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Introduction

Photosynthesis powered by sunlight, which involves plants and microorganisms in

terrestrial soils and phytoplankton in fresh and marine waters, is one of the most

important biogeochemical processes occurring in the environment. It constantly controls

the production of most natural organic matter (NOM), which is a fundamental

constituent of all ecosystems of our planet. Dissolved organic matter (DOM) is

generated from NOM in terrestrial soils depending on three key sets of properties, i.e.

physical, including temperature and moisture, chemical, which comprise nutrient

availability, amount of available oxygen and redox activity, and microbial, such as

microfloral succession patterns and availability of aerobic and anaerobic

microorganisms. Terrestrial DOM is then partially transferred to surface waters
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through surface runoff and groundwater leaching (Kritzberg

et al., 2004; Catalán et al., 2016; Zark and Dittmar, 2018;

Mostofa et al., 2019; Mohinuzzaman et al., 2020; Yi et al.,

2021). Differently, autochthonous aquatic DOM originates

from phytoplankton in surface water (Yamashita and Tanoue,

2004; Zhang et al., 2009; Guidi et al., 2016; Flemming et al., 2016;

Shammi et al., 2017a; Igarza et al., 2019; Yang et al., 2021). Thus,

a complex mixture of terrestrial and aquatic DOM occurs in

surface-water environments (Kritzberg et al., 2004; Zark and

Dittmar, 2018; Yi et al., 2021), which can be efficiently

characterized on the basis of fluorescence properties (FDOM)

and discriminated by excitation-emission matrix (EEM)

fluorescence spectroscopy coupled with parallel factor

(PARAFAC) modeling (Yamashita and Tanoue, 2004; Zhang

et al., 2009; Shammi et al., 2017a; Mohinuzzaman et al., 2020;

Yang et al., 2021; Yi et al., 2021). However, a clear, holistic

understanding of terrestrial (allochthonous) and autochthonous

aquatic DOM components is still lacking, as well as that of their

sources and simultaneous production-degradation processes

and pathways during transport from soil to sea through

freshwater bodies, and their biogeochemical links.
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Transformation of DOM from land
source to marine environments
Based on the most recent research results, a detailed picture is

provided in Figure 1 and summarized below. Soil DOM is

universally recognized to be mostly composed of humic

substances (HS), including humic acids (HA), fulvic acids (FA)

and protein-like substances (PLS) (Figures 1A–C, forest soil), of

which the fluorescence peaks are discussed in detail elsewhere

(Mohinuzzaman et al., 2020). Terrestrial HS are partially released

into ambient freshwaters via groundwater leaching and surface

runoff (Figures 1D, E, F). In particular, the two terrestrial

components FA and PLS are entirely degraded (Mostofa et al.,

2019) due to their lability in photochemical and microbial

degradation processes (Figure 1), and only the HA fraction

persists during transport from soil to streams to coastal seawater

(Mostofa et al., 2019), possibly due to its macromolecular structure

(Senesi and Loffredo, 1999; Mohinuzzaman et al., 2020).

In a study on the fluorescence behavior of the terrestrial HA

fractions of DOM along their flow (soil ! stream ! river !
FIGURE 1

Flow diagram of the overall sequential constant photosynthetic production of natural organic matter (NOM) from terrestrial plants, animals and
microorganisms in soils, and from planktonic photosynthetic organisms in waters. Figure 1, left: origin of soil humic substances [humic acids-HA
(A), fulvic acids-FA (B) and protein-like substances-PLS (C)] from terrestrial NOM and their subsequent runoff/leaching into surface waters, first
into streams [terrestrial HA-like (D), terrestrial FA-like (E), terrestrial PLS-like (F)], then into downstream river (only terrestrial HA-like substances,
(G), then into inshore seawater ((H), 0-10 m depth) and mid-offshore seawater ((I), 0-10 m depth), and finally into offshore upper ((J), 0-15 m)
and deeper (K), 20-300 m) seawaters in Seto Inland Sea. Figure 1, right: origin of extracellular polymeric substances (EPS, (L) from
phytoplankton and their subsequent degradation, first into a combined form of autochthonous HA-like substances (AHLS) of C- and M-types
(M) and a newly-released autochthonous protein-like substances (APLS, (N), then into their individual components, i.e. AHLS into C-type (O) and
M-type (P) and APLS into protein-like substances (Q), tryptophan-like substances (R), tyrosine-like substances (S), etc. During all transformation
described above for the two DOM systems mineralization end products are constantly produced, with the exception of terrestrial HA-like
substances that ultimately did not degrade entirely, whereas autochthonous DOM is entirely degraded over one diurnal 24-h cycle by daytime
sunlight-induced and nighttime microbial degradation.
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sea), a red-shift from shorter to longer wavelength excitation-

emission (Ex/Em) peak maxima has been measured when

reaching the sea (peak C: stream 330/455; river 315/402; sea

350/473; peak A: stream 250/455; river 240/402; sea 260/473 nm)

(Figure 1) (Mostofa et al., 2019; Mohinuzzaman et al., 2020).

This red-shift can be ascribed to salinity effects occurring when

terrestrial HAs reach seawater, possibly due to the formation of

stable complexes with metal ions (Wu et al., 2004; Plaza et al.,

2006; Mostofa et al., 2013; Mostofa et al., 2019). After reaching

the sea, the water flows in the offshore direction determine a

gradual blue shift of fluorescence peaks (C and A) toward

wavelengths (325/461 and 255/461 nm in surface waters and

345/462 and 255/462 nm in deeper waters, respectively) that are

shorter than those appearing for inshore to mid-offshore sea

waters (345/461 and 260/461 nm, respectively). Apparently, a

gradual transformation of terrestrial HA-like substances occurs

along their transport in soil, stream, river, and then to coastal,

mid-shore and offshore seawaters, where HA reach a relatively

chemically recalcitrant nature. This behavior is confirmed by

radio-carbon dating, which shows an increase of 14C ages from

soil to inland waters and then to marine waters (Catalán et al.,

2016). Importantly, photochemical and microbial degradation

processes along with hydrological processes, particularly

carbonate and silicate weathering, would play important roles

in overall transformation processes along with transport of

chemical species (Catalán et al., 2016; Igarza et al., 2019;

Mostofa et al., 2019; Liu et al., 2020; Zhong et al., 2020; Yi

et al., 2021).

Origin of autochthonous DOM from
planktonic communities and its
transformation

Differently, autochthonous DOM originates from

photochemical processes and microbial respiration from

planktonic photosynthetic organisms (Yamashita and Tanoue,

2004; Zhang et al., 2009; Flemming et al., 2016; Guidi et al., 2016;

Shammi et al., 2017a; Yang et al., 2021; Yi et al., 2021). The latter

are thought to be responsible for approximately 50% of oceanic

primary production and fuel the global biological carbon pump

in marine environments (Guidi et al., 2016). Extracellular

polymeric substances (EPS) are primarily originated from the

plankton community and are considered the early-stage of

newly-formed DOM (Flemming et al., 2016; Shammi et al.,

2017a). EPS are not yet converted into individual organic

components and are composed mainly of polysaccharides,

proteins, nucleic acids, lipids, surfactants and humic-like

substances (Flemming et al., 2016). The fluorescence moieties,

mostly protein-like and humic-like fractions in EPS are firstly

transformed into the following components, which can be

monitored/detected by EEM-PARAFAC: (i) a combined form

of autochthonous humic-like substances (AHLS) of C- and M-
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types, and (ii) newly-released autochthonous protein-like

substances (APLS) (Shammi et al., 2017a; Yang et al., 2021).

Successively, AHLS evolve into their individual forms, i.e. C- and

M-types, whereas APLS are gradually transformed into

individual protein-like, tryptophan-like, tyrosine-like and

phenylalanine-like substances (Figure 1) (Yang et al., 2021).

All these substances are commonly detected in surface waters,

particularly in stagnant waterbodies such as ponds and lakes, but

also in estuaries and oceans (Yamashita and Tanoue, 2004;

Shammi et al., 2017a; Yang et al., 2021; Yi et al., 2021).

Finally, all individual components are photochemically and

microbially degraded into low molecular weight (LMW) DOM

and mineralized end-products, including gaseous CO2, dissolved

inorganic carbon (DIC) and nutrients (e.g., NO3
− and PO4

3−)

(Figure 1) (Igarza et al., 2019; Yang et al., 2021; Yi et al., 2021).

Differently, the carbohydrates and lipids moieties in EPS do not

show any fluorescence, but undergo hydrolysis along with

photochemical and microbial degradation/mineralization in

surface waters (Zhang and Bishop, 2003; Adav et al., 2008;

Shammi et al. , 2017b). Details about the origin of

autochthonous DOM and it s subsequent dayt ime

photoinduced and nighttime microbial degradation are

extensively discussed elsewhere (Yang et al., 2021).
Discussion

On the basis of results described above, the features of the

two mentioned DOM systems and their biogeochemical

transformation processes can be summarized as follows.

Terrestrial FA-like and PLS-like fractions are extensively

degraded along their transport, whereas terrestrial HA-like

substances are only partially degraded by both photochemical

and microbial processes (Amador et al., 1989; Catalán et al.,

2016; Mostofa et al., 2019), due to their macromolecular size

(Senesi and Loffredo, 1999; Mohinuzzaman et al., 2020).

Therefore, the macromolecular size of HA is only one feature

that would possibly account for its recalcitrant nature, and so

can be used to determine the radio-carbon dating (Catalán et al.,

2016; Tadini et al., 2018). Furthermore, various long-chain

aliphatic and aromatic organic acids are produced by the

photoinduced degradation of humic substances extracted from

lakes and prolonged irradiation, which leads to a decrease of

their concentrations and concomitant mineralization to end-

products (Corin et al., 1996). Similarly, many aliphatic and

aromatic byproducts were found to derive from aquatic DOM

upon pyrolysis (Leenheer and Croué 2003). Studies also shows

that various carboxylic acids (oxalic, malonic, formic, acetic, etc)

are often major byproducts of the photoinduced degradation of

DOM, which amounts to approximately 25.0–34.4% in surface

waters (Bertilsson et al., 1999; Bertilsson and Tranvik 2000; Ma

and Green, 2004). Simultaneously, EPS of planktonic origin are

rapidly converted into AHLS and APLS, which are further
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transformed into individual components that are finally

degraded to produce LMW DOM and mineralized end-

products (Yang et al., 2021).

The entire degradation of autochthonous aquatic FDOM has

been shown to occur within a 24-h cycle under high air/water

temperatures during summer, but not during low-temperature

months (Yang et al., 2021). Similar results have been obtained

for Antarctic glacial environments where exudates from primary

production are utilized by heterotrophs within 24 h and support

bacterial growth demands (Smith et al., 2017). As well, similar

complete photoinduced degradation of humic-like fractions to

EPS have been detected experimentally within 58 h,together with

a decreasing DOC concentration of approximately 38.4%, from a

very high (308.97 ± 1.20 mgL−1) initial DOC concentration

(Shammi et al., 2017b).

Thus, the key difference between terrestrial (allochthonous)

and aquatic (autochthonous) DOM is that the latter is entirely

degraded within a 24-h diurnal period during summer, whereas in

the case of terrestrial DOM only the FA-like and PLS-like fractions

(but not the HA-like ones) can be completely degraded in

waterbodies. The mineralization end-products of both

allochthonous and autochthonous DOM are produced

continuously under both daytime sunlight-induced degradation

and nighttime microbial degradation. In particular, in-situ solar

irradiation experimental studies showed that the dissolved

inorganic carbon (DIC: dissolved CO2, H2CO3, HCO3
-, and

CO3
2-) photoproduction rate is much lower in river waters

(0.04–0.22 mg/L) than in lake waters (0.21–0.73 mgC/L),

whereas DOC concentrations vary respectively from 33.22-33.22

mg/L and 1.88-2.40 mg/L (Ma and Green, 2004). Similar results for

DIC have been obtained for humic lake waters (0.086–0.41 mg C/L

day) for in-situ photo-irradiation samples (Granéli et al., 1996).

Moreover, several experimental studies also showed that

autochthonous fluorescent aromatic amino acids (e.g.

tryptophan, tyrosine and phenylalanine), PLS and humic-like

substances can produce dissolved inorganic nitrogen such as

NH4
+ and NOx

- in surface waters (Bushaw et al., 1996; Berman

and Bronk, 2003; Stedmon et al., 2007; Zhang et al., 2021). As these

end-products act as nutrients, they continuously fuel the

reproduction of photosynthetic planktonic organisms in surface

waters and simultaneously contribute to global carbon cycling as

well as to climate change (Mopper et al., 1991; Bushaw et al., 1996;

Moran and Zepp, 1997; Berman and Bronk, 2003; Zhong et al.,
Frontiers in Marine Science 04
2020; Mostofa et al., 2013). In conclusion, the continuous

production of NOM and its transformation/mineralization

represent the primary backbone process in the cycles of carbon,

nitrogen, phosphorus, dissolved oxygen and trace metals and in

sustaining life of all living organisms, including humans, thus it is

of key importance to deepen their understanding, in particular

because climate warming determines longer stratification periods

to occur in surface waters during summer.
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Autochthonous versus allochthonous carbon sources of bacteria: Results from
whole-lake 13C addition experiments. Limnol. Oceanogr. 49, 588–596. doi: 10.4319/
lo.2004.49.2.0588
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