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The Arctic Ocean environment is drastically changing because of global

warming. Although warming-induced processes, such as the decrease in

sea-ice extent and freshening of the surface layer, have the potential to alter

primary production, the changes that will likely occur in their production and

their mechanisms are still poorly understood. To assess the potential changes

in net community production, which is ameasure of biological carbon pump, in

response to climate change, we observed the O2/Ar at the surface of the

northern Chukchi Sea in the summers of 2017 and 2020. The net community

production (NCP) estimates that we derived from O2/Ar measurements were

largely in the range of 1 – 11 mmol O2 m-2 d-1 in the northern Chukchi and

Beaufort Seas, close to the lower bounds of the values in the global oceans. The

average NCP of 1.5 ± 1.7 mmol O2 m
-2 d-1 in 2020 was substantially lower than

7.1 ± 7.4 mmol O2 m-2 d-1 in 2017, with the most pronounced decrease

occurring in the ice-free region of the northern Chukchi Sea; the NCP of the

ice-free region in 2020 was only 12% of that in 2017. The decrease in NCP in

2020 was accompanied by a lower salinity of > 2, which resulted in shallower

mixed layer depths and stronger stratification. We speculated that the

anomalously low pressure near the east Russian coast and the lack of strong

winds contributed to the strong stratification in 2020. With a continuing

decrease in the extent of sea ice, the northern Chukchi Sea will likely

experience earlier phytoplankton blooms and nitrate exhaustion. Unless

winds blow strong enough to break the stratification, the biological pump in

late summer is likely to remain weak.
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1 Introduction

In the Arctic, the increase in sea surface temperature (SST)

(Steele et al., 2008) and the decreases in sea ice thickness and

extent have accelerated (Stroeve and Notz, 2018; Parkinson and

DiGirolamo, 2021). Two schools of thought regarding the likely

alteration in primary production due to the environmental

changes in the Arctic Ocean have been expressed. The first

school suggests that, as sea ice thins and melts away in summer,

more light penetrates the surface layers and promotes

photosynthesis. Additionally, it is argued that winds enhance

the nutrients supplied to the surface layer through vertical

mixing under ice-free conditions. This suggests that the

primary production in the Arctic will increase in the future

(Arrigo and van Dijken, 2011; Ardyna and Arrigo, 2020). In

contrast, the second school suggests that reinforced stratification

by sea ice melting limits the nutrient supply to the sea surface

and results in a decrease in the primary production (McLaughlin

and Carmack, 2010; Coupel et al., 2015; Yun et al., 2016).

Contradictory views on the changes that will be likely in

primary production hinder predictions of changes in the

biological pump in the Arctic. The Arctic absorbs 166 – 180

Tg C yr-1 of atmospheric CO2 (MacGilchrist et al., 2014;

Yasunaka et al., 2018), corresponding to 12% – 13% of the

global net absorption by the ocean (Takahashi et al., 2009), and

much of the Arctic absorption is driven by a biological pump of

102 ± 26 Tg C yr-1 (MacGilchrist et al., 2014). According to a

recent estimate of the primary production of 310 – 390 Tg C yr-1

(Ardyna and Arrigo, 2020), the biological pump in the Arctic

transports approximately 30% of the fixed carbon to the

subsurface layers. The biological pump, often measured by the

rates of new, export, or net community production (Falkowski

et al., 2003), is strongly affected by changes in primary

production and the environment.

Nitrate, together with light, may be the limiting factors on

the primary production in the Arctic Ocean (Tremblay et al.,

2015; Randelhoff et al., 2020). Although some other nitrogen

sources, such as urea, amino acids (Varela et al., 2013; Baer et al.,

2017), and nitrogen fixation (Harding et al., 2018; Shiozaki et al.,

2018), may be locally important in shelf regions, nitrate appears

to be the dominant and limiting nutrient at the regional scale

(Tremblay et al., 2015; Randelhoff et al., 2020). Randelhoff et al.

(2020) reported nitrate fluxes estimated from in situ turbulence

measurements and argued that vertical turbulent nitrate flux is

an accurate predictor of the magnitudes of new production (NP)

on an annual scale in the Arctic. The NP is defined as the

production supported by newly available nitrogen (Dugdale and

Goering, 1967) and considered as another measure of biological

pump (Falkowski et al., 2003). However, whether the biological

pump in the northern Chukchi Sea during summer is limited by

nitrate fluxes is unclear, given the lack of measurements of

nitrate flux and the potential mismatch between nitrate fluxes

and NP on short time scales of a month or season. Randelhoff
Frontiers in Marine Science 02
et al. (2020) suggested that the mismatch is partly due to the

constraint of the 15N-incubation method which considers only

the particulate pool and ignores dissolved organic

nitrogen content.

To evaluate the magnitude of biological pump and its

influencing factors, we estimated the net community

production (NCP) of the northern Chukchi Sea in August

2017 and 2020. Our NCP estimates, defined as the difference

between gross primary production and community respiration,

were based on continuous surface measurements of O2/Ar that

were obtained using an equilibrator inlet mass spectrometer

(Cassar et al., 2009). Although the shelf areas of the Chukchi Sea

are some of the most productive seas in the Arctic, our

understanding of the spatial and temporal variability in the

biological pump in the northern part of the sea is limited, as

most studies have been conducted in the shelf areas (e.g. Yun

et al., 2016; Juranek et al., 2019). We found that the NCP in

August 2020 was only 20% of that in 2017, and we discuss

potential causes of the large difference in NCP estimates between

the two years.
2 Material and methods

2.1. Division of the study area

The study area was located north of the Chukchi Shelf,

terminating near 73N°, and included several prominent

geological features, such as the Mendeleev Ridge, Chukchi

Plateau, and Northwind Ridge (Figure 1A). The upper layer of

the study area, down to about 200 m, consists of surface mixed

layer and the halocline. The surface layer is influenced by several

circulation components, such as Bering Strait inflow, Siberian

Coastal Current, and Beaufort Gyre (Talley et al., 2011). The

halocline layer of the area is affected by several water masses,

including the Pacific Water (PW), Atlantic Water (AW), and

East Siberian Shelf Water (ESSW). The PW, which carries

freshwater, heat, and nutrients into the Chuckhi Sea, is

expected to melt sea ice and support high primary production

(Torres-Valdés et al., 2013; Tremblay et al., 2015; Brown et al.,

2020). The AW, which is relatively high in salinity, forms a

counterclockwise boundary current and progresses east into the

study area (Woodgate et al., 2007; Aksenov et al., 2011). The

ESSW at the south of the study area carries high nitrate

concentration and episodic intrusion of the water is known to

be responsible for a large inter-annual variation in biological

production at southern part of the study area (Nishino et al.,

2013; Kim et al., 2021). The BG forms the eastern boundary of

the study area. The anticyclonic gyre, which converges

freshwater from Arctic rivers, has a relatively low density, and

its strong density gradient against the subsurface water inhibits

vertical mixing with the saline and nutrient-rich PW (Zhuang

et al., 2021).
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We divided the study area into three regions based on

terrain, sea ice presence, and sea surface temperature and

salinity (SST and SSS, respectively) (Figure 1). The Northwind

Ridge (NR), which is relatively warm and less saline, consists of

seawater with SSS less than 27 and SST greater than -1°C

(Figures 2, 3). We divided the area west of the NR (east of

162.5°W) into the Chukchi Sea Ice Zone (CSSI) and sea-ice-free

Chukchi Sea (CS); we considered the area with a sea ice

concentration of > 15% as the CSSI (Cavalieri et al., 1991).
2.2. Underway measurements

To estimate the NCP, we observed the surface distributions

of O2/Ar along with other environmental parameters over the

periods of August 10 – 24, 2017 and August 7 – 31, 2020

onboard IBRV Araon (Figures 2, 3). The surface water was

pumped from the bottom of the research vessel (7 m below the

surface) into the laboratory and its temperature and salinity were
Frontiers in Marine Science 03
measured continuously using a thermosalinograph (SBE 45). We

corrected the values by linear regression using the surface data

obtained from the CTD casts (SBE911plus) (Figure S1). The

correction typically decreased temperature measured by the

thermosalingraph by 0.1°C and increased salinity by

0.06, respectively.

We measured the O2/Ar ratios using an equilibrator inlet

mass spectrometer (EIMS) (Cassar et al., 2009; Hahm et al.,

2014). The EIMS included a Weiss-type equilibrator in which

the dissolved gases in the surface water were equilibrated with

the headspace. The air in the headspace of the equilibrator was

sucked into a quadrupole mass spectrometer through a capillary

and metering valve installed to maintain the vacuum chamber

at ∼4×10−6 mbar. We measured O2 and Ar (at m/z values of 32

and 40, respectively) every ∼ 10 s using the mass spectrometer.

We used clean air supplied from the foremast as the standard,

which we repeatedly measured every 3–4 h (Hahm et al., 2014).

The repeat measurements of the air standard indicated that the

uncertainty of the O2/Ar measurement was < 0.5%.
A

B C

FIGURE 1

(A) Map of the Chukchi Sea. The surface circulation components are shown in brown arrows. The blue arrows denote water flows in the
halocline layer: Atlantic Water (AW), Pacific Water (PW), East Siberian Shelf Water (ESSW). Orange sector shows the boundary of the map right
below, which is the main study area. CTD stations (white circles with black edge) and cruise track in (B) 2017 and (C) 2020. Chukchi Sea sea ice
(CSSI), Chukchi Sea (CS), and Northwind Ridge (NR) are marked in green, yellow, and blue, respectively. In both years, we depict sea ice
concentration on August 15.
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2.3. Nutrients and chlorophyll a
concentration analyses

We analyzed the nitrate, along with phosphate and silicate,

concentrations onboard using a four-channel, gas-segmented

continuous flow analyzer (QuAAtro, Seal Analytical) following

the protocol of the Joint Global Ocean Flux Study (Gordon et al.,

1993). We measured the certified reference materials from

KANSO Techno (Lot. No. BV), in addition to in-house
Frontiers in Marine Science 04
standards, to assess the accuracy and reproducibility of the

measurements. The precision and detection limit of nitrate

measurement was 0.14 mol kg-1 and ∼ 0.05 mol kg-1,

respectively. For chlorophyll a (Chl-a) measurements, we

filtered the seawater samples through 47 mm GF/F filters,

which we then extracted with 90% acetone for 24 h (Parsons

et al., 1984). We measured the Chl-a concentration using a

fluorometer (Trilogy, Turner Designs, USA), which we

calibrated using a Chl-a standard (DHI, Denmark).
FIGURE 2

Time series of SST, sea ice (%), SSS, Chl-a , nitrate (NO3
-), DO2/Ar, and NCP in (A–E) 2017 and (F–J) 2020; green, yellow, and blue shades

denote the CSSI, CS, and NR, respectively. Chl-a and nitrate concentrations over the mixed layer for each station; (C, H) the station number is
denoted together.
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2.4. NCP estimation from O2/Ar
measurements

The dissolved oxygen concentration within a mixed layer is

determined by both biological (respiration and photosynthesis)

and physical (temperature and salinity changes, atmospheric

pressure change, gas dissolution, bubble injection, and mixing)

factors. The solubility and diffusivity of Ar are similar to those of

O2, causing the two gases to behave similarly in seawater.

Because Ar is chemically inert, changes in the ratio of O2 and

Ar reflect the biological production or consumption of O2 (Craig
Frontiers in Marine Science 05
and Hayward, 1987). The degree of biological change in O2 can

be indicated by the biological oxygen supersaturation, defined as

DO2=Ar =
(O2=Ar)sample

(O2=Ar)sat
− 1, (1)

where (O2/Ar)sample and (O2/Ar)sat are the O2/Ar ratios of the

measured water sample and the air-saturated seawater, respectively

(Kaiser et al., 2005). We calculated the latter from the solubility of

the gases (Garcia and Gordon, 1992; Hamme and Emerson, 2004).

Neglecting vertical mixing and horizontal advection, the

amount of sea-air gas exchange due to oxygen supersaturation
A

B

D

E

F

G

I

H

J

C

FIGURE 3

Horizontal distributions of SST, SSS, DO2/Ar, Chl-a , and nitrate (NO3
-) in (A–E) 2017 and (F–J) 2020. The Chl-a and nitrate concentrations are

averages of mixed layer for each station.
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is equal to the NCP, which is estimated as

NCP = kw : rw :½O2�sat :DO2=Ar, (2)

where rw is the density of seawater, kw is the weighted gas

transfer velocity of O2, and [O2]sat is the concentration of air-

saturated O2 in the sea water (Reuer et al., 2007). As O2 and Ar

concentrations at the time of observation are the cumulative

results of the past exchange, we adopted the weighting scheme of

Teeter et al. (2018) to consider the cumulative effect of daily gas

transfer velocity (k) for the past 60 days before the date of

observation. In the weighting scheme, slightly modified from

Reuer et al. (2007), gas transfer velocity at the time of

observation has a weight of 1, and weighting decreases going

back in time. The rate decreases rapidly when the fraction of the

mixed layer ventilated is high (Equation 5 of Teeter et al., 2018).

We computed daily k from the gas exchange–wind speed

relationship reported by Wanninkhof (2014) and the daily

wind speeds at 10 m above the sea surface (ECMWF

Reanalysis v5). For the past history of the mixed layer depths

(MLD), which is necessary for the weighting, we used the

climatological data of Schmidtko et al. (2013). We note that

our NCP estimates based on mass balance of biological O2 in the

mixed layer represent the NCP only in the mixed layer. If there is

a sizable production below the mixed layer, the estimates may

underestimate depth integrated NCP.

Sea ice acts as an imperfect barrier to sea-air gas exchange,

with linear (Prytherch et al., 2017) or nonlinear (Loose et al.,

2014) relationships with gas transfer velocities. Although gas

exchange could be enhanced by up to 40% in partially ice‐

covered waters (Loose et al., 2014), parameterizations that take

these processes into account are not well established yet. To

facilitate an easy comparison with previous works which

employed a linear relationship (Ji et al., 2019; Ouyang et al.,

2021), we corrected the daily k using the following equation

kcorrected = k · 1 − sea ice concentrationð Þ, (3)

where we used the daily sea ice concentration data with a

resolution of 6.25 km from the Advanced Microwave Scanning

Radiometer 2 (AMSR2), available at https://seaice.uni-bremen.

de/, for the correction (Spreen et al., 2008). We inserted kcorrected
to the aforementioned weighting equation of Teeter et al. (2018).
2.5. Determination of mixed layer depths
and stratification index

We considered the summer MLD as the depth that exhibited

a potential density 0.1 kg m-3 higher than that at a depth of 5 m

(Peralta-Ferriz and Woodgate, 2015). To assess the strength of

stratification in the study area, we calculatedthe Brunt-Väisälä

buoyancy frequency squared (N2) between the surface (3 m) and

at a depth of 30 m (Ji et al., 2019). A high N2 value indicates

increased stability and stronger stratification. We selected depth
Frontiers in Marine Science 06
of 30 m for two reasons: First, some stations were shallower than

40 m in the study area. Second, it was deeper than the mixed

layer depth in the area.
2.6 Calculation of vertical nitrate flux

The vertical nitrate flux (FNO3) from the nitracline to the

mixed layer is most likely to arise from diapycnal mixing in the

absence of upwelling and downwelling events; hence, FNO3 can

be calculated as

FNO3 = Kz  
d NO3

−½ �
dz

, (4)

where Kz is the vertical eddy diffusivity (m
2 s-1), and d[ NO3

−]/dz
is the vertical nitrate gradient between the base of the mixed

layer and the nitracline (mol L-1 m-1 (Randelhoff et al., 2016).

We calculated vertical eddy diffusivity (Kz) using the

following equation

Kz = G
ϵ

N2 (5)

where G is a constant mixing coefficient of 0.2 (Osborn, 1980), ϵ

is the dissipation rate of the turbulent kinetic energy (m2 s-3) at

the base of the mixed layer, and N is buoyancy frequency. We

calculated ϵ using the following equation

ϵ = N3L2T , (6)

where LT is the Thorpe scale (Thorpe, 1977). We estimated LT as

the root mean squared of all the vertical displacements of the

density profile, which we sorted from that of the density-

overturned original profile (Gargett and Garner, 2008). Prior

to calculating LT , we meticulously postprocessed the raw CTD

data at 24 Hz to minimize measurement errors, including

corrections for the thermal lag of the conductivity cell and

ship motion (Park et al., 2014; Seo et al., 2015).

A single profile of the Thorpe scale may not provide an

accurate measure of turbulence compared with a microstructure

profile. Assuming that a spatially averaged profile of the Thorpe

scale can provide a reasonable measure of the region (Gargett

and Garner, 2008), we obtained the regional averages of Kz

calculated from the profiles of the Thorpe scale and combined

them with the vertical nitrate profile to calculate the nitrate flux

at each station. We further assumed that nitrate fluxes near the

bottom of the mixed layers were responsible for the NCP in the

mixed layer and the calculated flux between the bottom of the

mixed layer and the depth at which the nitrate concentration was

equal to 20% of the maximum concentration of each station (2 –

3 mol kg-1). Given the large vertical gradient of Kz , which

covered more than one order of magnitude (Figure S2), we

calculated the nitrate flux in 1 m intervals using the interpolated

Kz and nitrate concentrations. We report the average of the 1 m

interval fluxes for each station.
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3 Results and discussion

3.1. Hydrographic conditions

The average sea ice concentration (91%) in the CSSI region in

2017 was much higher than that in 2020 (66%) (Figure 2). The high

sea ice concentration year displayed temperatures similar to those in

2020 at the surface layer (Table 1 and Figures 3, 4A). In contrast, the

average salinity of 30.1 in 2017 in the surface layer was significantly

higher than the 27.7 in 2020 (Figure 4B; p -value of t -test < 0.001).

Similarly, the average salinity in the surface layer of the CS region in

2020 was 1.5 lower than that in 2017, whichmight have been related

to the early sea ice retreat in 2020. The yearly sea ice extent in 2020

was the smallest since 1979 (Parkinson and DiGirolamo, 2021). In

the NR region, affected by warm PW, the temperatures were more

variable than in the other regions, and were above 0°C on average,

in both of the years (Table 1 and Figure 4). The salinity in the

surface layer in 2020 was lower by 0.8 than that in 2017. In the

subsurface layer, the temperature around potential density anomaly

of 27 appeared to be elevated in 2017 compared to those in 2020

(Figure S3). This indicates a stronger upwelling or diapycnal mixing

between the AW and Pacific Winter Water in 2017, which may

bring high nutrient waters to shallow layers of the halocline

(Woodgate et al., 2005).
3.2. Biochemical parameters and net
community production

In both years, the NO3
- in the surface layers were exhausted

in the entire study area, except for a few stations (Stations 16 and

17) in 2017 in the CS region (Figures 2, 3, 4C). The average Chl-a

concentration measured in the surface layers of the CSSI region

in 2017 was higher than that in 2020 (< 0.2 mg m−3 ). The

highest concentrations were observed near the continental shelf

break (0.4 – 2.3 mg m−3 at Stations 16, 17, 25, and 26; Figures 2,

3, 4D). In 2017 the averages of DO2/Ar values in the CSSI and CS

were ∼ 3%, which were higher than the 0.8% in the NR region

(Table 1). We ascribed the high DO2/Ar values in the CSSI

region in 2017, which were the highest in both years, to limited
Frontiers in Marine Science 07
gas exchange, which occured owing to the high sea ice

concentration of > 90%. We corrected the average NCP in the

CSSI for sea-ice concentration according to Eq. 3, resulting in

value of 2.2 ± 3.2 mmol O2 m
−2 d−1 in 2017. This value was only

12% of that in the ice-free CS region, which displayed a similar

DO2/Ar value of ∼ 3%. The NCP in the CSSI region, which had

higher Chl-a concentrations, was lower than in CS region,

indicating a higher respiration rate in the ice-covered region.

In 2020, the DO2/Ar values in CSSI and CS with averages of ∼
1% were slightly lower than those of 3.5% and 2.5% in 2017

(Table 1). Consequently, the NCPs in the regions (averages of 0.6

and 1.4 mmol O2 m−2 d−1 in CSSI and CS, respectively) were

lower than those in 2017. For the CS region, the average NCP in

2020 was only 12% of that in 2017 (Table 1 and Figure 5). In the

NR region, the DO2/Ar values in 2020 were -0.6% on average,

changing from 0.8% in 2017, indicating the lack of substantial

biological net O2 production in 2020 (Table 1 and Figure 2).
3.3. NCP in the northern Chukchi Sea
and comparison with other estimates

In this section we compare our NCP estimates with prior

studies based on observation of O2/Ar in the mixed layer, which

may underestimate depth-integrated NCP if there is substantial

production below the mixed layer. Although subsurface Chl-a

maximum is a quite common feature in the Arctic (Martin et al.,

2010), its contribution to the depth integrated production in the

Chukchi Sea may be relatively small given the fact that NPP

maximum locates much shallower than subsurface Chl-a

maximum; Brown et al. (2015) reported that while subsurface

Chl-a maxima were located 31 ± 5 m in the late summer

Chukchi Sea and Canada Basin, NPP maxima were located at

the depth of 15 m on average, which is largely shallower than

MLDs found in this study (Figure 6). At some stations, especially

those in 2020, NPP maxima might have existed between mixed

layer and nitracline depths given the large separation of the two

depths (Figure 6). In the future, the contribution of NCP below

mixed layer may be explored using 18 O in vitro method (Ferrón

et al., 2016), which, unlike DO2/Ar method, does not rely on the
TABLE 1 Average and standard deviation of measured parameters for each region in 2017 and 2020.

Area Year SST SSS Chl-a NO3
- DO2/Ar NCP

(°C) (mg m-3) (µmol kg-1) (%) (mmol O2 m
-2 d-1)

Chukchi Sea 2017 -1.5 ± 0.2 30.1 ± 0.4 0.81 ± 0.89 ND (n=7) 3.5 ± 2.0 2.2 ± 3.2 (n=669)

Sea Ice 2020 -1.3 ± 0.1 27.5 ± 0.5 0.13 ± 0.04 ND (n=13) 1.1 ± 1.0 0.6 ± 0.7 (n=5241)

Chukchi 2017 -1.0 ± 0.3 28.7 ± 0.7 0.21 ± 0.20 0 ~ 0.3 (n=11) 2.5 ± 2.0 11.4 ± 8.4 (n=640)

Sea 2020 -0.7 ± 0.4 27.2 ± 0.6 0.14 ± 0.04 ND (n=16) 0.6 ± 0.8 1.4 ± 2.0 (n=12767)

Northwind 2017 0.5 ± 1.5 27.1 ± 0.6 0.07 ± 0.04 ND (n=3) 0.8 ± 0.7 4.1 ± 3.6 (n=208)

Ridge 2020 -0.1 ± 1.2 26.3 ± 0.5 0.09 ± 0.07 ND (n=5) -0.6 ± 0.3 -1.0 ± 0.8 (n=5123)
Chl-a and nitrate concentration were averaged over the mixed layer, and distribution ranges were shown for nitrate data. ND, not detected.
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assumption of balance between NCP and air-sea exchange of

biological O2 in the mixed layer.

The NCP that we calculated in this study in the ice-covered

region (CSSI) is consistent with prior O2/Ar based estimates of
Frontiers in Marine Science 08
1.0 – 1.6 mmol O2 m
−2 d−1 in the ice-covered northern Chukchi

Sea (Figure 5 and Table 2). For the ice-free region (CS), our NCP

estimate for 2020 is close to the lower bound of prior estimates of

1.6 – 4.5 mmol O2 m
−2 d−1 (Ouyang et al., 2021), and is similar
A

B

D

C

FIGURE 4

Regional vertical profiles of (A) temperature, (B) salinity, (C) nitrate, and (D) Chl-a . Means and standard deviations of the parameters are shown
in lines and shades, respectively.
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A B

FIGURE 5

Horizontal distribution of NCP in (A) 2017 and (B) 2020.
A

B

FIGURE 6

Vertical distribution of regional nitrate concentration in (A) 2017 and (B) 2020. Black markers denote average nitrate concentration;
corresponding standard deviations are shaded grey. Regions enclosed within yellow and green dotted lines represent averages and standard
deviations, respectively, of mixed layers and nitraclines.
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to those in the CSSI region. In the Beaufort Sea, prior NCP

estimates are in the range of 0.7 – 2.9 O2 m
−2 d−1 (Ji et al., 2019;

Ouyang et al., 2021), which are similar to those in the CSSI

region of 0.2 – 2.9 mmol O2 m
−2 d−1 . Our estimates in 2017 and

2020 are close to the lower and upper bounds of the prior

estimates (Table 2). Our estimates of low NCPs in the northern

Chukchi and Beaufort Seas are in stark contrast to those in the

Chukchi Shelf, with an estimated typical NCP in range of 9 – 41

mmol O2 m
−2 d−1 (Table 1 of Ouyang et al., 2021). While the

primary production of the Chukchi Shelf is supported by

nutrient-rich PW (Tremblay et al., 2015), its turning to the

east or west near the continental shelf-break limits the nutrient

supply across the continental shelf-break, resulting in low

primary production in the northern Chukchi Sea (Li et al.,
Frontiers in Marine Science 10
2019). Overall, the NCP in the Arctic Basin is close to the

lower NCP bound in the global oceans, along with those in the

equatorial Pacific (0 – 6 mmol O2 m-2 d-1,Kaiser et al., 2005;

Stanley et al., 2010), subtropical eastern Pacific (8 – 11 mmol O2

m-2 d-1, Juranek et al., 2012; Lockwood et al., 2012) and South

Atlantic Gyre (7 mmol O2 m
-2 d-1, Howard et al., 2017).

The similar NCP magnitude in the ice-covered CSSI region

to those in ice-free CS and NR is consistent with the studies

arguing significant primary production under sea ice. For

example, Ardyna et al. (2020), based on the hindcasts of

climate models, reported that photosynthetically active

radiation under most of the sea-ice areas in July was above the

threshold (34 mol photons m−2 d−1 ), allowing for net

phytoplankton growth and biomass increase. This under-ice

area is as large as 3.5× 106 km2 in July, accounting for 25% of

the Arctic Ocean (Ardyna et al., 2020). Additionally, Kinney

et al. (2020) suggested that over 41% of the primary production

occurs in areas with sea ice concentrations of > 85%. A few

autonomous observations at 73° and 85°N (e.g., Laney et al.,

2014; Hill et al., 2018) indicated peaks of under-ice blooms in

July and August, respectively. Given the latitudinal gradient of

under-ice blooms, estimates of 1 – 2 mmol O2 m−2 d−1 (this

study and Ouyang et al., 2021) may represent the NCP of the late

bloom period in the CSSI at 75° – 80°N.

The average NCP in the CS region of 11 mmol O2 m
−2 d−1 in

2017 was exceptionally high. This high NCP was accompanied

by relatively high nitrate and Chl-a concentrations near the

continental shelf-break (Figures 2 and 3). Specifically, Stations

16 and 17, with high NO3
- concentrations of 0.1 and 0.3 mol

kg−1 , respectively, and shoaled nitraclines (Figure 4C) exhibited

NCPs as high as 25 and 15 mmol O2 m
−2 d−1 , respectively. This

circumstantial evidence implies that the high NCP might have

been a result of upwelled nutrients near shelf-break induced by

upwelling-favorable, along-shelf winds (Woodgate et al., 2005;

Tremblay et al., 2011; Bluhm et al., 2020). Lewis et al. (2020) also

indicated upwelling as a possible cause of the increased Chl-a

concentration in the interior of the Arctic shelf-break in recent

years. Conversely, Jung et al. (2021) found the shoaling of

nitracline in the same area in 2017 and ascribed it to the

lifting of Pacific-origin nutrients by the intrusion of Atlantic-

origin cold saline water. A shallower nitracline may also result

from the shoaling of the ventilation depth of Pacific Winter

Water, which results from warming and freshening of the Pacific

inflow (Woodgate and Peralta-Ferriz, 2021). We discuss the

relationship between the NCP and NO3
-
fluxes in Section 3.4.
3.4. Relationships of NCP with
environmental parameters

Despite being small in magnitude, the differences in the

regional NCP estimates between 2017 and 2020 were

statistically significant. To investigate the potential control
TABLE 2 NCP estimates (mmol O2 m-2 d-1) in the Northern Chukchi
and Beaufort Seas.

Region NCP Time References

ice-covered Northern Chukchi Sea
(CSSI)

1.6 (1.3 –

1.8)
Aug
2016

Ouyang et al.
(2021)

2.2 ± 3.2 Aug
2017

This study

1.0 (0.8 –

1.0)
Aug
2018

Ouyang et al.
(2021)

0.6 ± 0.7 Aug
2020

This study

ice-free Northern Chukchi Sea (CS) 4.5 (2.5 –

6.0)
Aug
2016

Ouyang et al.
(2021)

11.4 ± 8.4 Aug
2017

This study

1.6 (0.8 –

2.2)
Aug
2018

Ouyang et al.
(2021)

1.4 ± 2.0 Aug
2020

This study

Beaufort Sea (NR) 1.4 ± 0.2 Aug
2011

Ji et al. (2019)

2.9 ± 0.5 Aug
2012

Ji et al. (2019)

1.4 ±0.3 Aug
2013

Ji et al. (2019)

1.3 ± 0.2 Oct
2014

Ji et al. (2019)

2.5 ± 0.4 Oct
2015

Ji et al. (2019)

1.3 (0.2 –

2.3)
Aug
2016

Ouyang et al.
(2021)

1.8 ± 0.3 Oct
2016

Ji et al. (2019)

4.1 ± 3.6 Aug
2017

This study

0.7 (0.4 –

1.0)
Aug
2018

Ouyang et al.
(2021)

-1.0 ± 0.8 Aug
2020

This study
Estimated values are shown as averages ± standard deviations. Ouyang et al. (2021)
reported the averages with first and third quartiles in parentheses.
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factors influencing the magnitude of the NCP, we compared

the regional environmental parameters in 2017 and 2020

(Figure 7 and Table 1). Whereas the differences in the

regional means of the SST were small between the two years,

the salinity means markedly contrasted between the two years,

with the largest difference of 2.6 in the CSSI region and the

smallest of 0.8 in the NR region (p-value of t -test < 0.001). The

considerable decrease in salinity in 2020 led to a shallower

MLD in 2020 than in 2017 in all three regions (Figure 7). The

degree of stratification (N2) were statistically higher in 2020

than in 2017 in CSSI and CS (p < 0.001). The regional means of

phosphate concentration were higher in 2017 than in 2020,

although they were not significantly different, partly due to the

limited amount of data.
Frontiers in Marine Science 11
Nitrate is the nutrient limiting primary production in the

summer in the Chukchi Sea (Tremblay et al., 2015; Ko et al.,

2020). As the nitrate concentrations in the mixed layer were

depleted in both years in all three regions (Figure 4C), diapycnal

mixing between the nitracline and mixed layer could have been

the main source of nitrate in the mixed layer (Randelhoff et al.,

2020). We speculated that the nitrate fluxes in 2020 were lower

than those in 2017 and that lower nitrate fluxes were responsible

for the reduction in NCP in 2020. This speculation seems

reasonable as the MLDs were shallower and nitraclines were

deeper in 2020 than in 2017, leaving distinctive gaps between the

MLDs and nitraclines in all regions of 2020 (Figure 6). In 2017,

however, the gaps between the means of the MLD and

nitraclines were narrower; at some stations, the depths
A B

D

E F

C

FIGURE 7

Violin plots of environmental parameters (A - E) and NCP (F) for each region. Dotted and dashed lines indicate the 25% – 75% quantiles and
medians, respectively. Circles inside violins indicate parameter means. Red circles indicate means statistically different between 2017 and 2020.
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overlapped in CSSI and CS regions, providing a conducive

environment for higher vertical NO3
-
fluxes.

We calculated the NO3
-
fluxes by combining vertical

diffusivity derived from the Thorpe scale and the gradient of

NO3
- concentration (Figure 8). The fluxes ranged from 0.06 to 7

mmol N m−2 d−1 (Figure 8), largely overlapping the fluxes

calculated from the measurements using microstructure

profilers in the Arctic (Figure 8 of Randelhoff et al., 2020).

However, the correlation between NCP and NO3
-
flux was poor,

with a coefficient of 0.38, putting into question the role of NO3
-

flux as a factor controlling the NCP. The average NO3
-
flux in

2017 was not statistically different from that in 2020 (p-value =

0.1; Table 3). The weak correlation may have been due to the

large variability in the vertical diffusivity, arising from the

indirect derivation from vertical CTD profiles (Figure S2) and

the discrete bottle observation of NO3
- concentration. The

accurate assessments of NO3
-
flux require vertical diffusivity

data, determined using a microstructure profiler, and high-

resolution measurements of NO3
- concentration using a sensor

(Randelhoff et al., 2020). Nitrogen sources other than upward

nitrate flux, such as lateral transport by rivers (Terhaar et al.,

2021) and nitrogen fixation (Harding et al., 2018), may weaken

the correlation. However, these additional sources should

support a higher NCP than the upward nitrate flux, which

contradicts our results in which a somewhat lower NCP than

the upward flux was indicated (Figure 8).

Although whether the stronger stratification in 2020

substantially lowered the upward nitrate flux compared with

that in 2017 is unclear, the most notable difference in
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environmental parameters was markedly lower salinity in 2020

than in 2017, resulting in shallower MLDs and stronger

stratification in 2020. We note that the average sea ice

concentration of 66% in 2020 CSSI is substantially lower than

91% in 2017 CSSI. However, more sea ice melting in 2020 may

lower the salinity in the mixed layer by 0.5 from 31.1 in 2017,

which is no larger than 20% of the salinity decrease of 2.6

between the two years (Table 1). For the calculation, we assumed

a dilution of the mixed layer with a salinity of 30.1 and thickness

of 25 m (Figures 7B, C) by the addition of sea ice meltwater with

a salinity of 4 (Ekwurzel et al., 2001) and thickness of 0.5 m. The

thickness of sea ice meltwater was calculated from the

assumption of 25% (= 91% - 66%) additional melting of 2 m-

thick sea ice (Lang et al., 2017).

The mechanisms that may decrease salinity and strengthen

stratification in the whole study area include the influx of PW,

precipitation, and river runoff (Brown et al., 2020). Accurately

calculating the amount of PW inflow was difficult in this study.

However, we verified that precipitation did not significantly differ

between the years by analyzing the ECMWF ERA5. We

speculated that river runoff may have been a cause of the low

salinity in 2020. Morison et al. (2012) suggested that during an

intensified Arctic Oscillation, the counterclockwise flow of the air

mass is reinforced as the low pressure mainly located over the

Eurasian Basin of the Arctic Ocean expands to the eastern

Siberian Sea. Under these conditions, the increased river runoff

originating from the Russian continent (Ob, Yenisey, and Lena)

flows through the Eastern Siberian Sea toward the Beaufort Sea.

The atmospheric pressure placement in 2020 was similar to that of
FIGURE 8

Correlation between NCP in the mixed layer and NO3
-
flux from the nitracline to the bottom of the mixed layer.
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the Arctic Oscillation increase reported by Morison et al. (2012)

(Figure S4A). The lack of strong winds in 2020 may also have been

responsible for the stronger stratification (Figure S4B). In the

Chukchi Sea, strong winds > 10 m s−1 enhanced vertical mixing,

which is strong enough to increase primary production (Nishino

et al., 2015; Uchimiya et al., 2016).
4 Conclusions

In this study, to investigate the horizontal distribution of

NCP and its control factors, we observed the O2/Ar in the mixed

layer in the northern Chukchi Sea in 2017 and 2020. Most of the

NCPs in the northern Chukchi and Beaufort Seas ranged from 1

to 4 mmol O2 m
−2 d−1 , close to the lower bound of the values in

the global oceans. The NCP in the ice-covered region was

comparable to that in the ice-free region of the northern

Chukchi Sea. Although the differences were small, the NCPs in

the northern Chukchi and Beaufort Seas were lower in 2020 than

in 2017. The lower salinity by >2 and the resultant stronger

stratification in 2020 appeared to be the main causes of the lower

NCP values, whereas the correlation between NCP and nitrate

flux was unclear. The Higher river runoff input from the East

Siberian coast may have contributed to the low salinity in 2020.

The lack of strong winds may also have been responsible for the

strong stratification in 2020.

If the sea-ice extent in summer continues to decrease, the

northern Chukchi Sea will l ikely experience earlier

phytoplankton blooms and a prolonged period of nitrate

limitation. Unless winds blow strong enough to break

stratification and enhance diapycnal mixing, the biological

pump in late summer is likely to remain weak due to limited

upward nitrate flux.
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TABLE 3 Nitrate flux (FNO3) organized by region in 2017 and 2020
(mmol N m-2 d-1) (mean ± standard deviation).

CSSI CS NR

Nitrate flux
(FNO3)

2017
2020

-
0.33 ± 0.12
(n = 9)

2.5 ± 2.5
(n = 9)
0.9 ± 1.1
(n = 13)

0.06, 0.11 (n=2)
0.15 ± 0.12
(n = 4)
n, number of stations.
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