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Sexual dimorphism in the
methane seep-dwelling Costa
Rican yeti crab Kiwa puravida
(Decapoda: Anomura: Kiwaidae)
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Emily Jayne Cowell3, Erik E. Cordes3, Lisa A. Levin2,
Shana K. Goffredi4 and Jorge Cortés1

1Centro de Investigación en Ciencias del Mar y Limnologı́a, Universidad de Costa Rica,
San José, Costa Rica, 2Center for Marine Biodiversity and Conservation, Scripps Institution of
Oceanography, University of California San Diego, San Diego, CA, United States, 3Department of
Biology, Temple University, Philadelphia, PA, United States, 4Occidental College, Los Angeles,
CA, United States
Deep-sea chemosynthesis-based ecosystems support unique biological

communities, but human impacts are an increasing threat. Understanding the

life-history traits of species from deep-sea chemosynthesis-based ecosystems

can help to develop adequate management strategies, as these can have

impacts on ecological responses to changes in the environment. Here we

examined the occurrence of sexual dimorphism in the yeti crab Kiwa puravida,

an endemic species from the Costa Rican Pacific margin that aggregates at

active methane seeps and depends on chemosynthetic bacteria for nutrition.

The twomorphological features examined included the claws, suspected to be

under sexual selection and used for defense, and the carpus of the second

pereopod not suspected to be under sexual selection. A total of 258

specimens, 161 males, 81 females, 16 juveniles, were collected from Mound

12 at 1,000-1,040m depth in 2017 and 2018 and analyzed. We found that males

have larger and wider claws than females, while there were no differences in

carpus length. These results suggest that claw weaponry is under sexual

selection in K. puravida, which is probably related to the mating system of

this deep-sea species. This is the first attempt to study the reproductive biology

of K. puravida, and additional observations will be necessary to shed more light

on this matter.
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Introduction

Deep-sea chemosynthesis-based ecosystems support large

biomass, and unique and high diversity, mainly through

symbiotic relationships of invertebrates with chemosynthetic

microorganisms in an otherwise food-limited environment

(Rogers et al., 2012; Marsh et al., 2015; Goffredi et al., 2020;

Sogin et al., 2020). Since first discovered (Corliss et al., 1979),

hydrothermal vents and methane seeps have prompted

researchers to study the diversity, ecology, physiology,

biogeography, and evolutionary processes of these novel

environments (Martin et al., 2008; Moalic et al., 2012; Rogers

et al., 2012; Roterman et al., 2018). Methane seeps, in particular,

provide an array of ecosystem services such as climate regulation

and carbon sequestration (Boetius and Wenzhöfer, 2013;

Marlow et al., 2014), supporting habitats for commercially

important species (Grupe et al., 2015; Seabrook et al., 2019;

Turner et al., 2020), and cultural services (Levin et al., 2016).

Considering the relevance of such deep-sea communities, it is

important we understand the ecological interactions and life-

history traits of deep-sea species (Mengerink et al., 2014; Pereira

et al., 2021).

The diversity of species in all corners of our planet is driven

by evolutionary forces, and among these, sexual selection plays a

key role for many of the most striking shapes and adaptations

found in nature (Darwin, 1871; West-Eberhard, 1983; Eberhard

et al., 2018). Shuker and Kvarnemo (2021) define sexual

selection as “any selection that arises from fitness differences

associated with nonrandom success in the competition for access

to gametes for fertilization”. Sexual selection mechanisms include

competition (i.e., male-male competition) and mate choice (i.e.,

female choice) (Searcy and Andersson, 1986; Andersson and

Simmons, 2006; Jones and Ratterman, 2009). Different

intensities of sexual selection between males and females in a

particular morphological characteristic can lead to

morphological differences between the sexes in body parts

other than sexual organs, that is sexual dimorphism (West-

Eberhard, 1979; Jones and Ratterman, 2009). In species where

males fight against other males to access females, sexual

dimorphism is commonly found on the weaponry

(McCullough et al., 2016; Rico-Guevara and Hurme, 2019). In

many crustaceans, however, weaponry can occur in both males

and females, and in some groups the claws represent the only

mechanism of aggression and defense (Mariappan et al., 2000).

The yeti crabs (Chirostyloidea: Kiwaidae) are a group of

episymbiont-bearing anomuran squat lobsters represented by

the genus Kiwa (Schnabel and Ahyong, 2011), with four

described species (Kiwa araonae SH Lee et al, 2016, Kiwa

hirsuta Macpherson et al., 2005, Kiwa puravida Thurber et al,

2011, and Kiwa tyleri Thatje, Marsh, Roterman, Mavrogortdato

and Linse, 2015), and two new, undescribed species (Roterman

et al., 2018). All six species have been found exclusively in deep-

sea chemosynthesis-based ecosystems, either methane seeps or
Frontiers in Marine Science 02
hydrothermal vents (Roterman et al., 2013; Roterman et al.,

2018). A recent phylogeny of the group suggests a split between

the clades “bristly” and “plumose”, places the origin of the group

in the Eastern Pacific, and proposes a vent origin for Kiwaidae,

rather than a seep-to-vent progression as previously suggested

(Roterman et al., 2013; Roterman et al., 2018). The kiwaid

nutrition is dependent primarily on the chemosynthetic

filamentous bacteria that grow among their setae (Goffredi,

2010; Thurber et al., 2011; Thatje et al., 2015a; Zwirglmaier

et al., 2015). The only yeti crab known to inhabit methane seeps

is K. puravida, an endemic species that occurs at a few methane

seep sites on the Costa Rican Pacific margin. Kiwa puravida

displays a “dancing” behavior suggested to increase the

productivity of its bacterial epibionts (Thurber et al., 2011).

The importance of water flow for increasing chemosynthetic

production from the bacterial epibionts was affirmed in the vent

galatheid crab Shinkaia crosnieri (Watsuji et al., 2017).

Differences in bacterial composition among body parts and

ontogenetic changes in bacterial communities have been

observed in K. puravida (Goffredi et al., 2014). Despite the

various studies carried out on yeti crabs, our knowledge of

their life-history traits remains poorly understood, limiting our

understanding of the biology and vulnerability of this deep-sea

group. Our study aimed to examine the occurrence of sexual

dimorphism in the claws of K. puravida to further advance our

understanding of this species and yeti crab biology. Here we test

the hypothesis that the claws of K. puravida are sexually

dimorphic, where males have larger claws than females, and

discuss the possible implications for the mating system of this

deep-sea crustacean.
Material and methods

Sampling

Specimens of the Costa Rican yeti crab Kiwa puravida were

collected at Mound 12, in the Costa Rican Pacific margin

(8°55.80 N, 84°18.70 W) at depths of 1000–1040 m (Figure 1).

Mound 12 is a carbonate mound composed primarily of

authigenic carbonates (Klaucke et al., 2008), with ~1-1.6 km in

diameter and seepage activity mainly located to the southwest of

its summit (Mau et al., 2006). Evidence of variation in seepage

activity levels is supported by the presence of slope sediments

intercalated with mudflows (Niemann et al., 2013), and

measurements revealed annual variation of methane release

(Mau et al., 2007). The first studies on the biology of this area

reported dominance of tubeworms (Siboglinidae), clam

aggregations (Vesicomyidae), mussel beds (Bathymodiolinae),

and bacterial mats (Sahling et al., 2008). Levin et al. (2015) found

that Mound 12 has some of the highest density (~200 to more

than 600 individuals per 200 cm2, the average size of a rock) and

diversity (~26 species per rock) of deep-sea fauna on rocks from
frontiersin.org
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tubeworm bushes and mussel beds under active seepage among

several sites in the Costa Rican Pacific margin. The faunal

ensemble composition at Mound 12 shows interannual

variability due to natural changes in seepage activity (Pereira

et al., 2021).

Kiwa puravida specimens at Mound 12 were sampled using

the HOV Alvin deployed from RV Atlantis, during the

expeditions AT 37-13 (Alvin dives: AD4906 and AD4907) and

AT 42-03 (Alvin dives: AD4974, AD4975, AD4984, and

AD4987), in May-June 2017 and October 2018, respectively.

Carbonate rocks, tubeworm bushes, and mussel pots within

mussel beds hosting yeti crabs were collected for megafaunal

and macrofaunal studies under the collaborative research project

“Quantifying the biological, chemical, and physical linkages

between chemosynthetic communities and the surrounding

deep sea” (ROC Hits, https://www.bco-dmo.org/project/

648472). Carbonate rocks were placed into individual

compartments, and tubeworm bushes and mussel pots were

collected with a specially designed hydraulic net, the Bushmaster

(Cordes et al., 2005), that entrapped the tubes. Immediately

upon retrieval, samples were kept in the cold room (4°C) as they

were processed. Animals, including yeti crabs, were removed

from the rocks and bushes, and preserved in 95% ethanol to be

sorted, identified, and measured in the laboratories at Scripps

Institution of Oceanography (see Pereira et al., 2021) and

Temple University. Other yeti crabs were also collected for

microbial experiments, and these were measured onboard for

morphological measurements and sex determination as

described below. All samples were collected with the

permission of the Ministerio de Ambiente y Energıá of Costa

Rica (MINAE): Sistema Nacional de Áreas de Conservación

(SINAC: SINAC-CUS-PIR-035-2017, SINAC-CUSBSE-PI-R-

032-2018, SINAC-SE-064-2018) and Comisión Nacional para
Frontiers in Marine Science 03
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OT-CONAGEBIO).
Morphological measurements and
sex determination

A total of 258 K. puravida specimens (161 males, 81 females,

16 juveniles) were measured. An additional 183 specimens were

too small to get adequate measurements (carapace length < 0.3

mm), and 8 others were in bad condition. Measurements of both

live specimens onboard and preserved specimens collected from

rocks were made with vernier calipers to the nearest 0.01 mm in

the laboratory, and measurements of preserved specimens

collected from biogenic habitats (tubeworm bushes and mussel

beds) were made using ImageJ 1.53r or an Amscope MU1000

calibrated camera attached to a dissecting microscope. The

carapace length of K. puravida yeti crabs was measured as the

distance from the distal midline of the orbital arch to the posterior

dorsal margin of the carapace (Figure 2). We included two

measurements of the propodus as a proxy of claw size (chela),

which is suspected to present sexual dimorphism: 1) claw length,

as the distance from the proximal margin of the propodus of the

first pereopod (cheliped) to the distal margin of the fixed finger of

the propodus; 2) claw width, as the widest transversal segment of

the propodus of the first pereopod (Figure 2). In addition, we

measured the length of the carpus of the second pereopod (first

walking leg), as the distance from the proximal margin of the

carpus to its distal margin (Figure 2). Sex in K. puravida was

determined by looking for gonopores in the base of the third pair

of pereopods, which are present in females only, and for the

modified pair of first pleopods in males (Baba et al., 2008; Baba

et al., 2011; Thurber et al., 2011). The specimens were classified as
FIGURE 1

Sampling location (A) and detail of the yeti crabs Kiwa puravida (B) at Mound 12, a methane seep at ~1,000 m deep on the Costa Rican Pacific margin.
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juveniles when the sex could not be determined, lacking

gonopores and modified pleopods (these were usually small

specimens), and thus were excluded from the analyses. Eggs

under the abdomen of ovigerous females were carefully

removed and counted. Unfortunately, statistical tests comparing

measurements between non-ovigerous females and ovigerous

females were not possible due to a small sample size of

ovigerous females (n = 3) yielding low statistical power.
Statistical analyses

Normal distribution and homogeneity of variance were

confirmed through quantile-quantile plots and fitted values-

residuals plots. An ANOVA was conducted to check for sexual

dimorphism in carapace length, and a chi-squared test was

conducted to examine whether there was a significant

deviation from a 1:1 sex ratio within the sample. We tested

our hypothesis that males would have proportionally larger

claws than females using one-way Analysis of Covariance

(ANCOVA). ANCOVAs are useful to analyze the influence of

a categorical predictor on a dependent variable while controlling

a continuous predictor covariable, and to compare the slopes of

the regressions of the dependent variable with the continuous

predictor covariable by the categorical predictor (Rutherford,

2011). ANCOVAs have been successfully used in other sexual
Frontiers in Marine Science 04
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Papiol, 2019; Palaoro et al., 2020). We considered claw length

and claw width, both suspected to present sexual dimorphism as

the dependent variables, as well as the length of the carpus of the

second pereopod, a structure that is not suspected to present

sexual dimorphism. The ANCOVAs for each dependent variable

were fitted with sex as the categorical predictor and carapace

length as the continuous predictor covariable, including the

interaction between both predictor variables. Data of juvenile

yeti crabs were excluded from the ANCOVAs. All statistical

analyses were performed using RStudio (RStudio Team, 2022).
Results

We measured 161 (62%) males, 81 (31%) females, and 16

(6%) juveniles, showing an overall male bias with a sex ratio of

1:0.5 in the sampled population (X2 = 38.168, p < 0.0001, d.f. = 1).

The largest and smallest males measured were 29.38 mm and 0.40

mm (carapace length), and the largest and smallest females

measured were 18.46 mm and 0.46 mm (carapace length).

There was no difference in average size (carapace length)

between males and females (ANOVA: F1,240 = 3.88, p = 0.14). A

summary of the mean and standard deviation (SD) for carapace

length, claw length and width (propodus of the first pereopod),

and carpus length of the second pereopod is in Table 1. We found
FIGURE 2

Morphological measurements of carapace length, claw length, claw width, and carpus length of the second pereopod in specimens of Kiwa
puravida from Mound 12, Costa Rican Pacific margin. Scale bar: 0.5mm.
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three ovigerous females, with carapace length ranging between

15.66 mm and 18.22 mm, and number of eggs ranging from 38

to 159.

Males had longer claws than females (ANCOVA: F1,202 =

9.07, p = 0.003; Figure 3A), and the slope of the relationship

between claw length and carapace length was steeper in males

than in females (F = 11.93, p = 0.0006). There were no

differences in the claw width between males and females

(ANCOVA: F1,201 = 2.98, p = 0.086; Figure 3B), but the slope

of the relationship between claw width and carapace length in

males was steeper than in females (F = 10.04, p = 0.002). As

expected, there were no differences in the length of carpus of the

second pereopod between sexes (ANCOVA: F1,206 = 2.95, p =

0.087; Figure 3C) and in the slope between carpus length and

carapace length (F = 4.542, p = 0.13426). All the ANCOVA

outcomes are summarized in Table 2.
Discussion

Our initial hypotheses that the yeti crab Kiwa puravida

exhibits sexual dimorphism with males having larger claws

than females was supported. Results suggest that the claws of

male yeti crabs are larger and therefore under sexual selection,

perhaps representing an advantage for reproduction (Andersson

and Simmons, 2006; Jones and Ratterman, 2009; Shuker and

Kvarnemo, 2021). Similar patterns of claw sexual dimorphism

have been reported for species of Chrisostyloidea squat lobsters

such as Uroptychus alcocki and Uroptychus scambus (Schnabel,

2009), and other deep-sea anomurans including Cervimunida

johni (Lezcano et al., 2015), Munida intermedia (Mori et al.,

2004), Munida iris (Williams and Brown, 1972), Munida

microphtalma (Kassuga et al., 2008), Munida rugosa (Claverie

and Smith, 2007; Claverie and Smith, 2010), Munidopsis

erinacea (Tavares and Campinho, 1998), Munidopsis kaiyoae

(Schnabel and Bruce, 2006), Munidopsis scobina (Creasey et al.,

2000), Munidopsis sigsbei (Tavares and Campinho, 1998),

Munidopsis papanui (Schnabel and Bruce, 2006), Pleuroncodes

monodon (Lezcano et al., 2015), and Shinkaia crosnieri

(Tsuchida et al., 2003). Although this is the first time that

sexual dimorphism in weaponry is tested for yeti crabs in the

family Kiwaidae, studies conducted on Kiwa tyleri from the
Frontiers in Marine Science 05
Southern Ocean hydrothermal vent fields found that males have

larger carapace length than females, and also reported that

sexual dimorphism of the claw is apparent in this species, but

this was not tested (Marsh et al., 2015; Thatje et al., 2015a). In

contrast, we observed no difference in carapace length between

sexes of K. puravida.

Many squat lobsters are commonly found living in large

groups (Lovrich and Thiel, 2011), and sometimes in high

densities (60-4,000 individuals per m2) such as K. tyleri

(Marsh et al., 2015; Thatje et al., 2015a). In addition, a few

species might congregate near resources, especially species

whose nutrition relies on chemosynthetic episymbionts (Baeza,

2011; Marsh et al., 2015). According to the review of Thiel and

Lovrich (2011), high-density aggregations of squat lobsters

might prompt competition or antagonistic interactions for

food, territory, or potential mating partners, however, most

evidence suggests that these animals rarely have aggressive

intraspecific interactions, and retreating is more common.

Some documented agonistic interactions over resources or

mates might include spreading the chelipeds, raising the body

from the bottom using the walking legs, approaching the

opponent, and grabbing the chelipeds of the opponent in the

most aggressive interactions (Berril, 1970; Parzefall andWilkens,

1975; Antonsen and Paul, 1997; Tulipani and Boudrias, 2006).

Kiwa puravida is known to occur in dense groups (Thurber

et al., 2011), thus it is expected to observe some level of

antagonistic interactions in this species.

Antagonistic behavior has previously been observed in yeti

crabs. Kiwa tyleri has been shown fighting (Marsh et al., 2015),

while K. puravida has been shown displaying a conspicuous

interaction, although it was unclear whether it was courtship or

competitive display (Thurber et al., 2011). During this research, we

observed yeti crabs waving their claws apparently to fend off other

individuals (Supplementary Material Video). We also observed

similar behavior directed at other species that got close, such as

Alvinocaris shrimps (Supplementary Material Video). The

occurrence of sexual dimorphism in claws and the observation of

agonistic interactions could indicate that the claws of K. puravida

males are under sexual selection derived from male-male

competition for potential mating partners. In addition, we

observed one individual using its fourth pereopod to fend off an

Alvinocaris shrimp (Supplementary Material Video), suggesting
TABLE 1 Number of specimens of Kiwa puravida from Mound 12, Costa Rican Pacific margin, mean (± standard deviation) carapace length (mm),
claw length and width (propodus of the first pereopod, mm), and carpus length of the second pereopod (mm) of all specimens and by sex (males,
females, and juveniles).

Sex Number of
specimens

Carapace length
(mm)

Claw length
(mm)

Claw width
(mm)

Carpus length of second pereopod
(mm)

Total 258 7.2 ± 6.65 4.8 ± 5.81 1.6 ± 1.83 1.4 ± 1.53

Males 161 6.8 ± 7.03 4.6 ± 6.3 1.5 ± 1.98 1.3 ± 1.59

Females 81 8.1 ± 5.78 5.3 ± 4.65 1.8 ± 1.48 1.6 ± 1.37

Juveniles 16 5.1 ± 5.77 3.8 ± 5.93 1.4 ± 2.33 1.2 ± 1.61
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B

C

A

FIGURE 3

Comparison of the relationship of the claw length (A), claw width (B), and carpus length of the second pereopod (C) with the carapace length
by sex (adult males and females) of Kiwa puravida, 2011 from Mound 12, Costa Rican Pacific margin. Data were fitted in linear regression
models, shading represents 95% confidence interval around the model fit.
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that further observations and behavioral studies will help to better

understand antagonistic behavior in K. puravida and conduct

future morphological studies in other structures.

Sexual selection can also arise from mate choice, for example

females choosing males for mating (Searcy and Andersson, 1986;

Andersson and Simmons, 2006; Jones and Ratterman, 2009). In

squat lobsters, mating behavior is usually commenced by the

male approaching the female, and, in some species this behavior

might include grasping and keeping the female in a precopula

position using the chelipeds or pereopods (Thiel and Lovrich,

2011). Such courtship displays and extended precopulatory

positions have been reported in Galathea strigosa (Brandes,

1897; Heitler et al., 1983), Pleuroncodes monodon (M Thiel

unpublished in Thiel and Lovrich, 2011), and Pleuroncodes

planipes (Serrano-Padilla and Aurioles-Gamboa, 1995). Our

understanding about yeti crab reproductive behaviors is very

limited, except for the different life-history trait adaptations

among sexes in K. tyleri (Marsh et al., 2015) and the footage

of a potential courtship display of K. puravida , as

mentioned earlier.

Competition for territory has also been discussed for squat

lobsters living in aggregations (Thiel and Lovrich, 2011), thus it

could also play a significant role as a mechanism for the

occurrence of sexual dimorphism of claws in K. puravida.

Large densities of K. puravida have been reported from

carbonate rocks with up to 40 individuals/200 cm2 on a single
Frontiers in Marine Science 07
rock (Pereira et al., 2021; Pereira et al., 2022). They are called

“dancing yeti crabs” due to their rhythmic arm movements; they

wave their claws in seeping waters (Thurber et al., 2011) to

presumably supply oxygen and sulfide to the episymbiotic

bacteria (Goffredi et al., 2014). These movements might

increase the area occupied by each specimen and create even

more conflict among individuals (see Supplementary Material

Video). If territory represents an advantage for males to access

potential mating partners, then competition for territory could

underpin in the mechanisms causing sexual selection of the

claws in males of K. puravida.

In K. puravida, the claws provide a surface for episymbiotic

chemosynthetic bacterial farming (Thurber et al., 2011). Thus,

bigger claws might prove advantageous for feeding by providing

larger surface area for bacterial farming. Our specimens were

collected mostly from active seep areas, where chemosynthetic

bacterial growth is the highest compared to lower seepage

activity areas (Case et al., 2015). The male-biased sex ratio of

1:0.5 observed in our sampled population of K. puravida mainly

from active seep areas could indicate different diet adaptations

and spatial distribution between sexes, and these could be

associated with males having bigger claws, allowing for a

larger area for bacteria farming. In addition, K. puravida may

periodically feed on detritus as needed (Thurber et al., 2011).

Their epibiotic bacterial community changes between early and

later life-cycle stages potentially due to environmental factors
TABLE 2 ANCOVA outcomes: Sum of squares, degrees of freedom, mean squares, F values, p values, and homogeneity of slopes (F value and
p value) for the relationship of claw length, claw width, and carpus length (second pereopod) with carapace length by sex in (adult males and
females) of Kiwa puravida from Mound 12, Costa Rican Pacific margin.

ANCOVA: Male and female comparison

Claw length Sum of squares Degrees of freedom Mean square F p

Adjusted mean 10.4969 1 10.4969 9.072 0.002927

Adjusted error 422.277 202 2.08018

Adjusted total 432.774 203

Homogeneity of slopes

F 11.93

p 0.000673

Claw width Sum of squares Degrees of freedom Mean square F p

Adjusted mean 0.260352 1 0.260352 2.982 0.08575

Adjusted error 30.8827 201 0.153645

Adjusted total 31.143 202

Homogeneity of slopes

F 10.04

p 0.001768

Carpus length Sum of squares Degrees of freedom Mean square F p

Adjusted mean 0.210306 1 0.210306 2.953 0.08725

Adjusted error 14.6733 206 0.07123

Adjusted total 14.8836 207

Homogeneity of slopes

F 4.542

p 0.13426
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(Goffredi et al., 2014). Differences in the epibiont community

composition have also been observed between males and females

of K. tyleri (identified previously as Kiwa sp. nov. ESR) from

hydrothermal vents in the East Scotia Ridge, leading to clear

differences in isotopic niches reflecting the different food sources

that were assimilated among sexes (Zwirglmaier et al., 2015).

Males of K. tyleri are predominant in assemblages close to active

venting areas in high densities, while females were observed

further away from the active areas, and egg-bearing females need

to leave to colder surrounding areas to protect the embryos that

have a protracted and lecithotrophic development; also,

differences in life-history trait adaptations between sexes have

been reported (Marsh et al., 2015; Thatje et al., 2015b;

Zwirglmaier et al., 2015). These observations suggest that

environmental factors could be influencing behavioral and

morphological characteristics in kiwaids. However, this seems

unlikely in K. puravida since they comb bacteria from all parts of

their body, including abdomen and legs, not just claws (see

Goffredi et al., 2014), and if farming is increased in males, we

would expect males to be larger than females due to increased

nutrition, which we did not observe. It is also important to note

that our sampled population included specimens from different

assemblages (or yeti parties, as we called them due to their ‘dance

moves’), and more research is needed to better understand

whether K. puravida males and females have different life-

history traits that could contribute to the difference in claw

size, for example, incorporating spatial distribution and stable

isotope analyses (Reid et al., 2013; Zwirglmaier et al., 2015).

There is an extensive body of work reviewing mating systems

in Decapoda, factors influencing it, and its consequences for

other aspects of life-history traits (see Asakura, 2016). The

occurrence of sexual dimorphism and the observation of

antagonistic interactions, which can potentially be related to

competition for resources (i.e., food, territory, mating partners)

could influence the mating system of K. puravida. According to

Asakura (2016), the most common types of mating systems in

free-living decapods are 1) “short courtship”, with short

copulatory events and low levels of aggression in males; and 2)

“precopulatory guarding”, with longer precopulatory and

copulatory interactions and higher levels of aggression in

males. Evidence suggests that both duration and aggressiveness

are not found in discrete categories, but display a gradient from

short to long or no-aggressive to highly aggressive, respectively,

in this group. For example, in two deep-water squat lobsters that

exhibit precopulatory guarding, the guarding duration was

shorter in P. monodon than in C. johni, and the authors

proposed that these differences can be related to species-

specific life-history traits such as mobility and intraspecific

aggression, both expected to be higher in C. johni (Espinoza-

Fuenzalida et al., 2012). Furthermore, the cheliped shape in these

two species show a relation to the mating system and possibly to

male aggressiveness, where C. johni large males have more

arched chelipeds to inflict puncture wounds on opponents,
Frontiers in Marine Science 08
while in P. monodon the chelipeds were straighter (Lezcano

et al., 2015). In K. puravida, we found that males have larger

claws that may be used as weaponry in male-male competition

for access to females, and some antagonistic interactions have

been observed (Thurber et al., 2011; Supplementary Material

Video). Considering this, we propose that K. puravida might

present a mating system that resembles the precopulatory

guarding type. Further observations on the mating and

reproductive behavior of this yeti crab will be necessary to

determine its mating system.

Research on reproductive biology and other life-history

traits of these deep-sea species will enhance our capacity to

develop adequate management strategies (Mengerink et al.,

2014; Pereira et al., 2021), necessary under the current

scenario of increasing pressures on exploration and

exploitation of resources in the deep sea (Ramıŕez-Llodra

et al., 2011; Norse et al., 2012; Heffernan, 2019). Knowledge

about the reproductive behavior of squat lobsters is limited

(Thiel and Lovrich, 2011), and this is especially true for yeti

crabs. The biology of yeti crabs is obscure due to the complexity

of studying these species, which are only found in deep-sea

chemosynthetic habitats, and individual species have highly

restricted distributions. Seven specimens of K. puravida

survived during seven months in captivity at the aquarium

facilities of Centro de Investigación en Ciencias del Mar y

Limnologıá (CIMAR), in tanks with 8°C water temperature

and with a few sulfide chips provided weekly, but not through

multiple generations (personal observation). Further direct and

detailed observations and analyses of specimen morphology and

behavior from collections or videos from deep submersible

vehicles (HOVs, ROVs) will be essential to enhance our

knowledge of these crustaceans and their life-history strategies.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding author.
Author contributions

JCAS and OP designed the study. EEC, LL, SG, and JC

designed the logistics of the expeditions, and all authors

participated on the expeditions as part of the science party

and collected the samples. OP and EJC performed the

morphometric measurements. JCAS performed the statistical

analyses. JCAS and OP wrote the manuscript, with significant

contributions from EJC, EEC, LL, SG, and JC. JCAS and OP

contributed equally to the manuscript and share first

authorship. All authors contributed to the article and

approved the submitted version.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1051590
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Azofeifa-Solano et al. 10.3389/fmars.2022.1051590
Funding

This research was funded by NSF OCE 1635219 awarded to

EEC and NSF OCE 1634172 awarded to LL. OP received a

Scholarship award from the Association of Women in Science

San Diego (2018) and was supported by NSF OCE 2048720

during manuscript preparation.
Acknowledgments

We are grateful to the efforts of many aboard RV Atlantis II

expeditions AT 37-13 and AT 42-03, including the captains,

crew, pilots, and technicians of HOV Alvin, and science parties.

Thanks to O Breedy, B Naranjo, J Lunden, A Stabbins, M

Betters, O Ashford, GW Rouse, and V Orphan for their help

with sampling on board. We thank these Costa Rican

institutions for granting the collection permits: Ministerio de

Ambiente y Energıá (MINAE), the Sistema Nacional de Áreas de
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