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Introduction: Severe typhoons, as extreme weather events, can cause a large

number of casualties and property damage in coastal areas. There are mainly

three kinds of methods for the prediction of severe typhoon formation, which

are the numerical-based methods, the statistical-based methods, and the

machine learning-based methods. However, existing methods do not

consider the unbalance between the number of ordinary typhoon samples

and severe typhoon samples, which makes the accuracies of existing methods

in the prediction of severe typhoons much lower than that of

ordinary typhoons.

Methods: In this paper, we propose an unbalanced severe typhoon formation

prediction (USFP) framework based on transfer learning. We first propose a

severe typhoon pre-learning model which is used to learn prior knowledge

from a constructed balanced dataset. Then, we propose an unbalanced severe

typhoon re-learning model which utilizes the prior knowledge learning from

the pre-learning model. Our USFP framework fuses three different variables,

which are atmospheric variables, sea surface variables, and ocean hydrographic

variables.

Results: Extensive experiments based on datasets of three different regions

show that our USFP framework outperforms the numerical model IFS of

ECMWF and existing machine learning methods.
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1 Introduction

A tropical cyclone (TC) is a powerful and profound tropical

weather system. As extreme weather, severe typhoons not only

cause great economic damage to coastal areas but also greatly

endanger people’s lives and property. According to statistics from

the National Meteorological Administration of China, in 2018,

about 32 million people were affected by typhoons, and the direct

economic loss reached 69.73 billion RMB (China Meteorological

Administration, 2020). Severe typhoons, which are more powerful

than ordinary typhoons, bring more serious disasters.

In recent years, machine learning-based methods have been

widely used in meteorology and oceanography. (Mecikalski

et al., 2021; Wikner et al., 2021; Fei et al., 2022). Tropical

cyclones (including severe typhoons) are a high-impact and

disastrous weather phenomenon in meteorology and

oceanography. There are mainly three kinds of methods used

to predict the formation of tropical cyclones: the numerical-

based methods, the statistical-based methods, and the machine

learning-based methods. First, the typical numerical-based

methods are the hurricane weather research forecast model

(HWRF), the Global Forecast System (GFS), and the

Integrated Forecasting System (IFS), which are used to forecast

future weather by numerically solving a set of hydrodynamic and

thermodynamic equations and the main forecasting method

used by many official organizations in the world (John, 2019).

Second, the typical statistical-based methods of TC prediction

are the Statistical Typhoon Intensity Prediction Scheme (STIPS)

and the Statistical Hurricane Intensity Prediction Scheme

(SHIPS), which are based on the numerical-based methods to

build forecasting models considering future changes in the

atmospheric and oceanic conditions. The third is the machine

learning-based methods, which are data-driven methods that do

not consider physical mechanisms. Meteorologists apply

machine learning models such as AdaBoost Algorithm (Zhang

et al., 2019), SVM (Richman et al., 2017; Kim et al., 2019), CNN

(Matsuoka et al., 2018), and Fuzzy Neural Network (Yip and

Yau, 2011) to tropical cyclone prediction. However, existing

studies do not consider the unbalanced characteristics of the

typhoon samples. The number of samples between ordinary

typhoons and severe typhoons is quite different as shown in
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Table 1. This makes the prediction accuracy of severe typhoons

will be decreased.

In this paper, we propose an unbalanced severe typhoon

formation prediction (USFP) framework, which is based on the

transfer learning method (Yosinski et al., 2014; Long et al.,

2015). Our USFP framework can effectively minimize the impact

of unbalanced data on severe typhoon formation prediction. It

first learns prior knowledge from a balanced dataset extracted

from the unbalanced dataset with the severe typhoon pre-

learning model shown in Section 4.2. Then, the prior

knowledge is transferred to the unbalanced severe typhoon re-

learning model for training as described in Section 4.3. Our

USFP framework fuses three variables: atmospheric variables,

sea surface variables, and ocean hydrographic variables.

Extensive experiments in three different regions show that our

USFP framework outperforms the numerical model IFS of

ECMWF and existing machine learning methods.

Contributions of this paper include:
1. We propose an unbalanced severe typhoon formation

prediction (USFP) framework based on transfer

learning. The USFP framework is trained by

transferring prior knowledge obtained from a balanced

dataset to the unbalanced severe typhoon re-learning

model. To the best of our knowledge, we are the first to

use transfer learning to improve the prediction

accuracies of severe typhoons.

2. We design a customized loss function to optimize our

USFP framework, which assigns different weights to

different categories of ordinary typhoon samples and

severe typhoon samples.

3. We fuse multiple data from atmospheric variables, sea

surface variables, and ocean hydrographic variables to

predict severe typhoon formation. Extensive

experiments performed on data from three regions

show that our USFP framework can effectively

improve the forecasting effect of unbalanced severe

typhoon formation.
The rest of this paper is organized as follows: Section 2

reviews the current studies in the field; Section 3 defines the

unbalanced severe typhoon problem in this paper; Section 4

describes the structure of the USFP framework; Section 5

demonstrates the effectiveness of the USFP framework through

experiments; Section 6 summarizes the current work in this

paper and gives an outlook on future work.
2 Related work

At present, there is a lack of research on the formation of

unbalanced severe typhoons. Therefore, this section reviews
TABLE 1 The number of positive and negative samples in different
regions counted from the World Meteorological Organization (WMO)
version of the International Best Trajectory Archive for Climate Management
(IBTrACS) Global Tropical Cyclone Best Trajectory Dataset.

Western
Pacific

Eastern
Pacific

North
Atlantic

Positive
Samples

237 97 105

Negative
samples

2482 833 1452
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research in the field of tropical cyclone forecasting and data

unbalance, which is used to explore methods to solve the

problem of unbalanced severe typhoon formation prediction.
2.1 Tropical cyclone forecasting

2.1.1 Numerical-based methods
The numerical-based methods forecast the environmental

field through the meteorological marine environmental

conditions and then extrapolate the forecast of typhoon

elements, which is done through model initialization and

physical process parameterization. At present, the numerical-

based methods have an accuracy rate of 70-80% (Halperin et al.,

2013) and are used in many official organizations like the

hurricane weather research forecast model (HWRF), the

Global Forecast System (GFS), and the Integrated Forecasting

System (IFS) of the European Centre for Medium-Range

Weather Forecast (ECMWF). For example, Elsberry et al.

(2021) improved the Pacific typhoon intensity prediction

technology based on ECMWF and successfully predicted the

rapid intensification events after the formation of tropical

cyclones. Na et al. (2018) evaluated the intensity forecast error

of tropical cyclones and the analysis found that the official is

more mature in predicting the weakening problem than the

intensification problem. The numerical-based methods have had

a lot of fruitful research work in typhoon physical law perception

and forecasting. However, the numerical-based methods have

shortcomings such as incomplete expression of complex

physical processes, low accuracy of typhoon intensity

prediction, and high computational cost.

2.1.2 Statistical-based methods
The statistical-based methods are based on numerical

weather forecasts and take into account changes in the future

atmospheric environment and ocean conditions to build forecast

models. The method achieves the prediction of TC by analyzing

the regularity of a large amount of data and representing it with a

functional relationship equation. Some of the typical methods

are the Statistical Typhoon Intensity Prediction Scheme (STIPS)

(Demaria and Kaplan, 1994) and the Statistical Hurricane

Intensity Prediction Scheme (SHIPS) (Fritsch and Chappell,

1980; DeMaria and Kaplan, 1999; Knaff et al., 2005). The

STIPS is a multiple linear regression model based on a

statistical-dynamical framework, which is constructed by using

a large amount of environmental information obtained from the

Navy Operational Global Analysis and Prediction System

(NOGAPS). The SHIPS is commonly used in the Atlantic and

East Pacific regions, which has good results in tropical cyclone

forecasting. The regression coefficients of the SHIPS are updated

each year after the hurricane season with the latest samples and

improved operational forecasting. The statistical-based methods

have been relatively well applied in TC intensity prediction.
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However, because the statistical-based methods are often

helpless in the face of massive data, it is difficult to extract

critical and effective forecast information.

2.1.3 Machine learning-based methods
In recent years, machine learning has achieved good results

in numerous fields. Therefore, many scholars have applied it to

the field of tropical cyclones forecasting. These methods

compensate for the shortcomings of the statistical-based

methods and the numerical-based methods to some extent.

For example, Wijnands et al. (2016) of the University of

Melbourne, Australia, used the Peter Clark algorithm to select

the best predictors for short-term formation forecasts of tropical

cyclones. Zhang et al. (2015) of Brookhaven National Laboratory

in the United States tried to use nonlinear ensemble machine

learning classifiers to determine whether a mesoscale convective

system would evolve into a tropical cyclone in different

prediction periods. Ahijevych et al. (2016) of the National

Center for Atmospheric Research in the United States used the

random forest algorithm to predict the possibility of a mesoscale

convective system developing into a tropical cyclone within 2

hours. Based on WindSat satellite ocean surface wind and

precipitation data, Park et al. (2016) from the Busan Institute

of Ocean Science and Technology in South Korea used decision

trees to analyze the intensity of tropical cyclones. Higa et al.

(2021) successfully estimated typhoon intensity with high

accuracy by using the VGG-16 model to process a single

satellite image and combining the knowledge of the

meteorological domain. The machine learning-based methods

as data-driven methods can ignore the imprecise physical

mechanisms of typhoon formation and have significant

advantages in capturing the nonlinear relationship between

forecast factors and forecast targets (Reichstein et al., 2019).
2.2 Unbalanced data problems

2.2.1 Data sampling-based methods
The data sampling-based methods are to manually balance

the unbalanced datasets by over-sampling or under-sampling,

which are widely used to solve unbalanced problems in the field

of machine learning. Han et al. (2005) designed an improved

oversampling algorithm based on the SMOTE algorithm, which

only uses the minority class samples on the boundary to

synthesize new samples, thereby improving the class

distribution of the samples. Yan and Cao (2019) proposed two

feature-based oversampling methods to rebalance binary and

multi-class time series datasets with good results in terms of

statistical significance. In contrast, Liu et al. (2009) used an

ensemble learning mechanism to optimize the traditional

undersampling method with a better training effect. an

ensemble learning-based undersampling technique. However,

the data sampling-based methods such as oversampling and
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undersampling cannot meet the requirement of the actual

forecast of severe typhoons and are not suitable for solving the

problems faced in this paper.

2.2.2 Algorithm improvement-based methods
The core idea of the algorithm improvement-based methods

is to make the model more focused on the sample size less class

as a way to improve the prediction accuracy of small sample

data. For example, Mo et al. (2019) proposed an unbalanced

sample classification algorithm based on the deep residual

network, which has a recognition rate close to 100% for small

sample unbalanced datasets. Hu et al. (2018) proposed a multi-

task learning framework using an attribute attention mechanism

to capture key information and improved the accuracy of crime

charge prediction for small samples. Cui et al. (2019) designed a

weight adjustment scheme to rebalance the loss using the

effective number of samples per class, which resulted in a

class-balanced loss that can achieve significant performance

gains on long-tailed datasets. Geng and Luo, (2019) modified

the standard CNN to a cost-sensitive network (CS-CNN), which

can use the category-dependent cost matrix to penalize

misclassified samples. Zhan (2020) used the loss function of

Focal loss (Lin et al., 2017) to establish a network model based

on the DNN-LSTM, which had a better result for the problem of

unbalanced data.
2.2.3 Transfer learning-based methods
The transfer learning-based approach is to use the pre-

trained model parameters for the training of new models,

which helps to improve the accuracy of samples with fewer

data in the dataset. Taherkhani et al. (2020) proposed the

AdaBoost-CNN model based on transfer learning with 16.98%

higher accuracy compared to the classical Adaboost. Al-Stouhi

and Reddy (2016) proposed a Rare-Transfer transfer learning

algorithm with a label-dependent update mechanism that can

effectively handle rare class classification problems. Troncoso

et al. (2018) transformed the problem of predicting extreme

monsoons into an unbalanced binary classification problem and

performed transfer learning on a series of related technical

models. Singh et al. (2020) used VGG-19 as the base model

and supplemented it with several techniques to achieve better

results than existing frameworks. Lee et al. (2016) used a CNN

classifier model based on transfer learning to normalize the data

by thresholding the large-class data and obtained better results

on small classes of data.

Transfer learning is not only applied to the problem of

imbalanced data, some researchers have also applied transfer

learning to the prediction of tropical cyclones. Deo et al. (2017)

assessed the relationship between different types of cyclones by

using transfer learning and traditional neural network methods

to achieve more stable intensity predictions for tropical cyclones.

Pang et al. (2021) combined a deep convolutional generative
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adversarial network (DCGAN) and the YOLOv3 model to

propose a New Detection Framework of Tropical Cyclones

(NDFTC) with good stability and accuracy. Combinido et al.

(2018). used a Visual GeometrCombinidoy Group 19-1ayer

CNN (VGG19) model to estimate TC intensity on TC

grayscale infrared images obtained from various geostationary

satellites, which achieved lower RMSE. The transfer learning-

based methods can improve the focus on the minority class while

maintaining the classification accuracy of the majority class.

When forecasting the formation of severe typhoons, it is

necessary to focus on the accuracy of forecasting the formation

of severe typhoons but the forecast accuracy of non-severe

typhoons cannot be ignored. Therefore, we use the idea of

transfer learning to build the USFP framework to solve the

problem of unbalanced severe typhoon formation.
3 Problem definitions

The formation of typhoons requires a combination of both

atmospheric and oceanic factors. To simulate the atmospheric

and oceanic factors of typhoon formation, we convert the

variables into multidimensional tensors. Since the atmospheric

variables and ocean hydrographic variables are in a 3D space, the

atmospheric environment field corresponding to a typhoon can

be represented as L×W×H×A three-dimensional grid data,

where L and W represent longitude and latitude, H represents

the height of the atmosphere and A represents atmospheric

environment variables. Similarly, the ocean hydrographic

environment field corresponding to a typhoon can be

represented as L×W×D×R three-dimensional grid data, where

D represents the depth of the ocean and R represents ocean

hydrographic variables. And since the sea surface variables are in

a 2D space. The sea surface environment field corresponding to a

typhoon can be represented as a L×W×O two-dimensional grid

data, where L and W represent longitude and latitude and O

represents sea surface variables. The prediction variables

including the atmosphere, sea surface and ocean hydrography

can be represented by X=[ XP,XS,XO] . Since the above spatial

environment variables are time dependent, our problem can be

regarded as a spatio-temporal prediction problem to predict

whether a strong typhoon will form or not. Given typhoon

spatio-temporal data: X=xt−6b (b=0,1,⋯,t/6 ), the predicted

typhoon state can be defined as:

Yt+6k = f xt , xt−6,⋯, xt−6bð Þ, k = 1, 2, 3⋯, b = 0, 1, 2⋯ (1)

where t is the prediction moment, Xt represents the

atmospheric, sea surface, and ocean hydrographic variables at

the prediction moment, Yt+6k represents the predicted typhoon

state, k represents the timestep of the prediction and b represents

the lookback step before the prediction moment. We consider

typhoons with wind speed reaching 84 kt as strong typhoons,

which are positive samples. The rest of the typhoons are as non-
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strong typhoons, which are negative samples. When Yt+6k=1 , it

means that a severe typhoon is formed, which is a positive

sample. When Yt+6k=0 , it means that a severe typhoon is not

formed, which is a negative sample. However, according to the

defined standard, the number of positive and negative samples

obtained is very unbalanced as shown in Table 1. Therefore,

the severe typhoon formation prediction problem can be

regarded as an unbalanced spatio-temporal series binary

classification problem.
4 Methods

This section presents the details of the unbalanced severe

typhoon formation prediction (USFP) framework. The first

subsection introduces the overall architecture of the

framework and the training method of the framework. The

second subsection introduces the main structure of the severe

typhoon pre-learning model. The last subsection details the

structure of the unbalanced severe typhoon re-learning model

and the loss function designed for it.
Frontiers in Marine Science 05
4.1 Architecture

The overall framework is shown in Figure 1. As we can see,

the framework consists of two parts: the first part is the severe

typhoon pre-learning model and the second part is the

unbalanced severe typhoon re-learning model.

The first part is to learn from the balanced dataset. The

structure and parameters of the feature extraction part

learned from the balanced dataset are what we call prior

knowledge in this paper. The severe typhoon pre-learning

model uses 2D Convolutional Neural Networks (2DCNN) and

3D Convolutional Neural Networks (3DCNN) to extract features

from high-dimensional data. The model weights are adjusted by

adding classifiers. We train the severe typhoon pre-learningmodel

by constructing a balanced dataset. The trained model

architecture and the model weight parameters of the feature

extraction part are saved as prior knowledge for transfer learning.

The second part is to apply the prior knowledge to train the

unbalanced dataset. First, we transfer the obtained prior

knowledge to the unbalanced severe typhoon re-learning

model. Then, the unbalanced severe typhoon re-learning
FIGURE 1

The overall structure of the USFP framework.
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model with prior knowledge is trained using an unbalanced

dataset. In addition, we design the unbalanced severe typhoon

(UST) loss function to optimize the model by assigning different

weights to the ordinary typhoon and the severe typhoon

samples. Finally, the most accurate classification results

are obtained by adjusting the parameters of the model and

used as the USFP framework results of severe typhoon

formation prediction.
4.2 Severe typhoon pre-learning model

To obtain prior knowledge, we construct a balanced dataset

for training the severe typhoon pre-learning model according to

the definition of positive and negative samples in Section 3. We

fuse atmospheric variables, sea surface variables, and ocean

hydrographic variables as prediction variables to form the

typhoon environmental field data. We take temperature (t),

relative humidity (rh), geopotential height (z), u-component of

wind (u) and v-component of wind (v) as the basic atmospheric

variables associated with typhoons. The sea surface temperature

(sst) is used as the basic sea surface variable associated with

typhoons. The seawater temperature (st), eastward seawater

velocity (water_u) and northward seawater velocity (water_v)

are used as the basic ocean hydrographic variables associated
Frontiers in Marine Science 06
with typhoons. We classify and label these environmental

variable datasets according to the typhoon historical best track

dataset. The labeled data are sampled to construct a balanced

dataset for training a severe typhoon pre-learning model.

We use different networks to extract the features of different

environmental variables. Sea surface variables, as 2D

environmental field information, need to be extracted features

with a 2DCNN network. Atmospheric variables and ocean

hydrographic variables, as 3D environmental field information,

need to be extracted features with the 3DCNN network. By using

the 2D convolution kernel and the 3D convolution kernel

respectively, the corresponding 2D feature map and 3D feature

map are obtained. The feature maps are passed through the

flatten layer and the fully connected layer to obtain the feature

vectors. The model structure and model weights of this part are

used as prior knowledge extracted from the balanced dataset.

The model architecture that is used as prior knowledge is shown

in Figure 2.

According to the previous research (Chen et al., 2019), the

structure of this feature extraction part is generalized into the

formula as follows:

Features = Flatten 3DCNN XP
t−6b

� �� �
+ Flatten 2DCNN XS

t−6b

� �� �
+

Flatten 3DCNN XO
t−6b

� �� �
(2)
FIGURE 2

The model architecture used as prior knowledge in the strong typhoon pre-learning model.
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The features learned by 3DCNN and 2DCNN are trained

with the classifier. For the severe typhoon pre-learning model,

we choose the commonly used binary cross-entropy loss

function. The formula is as follows:

Loss = −Yt+6klogY
0
t+6k − 1 − Yt+6kð Þlog 1 − Y

0
t+6k

� �
=

−logY
0
t+6k , Yt+6k = 1

−log 1 − Y
0
t+6k

� �
, Yt+6k = 0

8<
:

(3)

Where Y
0
t+6k is the model prediction result and Yt+6k is the

real label value. Yt+6k = 1 for positive samples and Yt+6k = 0 for

negative samples.

The model architecture and model weights of the trained

feature extraction part are saved as prior knowledge extracted

from the balanced dataset for the next transfer learning step.
4.3 Unbalanced severe typhoon
re-learning model

The unbalanced severe typhoon re-learning model is

composed of the transferred feature extraction component (prior

knowledge) and the LSTM model. The input to the unbalanced

strong typhoon relearning model is the unbalanced dataset. The

unbalanced dataset is trained with prior knowledge to obtain

feature vectors, which are used as the input to the LSTM. The

LSTM implements the prediction of strong typhoon formation.

The LSTM model is an improvement of the recurrent neural

network model, which can keep the error at a constant level and

enhance the robustness. Figure 3 shows the operations

performed by the LSTM unit at time t, where Xt refers to the
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input at the current time, Ct−6 refers to the cell state 6 hours

before time t, ht−6 refers to the hidden state 6 hours before time t,

and Ct refers to the information that can be stored in the LSTM

cell. Through the three control units of input gate, output gate

and forget gate in LSTM, it is determined which of the input

information will be forgotten and which will be retained. Finally,

the cell state Ct and the hidden state ht corresponding to time t

are obtained. LSTM can be represented as:

ht ,Ct = LSTM ht−6,Xt½ �,Ct−6ð Þ (4)

The LSTM model obtains the predicted value Yt+6k after 6k

hours at time t. Thereby, the unbalanced severe typhoon re-

learning model can be expressed simply as:

Yt+6k = LSTM Features XP
t−6b,X

S
t−6b,X

O
t−6b

� �� �
(5)

We expect the unbalanced severe typhoon re-learning model to

paymore attention to the severe typhoon samples in the classification

process of unbalanced datasets. Therefore, the unbalanced severe

typhoon loss functiondesigned in this paper assignsdifferentweights

to the strong typhoon samples, which is calculated as follows:

UST Loss =
−a 1 − Y

0
t+6k

� �g
logY

0
t+6k , Yt+6k = 1

− 1 − að ÞY 0 g
t+6klog 1 − Y

0
t+6k

� �
, Yt+6k = 0

8><
>: (6)

where g is the weight factor used to focus on difficult and

misclassified samples and a is the balance factor used to balance

the unbalanced proportion of positive and negative samples. The

higher the value of g is set, the more it focuses on difficult

samples. The value of a is appropriately weighted according to
FIGURE 3

The classifier LSTM unit.
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the sample ratio setting in the experiments. In the experiment,

g = 2 and a = 0.9. The analysis of g is shown in Section 5.4.2.4.

After building the unbalanced strong typhoon relearning

model, it is necessary to freeze and retrain the prior knowledge

part of the model. Adjustments to the number of frozen and

retrained layers are called fine-tuning operations in transfer

learning. By freezing some layers in the prior knowledge, the

number of training parameters of the model can be adjusted. In

experiments, we try to find the best combination between the

number of frozen layers and the number of retraining layers to

achieve better predictions. The analysis of fine-tuning

experimental results is presented in Section 5.4.2.1.
5 Experiments

This section details the experiments performed with the

USFP framework. It mainly includes the experimental dataset,

the evaluation metrics of the framework, the implementation of

the experiment, and the analysis of the experiment results.
5.1 Datasets

The typhoon track dataset used in this paper is the World

Meteorological Organization (WMO) version of the International

Best Trajectory Archive for Climate Management (IBTrACS)

Global Tropical Cyclone Best Trajectory Dataset. The

atmospheric variable and sea surface variable dataset used in

this paper are the ERA-Interim Reanalysis Dataset. The ocean

hydrographic variable dataset used in this paper is the Hybrid

Coordinate Ocean Model (HYCOM) dataset. The data for each

moment of each typhoon in the three datasets correspond to each

other. The first two datasets were recorded from 1979 to 2016. The

ocean hydrographic datasets were recorded from 1994 to 2015.

The wind speed is recorded every 6 hours from the time of tropical

cyclone formation. Since typhoons are high-impact weather, the

surrounding environmental fields change drastically. Therefore,

high-resolution and multi-level data were selected during the

experiment. According to previous research on high-

dimensional data (Wang et al., 2021), this paper uses a neural

network to reduce the dimension of high-dimensional data. In

addition, compared with traditional deep learning datasets,

typhoon forecasts need to ensure timeliness. The longer the
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timeliness of the general typhoon forecast business forecast, the

more valuable it is for reference. But too long timeliness will also

lead to a reduction in the number of training samples. Therefore,

the prediction time of 24 hours was chosen to ensure a balance

between the sample size and the timeliness of the model.

In the experiment, this paper selects typhoons in the Western

Pacific (WP), Eastern Pacific (EP), and North Atlantic (NA)

regions as samples. According to previous research (Camargo

et al., 2007; Chen et al., 2019), temperature (t), relative humidity

(rh), geopotential height (z), u component of wind (u), and v

component of wind (v) are selected as atmospheric variables. The

atmospheric pressure level of 1000/975/925/850/800/700/600/

500/400/300/200/100hpa is chosen. Sea surface temperature (sst)

is selected as the sea surface variable. According to previous

research (Shay et al., 2000; Wu et al., 2007; Goni et al., 2009;

Lin et al., 2009; Vissa et al., 2013), ocean heat content (UOHC),

eddy currents and other ocean features play an important role in

the intensification of tropical cyclones. Therefore, seawater

temperature (st), eastward sea water velocity (water_u), and

northward water velocity (water_v) are selected as ocean

hydrographic variables. The ocean depth of 100/90/80/70/60/50/

45/40/35/30/25/20/15/12/10/8/6/4/2m is chosen.

This part is about constructing input datasets and output

datasets. For the 3DCNN part, the dimension of the input

dataset is N×T×L×W×H×A or N×T×L×W×D×R. For the

2DCNN part, the dimension of the input dataset is

N×T×L×W×O. For the LSTM classifier part, the dimension of

the input dataset is N×T×K. Among them, N represents the

number of samples. L andW range in 33 ~ 161. T represents the

time step and T = 5. H = 12. D = 19. A = 5. R = 3. O = 1. K

represents the length of the eigenvector. The samples at the

moment when the maximum wind speed near the typhoon

center value reaches the severe typhoon standard are marked as

1 and the rest of ordinary typhoons samples are marked as 0. In

the experiment without ocean hydrographic variables, the data

set is constructed by random sampling of the atmospheric

environmental field data and the sea surface environmental

field data. In the ocean hydrographic variables experiment, we

intercept atmospheric and sea surface variables recorded from

1994 to 2015, which are recorded at the same time as the ocean

hydrographic variables. After screening the original dataset, we

constructed a balanced dataset with the same number of positive

and negative samples and an unbalanced dataset with a positive

and negative sample ratio of about 1:9 in different regions. The
TABLE 2 The number of positive and negative samples in the experiment.

Experiment Type Sample WP EP NA

No ocean hydrographic variables experiment Positive samples 100 90 100

Negative samples 900 810 900

Ocean hydrographic variables experiment Positive samples 100 50 77

Negative samples 900 430 693
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specific sample size is shown in Table 2. Furthermore, the dataset

is split into a 70% training set and a 30% test set.
5.2 Evaluation metrics

To measure the performance of the model, the evaluation

metric for traditional binary classification models is generally

accuracy (Acc). The specific formula is as follows:

Acc = TP+TN
TP+FN+FP+TN (7)

However, it can be seen from the formula that when the

dataset is unbalanced, the model training process will be more

biased towards negative samples to make TNmuch larger than TP

to obtain a larger Acc value. Therefore, according to the evaluation

metrics selected when solving unbalanced data in the official

Tensorflow document (Abadi et al., 2015), we select the values

of ROC_AUC, PR_AUC, and F1 as evaluation metrics to measure

the actual performance of the model.

ROC_AUC refers to the area under the ROC curve. The

abscissa of the ROC curve is the false positive rate (FPR = FP
FP+TN )

and the ordinate is the true positive rate (TPR = TP
TP+FN). The

larger the ROC_AUC value, the more likely the current

classification model will place positive samples in front of

negative samples, which can better classify these samples.

ROC _AUC =
Z 

ROC (8)

PR_AUC refers to the area under the PR curve. The abscissa

of the PR curve is the recall rate (recall = TP
TP+FN ) and the ordinate

is the precision rate (precision = TP
TP+FP). When the PR_AUC

value is larger, the positive sample classification effect is better.

PR _AUC =
Z 

PR (9)

F1 is the harmonic mean of precision and recall. Since the

precision rate and the recall rate are contradictory to a certain

extent, the F1 value is used to evaluate the precision rate and the

recall rate as a whole.

F1 = 2�precision�recall
precision+recall (10)
5.3 Implementation

The USFP framework is implemented in tensorflow2.4 using

Keras. The experimental model was trained using a Tesla V100

GPU card. Since there are some missing data in the typhoon

environmental field dataset, the missing data are filled in and the

whole data are normalized before the experiment. The

constructed balanced dataset is used to train the severe

typhoon pre-learning model.
Frontiers in Marine Science 09
In the severe typhoon pre-learning model 3DCNN module,

three 3D convolutional layers, a maximum pooling layer, a flat

layer, and a fully connected layer are used. For learning the

atmospheric environmental field data features, the size of each

layer of the convolutional layer is 5×5×1, the stride is 2×2×1, and

the number of filters is 64, 64, and 128. The size of the max

pooling layer is 5×5×1 and the stride is 2×2×1. For learning the

characteristics of the ocean hydrographic environmental field

data, the size of each layer of the convolutional layer is 3×3×1,

the stride is 2×2×1, and the number of filters is 64, 64, and 128.

The size of the max pooling layer is 3×3×1 and the stride is

2×2×1. The high-dimensional data is dimensionally reduced

using a flatten layer. Both variables output 100 feature vectors

through the fully connected layer. In the severe typhoon pre-

learning model 2DCNN module, three 2D convolutional layers,

one max pooling layer, one flatten layer, and one fully connected

layer are used. The size of each layer of the convolutional layer is

5×5, the stride is 2×2, and the number offilters is 32, 64, and 128.

The size of the max pooling layer is 5×5 and the stride is 2×2.

The high-dimensional data is dimensionally reduced using a

flatten layer. Then, the data outputs 100 feature vectors through

the fully connected layer. Besides, the feature extraction part of

this model needs to be encapsulated using the TimeDistributed

layer wrapper to assign the same weights to the data in the time

latitude. The activation function of all layers is ‘relu’.

After training the severe typhoon pre-learning model, the

obtained prior knowledge is transferred to the unbalanced severe

typhoon re-learning model and combined with LSTM for

training. The L2 regularization is added to the fully connected

layer to prevent overfitting of the model during training. After

the framework structure is constructed, the hyperparameters are

tuned to obtain the best prediction results.
5.4 Analysis

5.4.1 Result analysis
In order to prove that the USFP framework proposed in this

paper can effectively improve the unbalanced data problem,

experiments compare the framework with traditional machine

learning-based methods. Since the environmental data used in

this paper has a spatiotemporal dimension, in order to ensure

the consistency of the comparative experiments, the machine

learning model involved in the comparison needs to be able to

consider the spatiotemporal relationship in the dataset.

Therefore, this paper selects the ConvLSTM model (Shi et al.,

2015), which can learn spatiotemporal features of data and the

hybrid CNN_LSTMmodel (Chen et al., 2019), which has a good

effect on typhoon formation and intensity prediction, as the

comparison objects. As a spatiotemporal sequence prediction

model, the ConvLSTM model can well capture the spatial

information of the data based on the LSTM model. The

typhoon spatiotemporal depth mixed prediction model [75]
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has a good performance in the formation of typhoon and the

prediction of typhoon intensity, and the model has a high

generalization ability. In addition, this paper also compares the

proposed framework with other methods combining CNN and

LSTM, such as 2DCNN+LSTM, 3DCNN+LSTM. Furthermore,

since these models do not take into account the imbalance of

data set samples, some traditional methods of dealing with

imbalanced data are added to the original model for

comparison. These machine learning model methods selected

in the experiments all use the best parameters provided by the

original author’s paper, and use the same training and test sets

for training and testing. The specific experimental results are

shown in Table 3.

As shown in Table 3, the USFP framework in the WP region

can achieve the best ROC_AUC value of 0.735, the best

PR_AUC value of 0.3, and the best F1 value of 0.311. In

comparison, the best ROC_AUC of traditional machine

learning-based methods is only 0.666, the best PR_AUC is

only 0.262, and the best F1 is only 0.233. This is because

traditional machine learning-based methods do not consider

the unbalance of the data and the model cannot obtain good

results based on the actual unbalanced dataset. In addition, the

traditional methods of handling unbalanced data assign different

weights to different samples based on the ratio between samples,

which cannot reflect the actual distribution of data features.

Therefore, these methods also cannot lead to better

classification performance of the model. To ensure the

generalization ability of the framework on different datasets

and the robustness of the framework, experiments are also

conducted on the EP and NA regions. In the EP region, the

best ROC_AUC of traditional machine learning-based

methods is 0.562, the best PR_AUC is 0.203, and the best F1

is 0.200. The USFP framework can achieve the best ROC_AUC

value of 0.625, the best PR_AUC value of 0.205, and the best

F1 value of 0.252. In the NA region, the best ROC_AUC of

traditional machine learning-based methods is 0.698, the best

PR_AUC is 0.270, and the best F1 is 0.270. The USFP

framework can achieve the best ROC_AUC value of 0.746,
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the best PR_AUC value of 0.365, and the best F1 value

of 0.328.

5.4.2 Parametric analysis
5.4.2.1 Fine tuning

TheUSFP framework isfine-tuned in the experiments according

to thefine-tuningmethod inSection4.3.The experimental results are

shown inFigure 4.As the number offrozen layers increases, the three

types of evaluation metrics fluctuate to varying degrees in different

regions. Through experimental verification, it can be concluded that

in the WP area, when there is no frozen layer, the PR_AUC value

reaches the best value; and when the number of frozen layers is two,

the F1 and ROC_AUC values reach the best value. In the NA area,

when the number of frozen layers is 15, the three types of evaluation

metrics all reach the best values. In the EP area, when the number of

frozen layers is 8, the ROC_AUC value reaches the optimal value;

when the number of frozen layers is 2, the F1 value and PR_AUC

value reach the optimal value.

5.4.2.2 Severe typhoon pre-learning model LR

The gradient descent algorithm is a commonly used

optimization algorithm for deep learning, which can calculate

the gradient through partial derivatives. The learning rate (LR) is

one of the important parameters to control the update rate of

parameters. According to previous studies (Kornblith et al.,

2019), the learning effect of the severe typhoon pre-learning

model has a great influence on the effect of the USFP framework.

Therefore, the LR of the severe typhoon pre-learning model is

selected as the adjustment parameter for analysis. The specific

results are shown in Figure 5.

As shown in Figure 5, as the LR of the severe typhoon pre-

learning model decreases, different metrics in different regions

have certain fluctuations. In the WP region, ROC_AUC,

PR_AUC, and F1 reach their maximum values when the severe

typhoon pre-learning model LR is 0.001, 0.0003, and 0.0003

respectively. In the NA area, each metric increases and then

decreases as the LR of the severe typhoon pre-learning model

decreases. ROC_AUC, PR_AUC, and F1 reached the maximum
TABLE 3 Comparison of experimental results of different models.

Model Type WP EP NA

ROC_AUC PR_AUC F1 ROC_AUC PR_AUC F1 ROC_AUC PR_AUC F1

ConvLSTM 0.596 0.129 0.204 0.519 0.151 0.181 0.520 0.104 0.185

2DCNN-LSTM 0.571 0.109 0.208 0.518 0.180 0.148 0.521 0.163 0.130

3DCNN-LSTM 0.601 0.262 0.233 0.524 0.141 0.181 0.698 0.259 0.270

Hybrid CNN-LSTM 0.638 0.224 0.229 0.562 0.203 0.179 0.635 0.264 0.204

Hybrid CNN-LSTM +focal loss 0.582 0.225 0.202 0.525 0.197 0.163 0.637 0.270 0.205

Hybrid CNN-LSTM + focal loss + class weight 0.666 0.221 0.194 0.512 0.102 0.181 0.578 0.170 0.181

USFP framework 0.735 0.300 0.311 0.625 0.205 0.252 0.746 0.365 0.328
frontiers
WP, Western Pacific; EP, Eastern Pacific; NA, North Atlantic. The bold values in the table represent the largest value in each column.
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value when the LR of the severe typhoon pre-learning model is

0.0003, 0.0004, and 0.0002 respectively. In the EP region,

ROC_AUC, PR_AUC, and F1 all reach the maximum value

when the severe typhoon pre-learning model LR is 0.0003. It

can be concluded that when the LR value of the severe typhoon

pre-learning model is selected as 0.0003, the unbalanced strong

typhoon formation prediction framework has a good prediction

effect in each region. Therefore, the LR value of the severe typhoon

pre-learning model should be chosen to be 0.0003, so that the

framework has better generalization ability.

5.4.2.3 Epochs

In this paper, we analyzed the epochs parameter to determine

theperiod toobtain thebest performanceof themodel.As shown in

Figure 6, in both theWP region and theNA region, the ROC_AUC

values tend to stabilize after 30 epochs of training. The ROC_AUC

value in the EP region fluctuates relatively wildly, but after 10

rounds of training, the value is relatively stable within a certain
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range. Therefore, in our experiments, a relatively suitable training

period is around 30 epochs.

5.4.2.4 Weight factor

This section conducts a parametric analysis for the unbalanced

severe typhoon loss function in the unbalanced severe typhoon re-

learningmodel. Since thevalueof thebalance factora is determined

by the sampling ratio in the experiment, the a is set to 0.9 in the

experiments.We performed a parametric analysis of the weighting

factor g. As can be seen from the Table 4, the ROC_AUC value in

theWPregion increases and thendecreases as g increases.There are
some fluctuations in the F1 and PR_AUC values in theWP region.

When the g is 2, the best effect of the model is achieved on the WP

region. Therefore, the g is set to 2 in this paper.

5.4.3 Variables analysis
To study the influence of ocean hydrographic variables on the

formation of severe typhoons, we selected seawater temperature
B C
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FIGURE 4

In different regions, the three types of evaluation metrics change with the number of frozen layers. (A–C) represent the results of the three
indicators for the WP region. (D–F) represent the results of the three indicators for the NA region. (G–I) represent the results of the three
indicators for the EP region.
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(st), eastward seawater velocity (water_u), and northward current

velocity (water_v) as ocean hydrographic variables. Atmospheric

environmental field data, sea surface environmental field data, and

ocean hydrographic environmental field data are used together as

input data for the experiments. The experimental results are

shown in Table 5.
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In the WP region, the USFP framework can achieve the best

ROC_AUC value of 0.754, the best PR_AUC value of 0.286, and

the best F1 value of 0.382. In comparison, the best ROC_AUC of

traditional machine learning-based methods is only 0.712, the

best PR_AUC is only 0.243, and the best F1 is only 0.205. In the

EP region, the best ROC_AUC of the traditional machine
B C
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FIGURE 5

In different regions, the three types of evaluation metrics change with the severe typhoon pre-learning model LR. (A–C) represent the results of
the three indicators for the WP region. (D–F) represent the results of the three indicators for the NA region. (G–I) represent the results of the
three indicators for the EP region.
TABLE 4 Parametric analysis for weight factor g.

Weight factor g WP

ROC_AUC PR_AUC F1

0.5 0.683 0.228 0.268

1 0.704 0.267 0.310

2 0.735 0.300 0.311

5 0.698 0.224 0.253

10 0.659 0.284 0.259
frontiers
WP, Western Pacific; EP, Eastern Pacific; NA, North Atlantic. The bold values in the table represent the largest value in each column.
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learning-based method is 0.574, the best PR_AUC is 0.227, and

the best F1 is 0.217. The USFP framework can achieve the best

ROC_AUC value of 0.671, the best PR_AUC value of 0.252, and

the best F1 value of 0.263. In the NA region, the best ROC_AUC

of the traditional machine learning-based methods is 0.697, the

best PR_AUC is 0.341, and the best F1 is 0.222. The USFP

framework can achieve the best ROC_AUC value of 0.783, the

best PR_AUC value of 0.397, and the best F1 value of 0.365.

Besides, we compare the experimental results with the ocean

hydrographic variables to the experimental results without the

ocean hydrographic variables. The comparison results are shown

in Table 6. After adding the ocean hydrographic data, the

evaluation metrics for all three regions (except the PR_AUC

metric in the WP region) have improved. This proves that ocean

hydrographic information has some influence on the formation

of severe typhoons and helps to improve the accuracy of severe

typhoon formation prediction.

5.4.4 Compare with the numerical model IFS
The numerical model prediction results used in this paper

were obtained from the THORPEX Interactive Grand Global

Ensemble (TIGGE) Model Tropical Cyclone Track Dataset. The

dataset contains historical forecasting results for multiple official

organizational models. We chose the historical forecasts of the
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European Centre for Medium-Range Weather Forecasts

(ECMWF) ensemble forecast system (IFS), which has the

longest record year in this dataset, as the object of comparison

for the experiment. The historical forecast results document the

predictions of tropical cyclone tracks from 2006 to 2016. Firstly,

the temporal and central latitudinal and longitudinal positions

provided by the World Meteorological Organization (WMO)

version of the International Best Track Archive for Climate

Management (IBTrACS) global tropical cyclone best track

dataset are matched one-to-one with the historical prediction

results of the IFS model to obtain the tropical cyclone samples.

Secondly, the intensity values of tropical cyclone samples filtered

from the global tropical cyclone best track dataset were used as

labels to count the number of positive and negative samples for

the three regions. The results are shown in Table 7.

Finally, the 24-hour step forecasts of the tropical cyclone

samples filtered from the historical forecast results of the IFS

model were used as model results and evaluated using the same

evaluation metrics. The evaluation results are compared with the

experimental results of the USFP framework. The comparison

results are shown in Table 8.

The results of the USFP framework without ocean

hydrographic variables and the USFP framework with ocean

hydrographic variables outperform the prediction results of the
TABLE 5 Comparison of experimental results of different models after adding ocean hydrographic variables.

Model Type WP EP NA

ROC_AUC PR_AUC F1 ROC_AUC PR_AUC F1 ROC_AUC PR_AUC F1

3DCNN-LSTM 0.712 0.201 0.062 0.574 0.193 0.197 0.653 0.206 0.182

Hybrid CNN-LSTM 0.681 0.170 0.181 0.491 0.112 0.077 0.697 0.341 0.222

Hybrid CNN-LSTM +focal loss 0.642 0.172 0.197 0.559 0.227 0.217 0.650 0.181 0.204

Hybrid CNN-LSTM + focal loss + class weight 0.705 0.243 0.205 0.551 0.175 0.162 0.684 0.204 0.181

USFP framework 0.754 0.286 0.382 0.671 0.252 0.263 0.783 0.397 0.365
frontiers
WP, Western Pacific; EP, Eastern Pacific; NA, North Atlantic. The bold values in the table represent the largest value in each column.
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FIGURE 6

The ROC_AUC results with the change of epochs.
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IFS model for all metrics except the PR_AUC metric in the WP

region. This proves that the USFP framework outperforms the

numerical model IFS of ECMWF in the field of unbalanced

severe typhoon formation prediction.
5.4.5 Example prediction
We performed a USFP framework forecast using the

example of strong typhoon Roke in 2011. The generation of

strong typhoon was successfully predicted by using USFP

framework. The value of F1 is 1 because there is only one

positive sample for a single sample and the calculated value of

ROC_AUC is 0.734 and the calculated value of PR_AUC is 0.2.

By checking the historical prediction results of the numerical

model IFS of ECMWF, we can conclude that the numerical

model did not accurately predict the generation of

severe typhoons.
6 Conclusions and future work

In this paper, we define the severe typhoon formation

prediction problem as a classification problem of spatio-

temporal series prediction and propose an unbalanced severe

typhoon formation prediction (USFP) framework. The

framework fuses atmospheric, sea surface, and ocean

hydrographic variables and uses a severe typhoon pre-learning
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model to obtain prior knowledge from the constructed balanced

dataset. Then, we transfer the prior knowledge to the severe

typhoon re-learning model to predict the formation of severe

typhoons. Extensive experiments show that the USFP

framework proposed in this paper is more accurate than the

numerical model IFS of ECMWF and existing machine

learning models.

Additional analysis and experiments on the parameters of the

framework can lead to better results of the framework. We analyzed

threeparameters inour experiments: thenumber offrozen layers, the

LR of the severe typhoon pre-learning model, and the number of

epochs.Thenumberoffreezing layers is 2 or 15 layers toobtainbetter

results. The optimal LR of the severe typhoon pre-learning model is

0.0003. The optimal epochs to adjust the iterations is about 30

rounds. In addition, we conducted a comparative experiment on

the choice of environmental field variables. The experimental results

show that adding the ocean hydrographic environmental field

variables can help improve the prediction effect of the framework

on the formation of severe typhoons.

In the future, we will further refine the details of the

parameters in the USFP framework and use various data such

as satellite image data to improve the framework functionality.

In addition, since the framework is purely data-driven, it suffers

from the problem of uninterpretability. Therefore, in further

developmental work, we will try to integrate this framework with

traditional physical models to improve the application ability of

the model in practical systems.
TABLE 7 The number of positive and negative samples screened by official data statistics.

WP EP NA

Positive sample 81 48 34

Negative sample 422 262 314
frontiersin
TABLE 8 Comparison of results between the USFP framework and the numerical model IFS of ECMWF.

Model Type WP EP NA

ROC_AUC PR_AUC F1 ROC_AUC PR_AUC F1 ROC_AUC PR_AUC F1

the numerical model IFS of ECMWF 0.546 0.320 0.184 0.490 0.172 0.041 0.539 0.339 0.150

USFP framework (No ocean hydrographic variables) 0.735 0.300 0.311 0.625 0.205 0.252 0.746 0.365 0.328

USFP framework (ocean hydrographic variables) 0.754 0.286 0.382 0.671 0.252 0.263 0.783 0.397 0.365
WP, Western Pacific; EP, Eastern Pacific; NA, North Atlantic. The bold values in the table represent the largest value in each column.
TABLE 6 Comparison of results between the USFP frameworks containing different environmental field variables.

Model Type WP EP NA

ROC_AUC PR_AUC F1 ROC_AUC PR_AUC F1 ROC_AUC PR_AUC F1

USFP framework (No ocean hydrographic variables) 0.735 0.300 0.311 0.625 0.205 0.252 0.746 0.365 0.328

USFP framework (ocean hydrographic variables) 0.754 0.286 0.382 0.671 0.252 0.263 0.783 0.397 0.365
WP, Western Pacific; EP, Eastern Pacific; NA, North Atlantic. The bold values in the table represent the largest value in each column.
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