AUTHOR=Pan Xiaotian , Wang Xiang , Zhao Chengwu , Wu Jianping , Wang Huizan , Wang Senzhang , Chen Sihao TITLE=USFP: An unbalanced severe typhoon formation prediction framework based on transfer learning JOURNAL=Frontiers in Marine Science VOLUME=9 YEAR=2023 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.1046964 DOI=10.3389/fmars.2022.1046964 ISSN=2296-7745 ABSTRACT=Introduction

Severe typhoons, as extreme weather events, can cause a large number of casualties and property damage in coastal areas. There are mainly three kinds of methods for the prediction of severe typhoon formation, which are the numerical-based methods, the statistical-based methods, and the machine learning-based methods. However, existing methods do not consider the unbalance between the number of ordinary typhoon samples and severe typhoon samples, which makes the accuracies of existing methods in the prediction of severe typhoons much lower than that of ordinary typhoons.

Methods

In this paper, we propose an unbalanced severe typhoon formation prediction (USFP) framework based on transfer learning. We first propose a severe typhoon pre-learning model which is used to learn prior knowledge from a constructed balanced dataset. Then, we propose an unbalanced severe typhoon re-learning model which utilizes the prior knowledge learning from the pre-learning model. Our USFP framework fuses three different variables, which are atmospheric variables, sea surface variables, and ocean hydrographic variables.

Results

Extensive experiments based on datasets of three different regions show that our USFP framework outperforms the numerical model IFS of ECMWF and existing machine learning methods.