FIGURE 7

Sargassum expanded areas and fitted curves according to yearday for five cases in 2016 corresponding to Figure 7. Five cases include (1) SST +
4 °C, (2) SST + 2 °C, (3) original SST, (3) SST − 2 °C, and (4) SST − 4 °C. Sargassum or non-Sargassum pixels were estimated using the BT-3
model.
TABLE 4 Coefficient of the empirical polynomial regression for each case.

Case Exponential coefficient R2 RMSE

a b c d

(1) SST + 4°C 1.43×106 -0.068 1.49×104 0.016 0.55 8,575

(2) SST + 2°C -1.79×10-7 0.23 2.19×104 0.013 0.76 6,250

(3) Original SST 9.21×104 -0.0018 -3.5×108 -0.15 0.79 4,675

(4) SST - 2°C 1.45×107 0.028 -1.45×107 0.028 0.31 7,425

(5) SST - 4°C -6.82×105 0.035 6.91×105 0.035 0.37 7,494
frontie
a, b, c, and d represent exponential coefficients of equation (7).
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sufficiently affect the prosperity and distribution of Sargassum

patches in the ECS.
Various machine learning models

To confirm the ability of the machine learning model for

future prediction, we used the pairs from 2015 to 2018 for

training. Then, we tested the model using the pairs in 2019. As a

result, the performance of BT-4 model showed reasonable level

(sensitivity: 0.71, precision: 0.81, F-measure: 0.76, accuracy:

0.92). This suggested that our model can estimate Sargassum

patches with a reasonable accuracy after 2020. Meanwhile,

Sargassum generally moves along the ocean currents formed

by wind and tends to grow or exterminate depending on the SST

surrounding the flow. Therefore, the wind variable played a key

role in the distribution of Sargassum. To recognize the impact of

wind factors on Sargassum distribution, we trained and tested

the BT-4 and BT-5 models by adding wsu and wsv variables. In

BT-4 model, wsu and wsv variables were added to BT-2. For the

BT-5 model, geographical and date variables were added to BT-

4. The quantitative performance of both models showed good

results, with the F-measure levels of 0.76 and 0.83, respectively.

However, in the Sargassum map, the patches were distributed in

a scattered form. It did not show a proper distribution compared

with the ground truth map. These results show that wind data

negatively affects the performance of the model, indicating that

the distribution of wind stress values is not characterized by

group, as shown in Figures 3G, H. This may be because our study

focused on estimating daily Sargassum distribution using daily

environmental data. As daily data cannot reflect the time lag of

wind-driven seawater currents, their daily distribution cannot be

properly estimated using daily wind data. We found that the

wind trend from November to December of the previous year at

the time of Sargassum occurrence determined the ocean current

that moved Sargassum patch. This aspect is beyond the scope of

this study, as we focused on instantaneous (up to one day)

Sargassum distribution and not on the migration pattern of

Sargassum. In addition, we trained machine learning models

with various types of ensemble methods, including boosted trees,

subspace discriminant, subspace k-nearest neighbor (KNN), and

random undersampling boosting (RUSBoost) with decision tree

using the training dataset used for the BT-3 model. Among these

models, the RUSBoost model performed better than the other

models. The RUSBoost model showed the highest sensitivity

(0.92) and F-measure levels (0.59), while the boosted trees and

KNN had the highest precision levels of 0.62 and 0.66,

respectively. However, the subspace discriminant model

exhibited the lowest F-measure (0.0001) and precision (0.0001)

values. The learner type of RUSBoost is a decision tree, whereas

those of the subspace discriminant are discriminant. The learner

type of the BT-3 model that showed the best performance, was

also a decision tree. These results suggest that our dataset shows
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the best performance when the ensemble method is a bag and

the learner type is a decision tree.
Tolerable and favorable SST
of Sargassum

Applying the BT-3 model, we simulated five cases with

different SST variations to determine the effect of SST on

Sargassum distribution. The cases in which the SST increased

from the original tended to increase in area, showing a wider

patch range than usual when reaching the Korean Peninsula.

Conversely, the cases in which the SST decreased from the

original showed a gradual increase in area and then decreased

before reaching the Korean Peninsula. In fact, these results are

related to tolerable SST associated with the growth or mortality

of Sargassum. As mentioned, Sargassum grow in the SST range

between 15 and 25 °C, while the optimal growth of adult

Sargassum is in the range of 14−16 °C. In addition, our results

showed that most of Sargassum group were distributed in the

range of 14−18 °C. The average SST distributed by Sargassum

patches was 16.04 °C. Considering the histogram in Sargassum

group and daily Sargassummap, we determined tolerable SST to

be 12−20 °C. When the SST was higher than the average SST, the

increase rate of the area over time was higher. As shown in

Figure 6, in general, a large amount of patches flow into the coast

of the Korean Peninsula approximately 45 days after the initial

patch is discovered off the coast of Zhejiang (yearday 106).

Therefore, it may be inferred that if the SST increases in the ECS

and the YS, the size of the patch flowing into the coast of Korean

Peninsula will be larger than usual. In particular, for case (2),

even when the patch reached the coast of the Korean Peninsula,

the area continued to increase. It could be inferred that favorable

SST for Sargassum was 18 °C. Conversely, when the SST was

lower than the average SST, the area decreased from about 30

days after the initial patch. This means that the area of the patch

decreases before it reaches Jeju Island, resulting in a lower

probability of Sargassum existence around the Korean

Peninsula. When the patches reached the Korean Peninsula,

the largest difference in area between cases (1) and (5) was

44,583 km2 on April 17, 2016 (yearday 108).
Conclusion

In this study, we quantitatively analyzed the relationship

between environmental variables and Sargassum distribution in

the ECS and YS from 2015 to 2019 through statistical approach.

Biotic and abiotic factors used for this study include SST, SS, SSH,

rho, seawater current, and wind stress. Then, we developed a

machine learning model for the estimation of Sargassum

distribution through environmental variable. The developed

model was applied to simulate Sargassum distribution by
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changing SST. The major results are as follows: (i) As a result of

prioritizing environmental variables in a statistical approach, SST

was the most important variable affecting Sargassum distribution in

the ECS and YS. By confirming SSH, uo, and vo maps, we inferred

that Sargassum patches cannot move southeast below 29°N because

of the Kuroshio Current, (ii) the spatial distribution of Sargassum

patches in the ECS and YS showed the most appropriate results

when estimated through machine learning model derived from

both geographical and physical information, and (iii) By simulating

SST fluctuations, we identified the tolerable and favorable SST of

Sargassum. These results will greatly help the understanding of the

relationship between Sargassum distribution and environmental

variables and also provide a method for the prevention and control

of marine ecological disasters in Sargassum blooms.
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