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The anti-inflammatory cytokine
IL-22 exhibited a
proinflammatory effect in the
ovary aiding with the parturition
of ovoviviparous black rockfish
(Sebastes schlegelii)

Shaojing Yan1†, Likang Lyu1†, Xiaojie Wang1, Haishen Wen1,
Yun Li1, Jianshuang Li1, Yijia Yao1, Chenpeng Zuo1,
Songyang Xie1, Zhijun Wang2 and Xin Qi1*

1Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China,
2Administration Department, Weihai Taifeng Seawater Seedling Co., LTD, Weihai, China
Introduction: As a unique type of immunological process, pregnancy and

subsequent parturition are associated with a series of inflammatory events. As

an anti-inflammatory cytokine, IL-22 has been proven to participate in the

parturition process in mammals. However, less is known about ovoviviparous

teleosts. To investigate the role of IL-22 in fish parturition, black rockfish, an

ovoviviparous teleost, was used. This fish is unique in that it provides over 60%

nutrition supply for over 50 thousand embryos at the same time though a

placenta-like structure during pregnancy while delivering all fries in two hours.

Methods: Sequence alignment, phylogenetic tree analysis and homology

modeling were performed on IL-22 and its receptor. In situ hybridization

demonstrated ovarian localization of il22 and il22r1. The protein of rIL-22

was obtained through the prokaryotic expression. RNA-seq analysis was

performed on black rockfish ovarian cells treated with rIL-22.

Results: In situ hybridization results showed that both il22 and il22ra1 were

localized in the perinatal follicle layer and embryonic envelope. The il22

expression level was significantly increased during parturition compared to

before and after parturition (P<0.05). To further understand the mechanism of

IL-22 in parturition, rIL-22 was obtained. The downstream variation genes in

primary cultured ovarian cells in the perinatal period were analyzed according to

the transcriptomic results. A total of 168 differentially expressed genes (DEGs)

were identified in the rIL-22 group compared with the PBS control group (padj <

0.05 and |log2FoldChange| 1). Of those, 134 DEGs were identified in the LPS and
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rIL-22 treatment groups, including chemokine, cytokine, and PG synthesis. 34

DEGs were mainly identified in immune-related pathways and reorganization of

the cytoskeleton responded only to rIL-22 stimulation but not LPS. KEGG

pathways mainly included immune response, PG synthesis, cell death and

angiogenesis (p value < 0.05).

Discussion: Taken together, our results indicated that IL-22 plays an important

role in the parturition of black rockfish by upregulating PG synthesis and

increasing chemokine, proinflammatory factor, as well as PG synthetase levels.
KEYWORDS
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1 Introduction

Teleost, the most abundant vertebrate, exhibits various

reproductive strategies, including viviparity, oviparity and

ovoviviparity. As the transitional strategy between viviparity

and oviparity, ovoviviparity presents a lecithotrophic source

homologous to egg-laying oviparous teleosts. And the internal

fertilization in ovoviviparous species is similar to viviparous

species. Furthermore, ovoviviparous teleosts also exhibit

parturition behavior similar to mammals (Venkatesh et al.,

1992; Lyu et al., 2021; Lyu et al., 2022). Parturition is the

period and process when the fetus separates from its mother

and becomes an independent individual. Parturition is a

crucial reproductive event for the continuation of species. As

an intriguing immunological event, the onset of parturition

expresses a series of immunomodulatory effects during

pregnancy. Research in the field of immunology of

pregnancy has investigated the possibility that cellular

immune e ff ec tors par t i c ipa te in these pregnancy

complications. In particular, the effects that cytokines have

on the fetus and thus on the success and failure of pregnancy

have been investigated as the triggers of inflammation

(Mazaki-Tovi et al., 2007; Raghupathy and Kalinka, 2008).

In human parturition, the levels of proinflammatory cytokines

were significantly increased without any infection in the

amniotic fluid, uterine tissue, membranes, or maternal

serum (Hadley et al., 2018). This indicated that these

proinflammatory factors have a vital function in the

ini t ia t ion of partur i t ion , in addi t ion to inducing

immunological responses. During pregnancy, the mother

undergoes a state of immunosuppression to protect the fetus

from maternal immune rejection (Abu-Raya et al., 2020). At

the end of pregnancy, the changes to parturition in mammals

are accompanied by the transition of the endometrium and the

amniotic membrane from a static state to a contractile state.

One leading reason is that the uterine environment gradually
02
changes to a proinflammatory environment (Conde-Agudelo

and Romero, 2014).

Interleukins (ILs) are regarded as local inflammatory

mediators in gestational tissues during pregnancy and

parturition. Studies have shown that IL-1 is an essential

mediator in embryo implantation and the establishment of

pregnancy in mammals (Paulesu et al., 2005). It was also

revealed that IL-6 was crucial for controlling the progression

of parturition by regulating genes involved in the prostaglandin

(PG)-mediated uterine activation cascade (Robertson et al.,

2010). In addition, ILs have been shown to play a role in the

regulation of ovarian functions in teleosts. It is well established

that ovulation is similar to inflammatory responses (Liu et al.,

2017; Chatterjee et al., 2020). Treatment with IL-6 could induce

a marked increase in the ovulation rate by activating matrix

metalloproteinase (MMP) and PG synthesis in climbing perch

(Anabas testudineus) (Chatterjee et al., 2020). Studies on orange-

spotted grouper (Epinephelus coioides) and sea bass

(Dicentrarchus labrax L.) have shown that recombinant IL-1b
(r IL-1b) can also promote the expression of prostaglandin G/H

synthase 2 (ptgs2), a key enzyme in PG synthesis (Buonocore

et al., 2005; Lu et al., 2008).

IL-22 is a novel cytokine in the IL-10 family produced by T

cells and natural killer (NK) cells (Dudakov et al., 2015). IL-22

exhibited both proinflammatory and anti-inflammatory

responses. The double responses depend on the tissue

microenvironment including the cytokine environment

(Alabbas et al., 2018). IL-22 has been observed in both mice

and humans to influence the production of other

proinflammatory cytokines, including IL-6, IL-8 and tumor

necrosis factor alpha (TNF-a), to coordinate the inflammatory

response (Andoh et al., 2005; Kong et al., 2012). In addition, IL-

22 plays a dual role in pregnancy and parturition. It has been

shown that the increased expression of il22 in unexplained

recurrent pregnancy loss (uRPL) patients may be the cause of

endometrial homeostasis disorder and recurrent miscarriage
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(Heidari et al., 2021). In endometriosis, the expression of il22 is

significantly upregulated and induces C-C motif chemokine 2

(CCL2) production to recruit macrophages (Mei et al., 2019).

More recently, IL-22 was found to cause fetal injury in the

amniotic cavity leading to neonatal death. However, it may also

participate in host defense against microbial invasion of the

amniotic cavity (Gershater et al., 2022). In mice, IL-22 acts as an

anti-inflammatory cytokine and prevents premature parturition

by inhibiting placental cell death (Dambaeva et al., 2018). In the

human uterus, IL-22 secreted by decidual stromal cells (DSCs)

and decidual natural killer (dNK) cells promotes the survival of

trophoblasts and maintains pregnancy by combining with the

receptor (Wang et al., 2013). These studies suggest that IL-22 has

the dual role of promoting miscarriage and maintaining

pregnancy. Although there have been some studies of IL-22 in

mammalian pregnancy and parturition, most of them focus on

the molecular level. Therefore, research on nonmammals and

the addition of bioinformatics can provide a broader basis for the

role of IL-22 in parturition.

Black rockfish (Sebastes schlegelii) is an important commercial

aquaculture species and performs an ovoviviparous reproductive

strategy (Zhang et al., 2020). Females mate with males and store

sperm inside the ovary fromDecember until April of the following

year when the oocytes mature and fertilization is complete (Wang

et al., 2021). The female then gives birth after approximately one

month of gestation (Liu et al., 2019). During late gestation and the

final parturition period, female individuals always suffer from

inflammatory symptoms in the ovary and cloaca, including

hyperemia and swelling (Lyu et al., 2022). In the present study,

to clarify the possible role of IL-22 in the parturition of black

rockfish. We first investigated the tissue expression pattern and

ovarian localization of IL-22 in black rockfish. We also analyzed

the rna-seq obtained from ovarian cells treated with recombinant

IL-22 (rIL-22). Our findings demonstrated the function of IL-22

in ovoviviparous teleosts for the first time and provided evidence

for the conserved function of cytokines in the reproductive system

during evolution.
2 Materials and methods

2.1 Fish and sampling

All animal experiments in this research were approved by

the Animal Research and Ethics Committees of Ocean

University of China prior to the initiation of the study. No

endangered or protected species were involved in this

experiment. All experiments were performed in accordance

with the relevant guidelines and regulations.

Experimental individuals were anesthetized with 100 ng/mL

3-aminobenzoate methanesulfonic acid (MS-222) to reduce pain

before sacrifice and treatment. The fish used in the experiment

were from the aquaculture population maintained in marine cages
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offshore of Rushan, Shandong, China (36.92°N, 121.54°E). A total

of 26 female black rockfish were selected randomly for the

experiment (over 3 years old, body weight: 1.0 ± 0.4 kg, body

length: 24.3 ± 1.3 cm). All the animals were housed for 2 days in

indoor cement pools with a culvert system before the experiment.

Whole tissue samples, including heart, liver, spleen, kidney, head

kidney, intestine, gill, skin, pituitary, muscle, brain and ovary

samples, were collected from three females in December 2021. In

April 2022, spleen and ovarian stroma cell cultures were

performed on gestational female individuals, and parts of the

ovary samples were fixed in 4% paraformaldehyde for in situ

hybridization. The ovarian tissues were sampled at time points of

24 hours before delivery (n=5), during delivery (n=3), and 24

hours after delivery (n=4). For the “before parturition” samples,

the swollen cloaca of maternal fish was full of squeezed fries (Lyu

et al., 2022). Since a large number of fries (approximately 50,000

fries) will be delivered, the parturition process normally takes

approximately one hour in which we collected the “during

parturition” sample. For the “after parturition” samples, we

recorded the parturition start time of each maternal fish and

collected ovary samples 24 hours later.
2.2 Total RNA extraction and reverse
transcription

Total RNA was extracted from tissues using TRIzol reagent

(Invitrogen, America) according to the manufacturer’s

instructions. RNA quantity and purity were assessed by a

Biodropsis BD-1000 nucleic acid analyzer (OSTC, China) and

electrophoresis using a 1% agarose gel. cDNA was prepared

using the Prime ScriptTM RT Real Time Kit with gDNA Eraser

(Perfect Real Time) (TAKARA, Japan) according to the

manufacturer’s instructions.
2.3 Quantitative real-time PCR

The ChamQTM SYBR Color qPCR Master Mix (High Rox

Premixed) kit (Vazyme, China) was used for qPCR according to

the reagent instructions. The qPCR procedure was 95°C for 30 s,

followed by 40 cycles of 95°C for 10 s and 60°C for 30 s. The

threshold circulation (CT) values of each sample were measured

using 18S rRNA (Accession number: KF430619.1) as an internal

reference gene (Liman et al., 2013). Three replications of qPCR

were performed to confirm the results using the 2-DDCT method.

The primers for qPCR are shown in Table 1.
2.4 Molecular characterization of il22
and its receptor cDNAs

The cDNA sequences of the black rockfish il22, il22 receptor

alpha 1 (il22ra1) and il22 receptor alpha 2 (il22ra2 or il22 bp)
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genes were cloned and obtained from black rockfish genomic

data (PRJNA516036). Primers for cloning il22 and il22r were

designed using Primer5 software (Premier, Canada). The

primers for the full-length cDNA sequences of il22 and il22r

are shown in Table 1. The 2×Phanta Max Master Mix (Dye Plus)

(Vazyme, China) was used for cloning, and the PCR program

used was 95°C for 3 min, 35 cycles of 95°C for 15 s, 60°C for 15 s,

and 72°C for 2 min, followed by 72°C for 5 min, with a final hold

at 4°C. The PCR product was purified and cloned into the pCE2

TA/Blunt-Zero vector (Vazyme, China) for subsequent

sequencing. The cleavage sites of the signal peptides were

predicted using the SignalP 6.0 program (http://www.cbs.dtu.
Frontiers in Marine Science 04
dk/services/SignalP/). The molecular weight and isoelectric

point were predicted using the ExPASy Compute pI/MW tool

(http://web.expasy.org/compute_pi/). Multiple sequence

alignments were generated by the ClustalX 2.1 and Espript 3.0

programs (https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi).

The phylogenetic tree was reconstructed from the multiple

alignments of the amino acid sequences with the neighbor-

joining method using MEGA11 (Tamura et al., 2021). The values

on the trees represent bootstrap scores of 1,000 iterations,

indicating the credibility of each branch. The 3D structures of

black rockfish IL-22/IL-22R1/IL-22R2 were modeled using

SWISS-Model (https://swissmodel.expasy.org/).
TABLE 1 primers sequences used for ORF cloning, ISH and qPCR.

Primers Sequence (5’-3’)

Primers for ORFs clone

il22-orf-F ACAGAGACATCTTCACAACAGC

il22-orf-R TGTTCAGTAGAAACAGTCGAGG

il22ra1-orf-F GCCCACTTACCTAATGAAGATGTG

il22ra1-orf-R AGCCACACAGCAGATAGC

il22ra2-orf-F GTCATGACTCGTCTGCTGCTC

il22ra2-orf-R GCGCTACTCTTGAGGGGG

Primers for pET-C-His vector construction

pET-il22-F GTAAAATCGAAGAAGGTCTCCCTGTCGACCGCTCAC

pET-il22-R GTTACCAGAGGTACCGTTTGCGTCGGCAGCGG

Primers for ISH probe preparation

il22-orf-F CGCATTTAGGTGACACTATAGAAGCGTGATCCTGATTGGCTGGATCG

il22-orf-R CCGTAATACGACTCACTATAGGGAGACATCGTGCAGGTAAGTGAACAGG

il22ra1-orf-F CGCATTTAGGTGACACTATAGAAGCGTAACGTCCGTTGTGTTCGTG

il22ra1-orf-R CCGTAATACGACTCACTATAGGGAGACATGACACTGCGTCATCTGTGC

Primers for qPCR

il22 -F ACGCCAACATCCTCGACTAC

il22 -R TGGTGATGGTCGTGATAGCG

il22ra1-F ACGCAGTGTCATCCCTCAAC

il22ra1-R TGTTGCAGTAGGGCTGTGTT

il22ra2-F CCAAAATCAGCTCTCCTGTGTTC

il22ra2-R CCGGTGTGCATGAGGTAGATG

il6-F GCTCTGTTGCTGTGTGCTC

il6-R CCACACCTCCTCCTCACCT

acod1-F GTCCCCTACACAGAGCAGTC

acod1-R CCTTTGCGAGCAGCATTTCC

endod1-F TGCAGTTGGAAGGAACGACC

endod1-R ATGCGCCTCACATCATAGCC

il12b-F CCAGACGGGGAATACCTCAAC

il12b-R TTCCTCCAGTATGACGGTCC

bcl2-F TGCTGGAGAATGACGGATGG

bcl2-R CAGTATCGCCTGTGAGGGAC

ppp1r9b-F TGACATCCACATCTCGGTGG

ppp1r9b-R CGACTGTTCGTCTCTGAGCA

irrn1-F AGCCTCAACAGTGAAGGGAC

irrn1-R AGTGCCGTTCACCCGAATAG
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2.5 Recombinant expression of IL-22

rIL-22 was expressed by the Escherichia coli Rosetta-gami B

(DE3)/pET series vector (Novagen, Germany) system and purified

by a Ni-NTA column (Beyotime, China). The primers with

overlaps for IL-22 were designed to amplify the sequence

encoding IL-22 (Table 1). After digestion with BamH I and Kpn

I, the amplicon was cloned into the pET-C-His expression vector,

and the constructed plasmid was subsequently transformed into E.

coli Rosetta-gami B (DE3). See Supplementary 1 for details.

The positive clone of E. coli Rosetta-gami B (DE3) was grown

in Luria Broth (LB) medium with glucose (2 g/L, Sigma−Aldrich),

ampicillin (100 mg/L, Sigma−Aldrich, St. Louis, MO, USA) and

chloramphenicol (34 mg/L, Sangon Biotech, Shanghai, China) in a

shock incubator at 37°C for 4 h. When the OD600 ranged from 0.4

to 0.6, isopropyl-b-D-thiogalactopyranoside (IPTG, Sigma

−Aldrich) was added at a final concentration of 0.4 mM, and

the temperature was lowered to 16 °C. After 14 h of induction, the

cells were collected by centrifugation at 3,500 × g for 10 min at 4°

C. The cells were resuspended in lysis buffer (500 mM NaCl, 20

mMphosphate buffer, 10 mM imidazole, and pH 7.4). The sample

was ultrasonically decomposed on ice, followed by centrifugation

at 12,000 g for 10 min at 4°C to retain the supernatant. The

supernatant was collected and filtered through a 0.22 mm filter.

The rIL-22 in the supernatant was purified on a Ni-NTA column.

The concentration of rIL-22 was determined by a BCA kit

(Beyotime Biotechnology, Shanghai, China), and the purified

protein was analyzed by SDS−PAGE. The purified rIL-22 was

frozen in liquid nitrogen and stored at -80°C.
2.6 In situ hybridization

Following the manufacturer’s instructions, the 2 × Phanta®

Max Master Mix (Dye Plus) kit (Vazyme, China) was used for

PCR, and the cDNA of the ovary was used as a template.

Following the manufacturer’s instructions, the DIG RNA

Labeling Kit (SP6/T7) (Roche, Switzerland) was used to

synthesize antisense or sense probes for the in vitro

transcription of il22 and il22ra1 mRNA. The specific process

of ISH was performed as previously reported (Wang et al., 2022).
2.7 Culture of ovarian cells

We obtained ovarian cells by removing the ovarian parietal

membrane, embryo, fries and large oocyte with forceps and

scissors. The cells were cultured for 48 h in L15 (G-Clone, China,

Beijing) complete medium with 10% fetal bovine serum (FBS)

(G-Clone, China, Beijing) and 1% penicillin−streptomycin-

gentamicin solution (Absin, China, Shanghai). Subsequently,

L15 starvation medium without FBS but containing 1%

penicillin−streptomycin-gentamicin solution was used to

culture the cells for 12 h under low-transcription conditions.
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Finally, complete medium with PBS (solvent control, n=3),

lipopolysaccharides (LPS, final concentration: 100 ng/mL,

n=3), and rIL-22 (final concentration: 500 ng/mL, n=3) was

used to treat cells for 6 h. The LPS group was used as a positive

control to induce inflammation in ovarian cells. Subsequently,

the cells were harvested for RNA extraction.
2.8 RNA isolation and
library construction

RNA isolation of each cell sample was performed as shown

previously. Qualities and concentrations of total RNA were

evaluated by a NanoDrop (Thermo Fisher Scientific, USA) and

an Agilent 2100 bioanalyzer system (Agilent Technologies,

USA). The RIN (RNA Integrity Number) value of each sample

was above 9. The NEBNext® Ultra™ RNA Library Prep Kit for

Illumina® (NEB, USA) was employed to generate 9 sequencing

libraries according to the manufacturer’s instructions. The

samples were sequenced on an Illumina HiSeq X Ten

platform, and 150-bp paired-end reads were generated.

The transcriptomic data obtained by removing the reads of

adaptors were aligned to the reference Sebastes schlegelii genome

(PRJNA516036) with HISAT2 (Kim et al., 2015a). Assemble and

quantification analyses were accomplished with the StringTie

package (Pertea et al., 2016). The multiple mapped reads were

removed, and the count numbers of unique mapped reads and

FPKM (Fragments Per Kilobase Per Million) were retrieved and

normalized with previous references (Anders et al., 2015). Principal

component analysis (PCA) was performed by the ggplot2 package.

Based on the DESeq2 package, statistical analysis of

transcripts with a cutoff “padj” < 0.05 and absolute fold

change values greater than 1 were marked as significantly

differentially expressed genes (DEGs). DEG annotation was

based on the reference Sebastes schlegelii genome. Thereafter,

DEGs were assigned to Gene Ontology (GO) classification by the

aid of the Blast2GO program with the p value threshold < 0.05

(Götz et al., 2008). Kyoto Encyclopedia of Genes and Genomes

pathway enrichment analysis (KEGG, a database of biological

systems, http://www.genome.jp/kegg/) was performed on

significant pathway enrichment analysis. The clusterProfiler R

package was employed to test the statistical enrichment of DEGs

in KEGG pathways with the p value threshold < 0.05 (Kanehisa

et al., 2017). The STRING database was used to construct a

protein−protein interaction (PPI) network with Homo sapiens

used as a reference species.
2.9 Statistical analysis

All the data are shown as the mean ± standard deviation

(SD). Statistical analysis was performed by one-way ANOVA

followed by Tukey’s and Sidak’s multiple range tests. Differences

were considered significant at P < 0.05. All statistical procedures
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and graphs were generated with GraphPad Prism 9 (GraphPad

Software, USA).
3 Results

3.1 Molecular cloning and
characterization of il22 and its receptors

The cDNA sequences of il22 (Accession number:

OP331275), il22ra1 (Accession number: OP331276) and

il22ra2 (Accession number: OP331277) were identified and

cloned based on black rockfish genomic data. The ORFs of

il22, il22ra1 and il22ra2 were 567 bp, 1671 bp and 612 bp,

encoding 188 amino acids, 556 amino acids and 203 amino

acids, respectively. The physicochemical properties of the IL-22

protein are as follows: the molecular weight is 18.17 kDa, and the

theoretical isoelectric point is 6.62. According to amino acid

sequence analysis, IL-22 from black rockfish has six a-helices
and two adjacent disulfide bridges. Meanwhile, the amino acid

homology of IL-22 in black rockfish is high compared with that

in Nile tilapia (Oreochromis niloticus) (Figure 1A). However, the

amino acid sequences of IL-22RA1 and IL-22RA2 were not
Frontiers in Marine Science 06
conserved (Figure 1B). The phylogenetic analysis showed that

IL-22 and its receptors were clustered with teleost and differed

from other vertebrates (Figures 1C, D).
3.2 Expression patterns and localization
of il22 and its receptors

Tissue distribution analysis showed that il22 and its receptors

were widely expressed in various tissues. In particular, il22 was

highly expressed in the intestines, gills and skin of black rockfish.

In addition, a certain amount of il22 was detected in the ovary

(Figure 2A1). The tissue expression patterns of il22ra1 and il22ra2

were similar to il22. High il22ra1 mRNA levels were observed in

the intestines, gills, skin, and ovary (Figure 2A2). The il22ra2

transcript is widely expressed in different tissues. Compared with

il22ra1, il22ra2 was highly expressed in the kidney and head

kidney (Figure 2A3). The il22 expression pattern in the black

rockfish perinatal period showed that il22 was significantly

increased during parturition (P<0.05) (Figure 2B).

The embryo development and mastery exchange in black

rockfish was determined by the maternal-fetal interface. The

maternal-fetal interface consists of the follicle layer, embryonic
D

A

B

C

FIGURE 1

Multiple sequence alignment of IL-22 (A), IL-22RA1 and IL-22RA2 (B) in black rockfish, nile tilapia, zebrafish, chicken, mouse, and human.
Phylogenetic tree of IL-22 (C), IL-22RA1 and IL-22RA2 (D) in black rockfish and other species. Data were resampled with 1,000 bootstrap
replicates. The access number of the sequences used to generate the multiple sequence alignment and phylogenetic tree were listed in
Supplementary 2.
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envelope and the liquid between them. We performed in situ

hybridization of il22 and il22ra1 on ovaries during the perinatal

period. The results showed that il22 and il22ra1 positive signals

were observed in the follicle layer and embryonic envelope. In

embryos, extensive positive signals of il22 and il22ra1 were also

detected in various tissues, especially in gill, intestine and skin

tissues (Figure 2C).
3.3 Prokaryotic expression, purification
and functional verification of rIL-22

To further study the molecular function of IL-22, rIL-22 was

generated through a prokaryotic expression system. We

obtained rIL-22 with a c-terminal 6× His tag soluble in the

supernatant after IPTG-induced expression. A single band of

approximately 18 kDa was observed on the SDS−PAGE gel after

purification by the Ni-NTA column (Figure 3A). The protein

concentration of rIL-22 was 0.25 mg/mL, as determined by a

BCA kit. Primary cells from black rockfish spleen were cultured

to verify the bioactivity of rIL-22. As shown in Figure 3C, the

rIL-22-treated group did not differ from the control group, but

rIL-22 significantly reduced LPS-induced il6 and ptgs2 levels
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when combined with LPS (P<0.05). These results indicated that

rIL-22 was functionally active in vitro.

To understand the role of IL-22 in ovarian cells during the

perinatal period, we treated ovarian cells with different

concentrations of rIL-22 with or without LPS. In contrast to the

results in the spleen, the il6 level in ovarian cells was increased along

with the rIL-22 concentration with or without LPS Figure 3B).
3.4 RNA-seq revealed the function of IL-
22 in black rockfish ovaries

To verify the response mechanism of IL-22 in black rockfish

ovaries during the perinatal period, nine groups of cDNA

libraries were constructed and sequenced on the Illumina

platform (Accession number: PRJNA876649). By high-

throughput sequencing, 44,521,866, 46,205,972 and 48,020,019

average raw reads were obtained from the PBS, LPS, and IL-22

groups, respectively. After filtration, the average clean reads of

the control and treatment groups used in subsequent analysis

were 43,498,905, 45,496,249 and 47,222,700, with Q30 average

percentages of 92.67, 91.93 and 91.76%, respectively. By

mapping these clean reads with black rockfish genomes, the
A

B C

FIGURE 2

Relative expression levels of il22 (A1), il22ra1 (A2) and il22ra2 (A3) in different organs (heart, liver, spleen, kidney, head kidney, intestine, gill, skin,
pituitary, white muscle, brain, and ovary) (n = 3). The X axis indicates different tissues. The Y axis indicates the relative expression normalized to 18s
rRNA. (B) Relative expression levels of il22 in black rockfish before parturition (n = 5), during parturition (n = 3), and 24 h after parturition (n = 4). The
X axis indicates different parturition stage of black rockfish. The Y axis indicates the relative expression normalized to 18s rRNA. The data are
presented as the mean ± SD. Different letters indicate significant differences (P < 0.05). (C) Localization of il22 and il22ra1 mRNA in ovary of black
rockfish via in situ hybridization. The red arrows indicate positive signals. Scale bars (A–D) = 100 mm. Scale bars (A’, C’) = 50 mm.
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average total map of the PBS, LPS, and IL-22 groups was

obtained as 40,352,149.33 (92.74%), 42,316,499 (93.01%), and

43,825,848 (92.80%), respectively.

The PCA showed significant differences among the PBS,

LPS, and IL-22 groups (Figure 4A). We identified 760 significant

DEGs in the LPS group compared to the PBS group, including

528 upregulated DEGs and 232 downregulated DEGs.

Simultaneously, 168 significant DEGs were identified in the

IL-22 group compared with the PBS group, including 143

upregulated DEGs and 25 downregulated DEGs. In addition,

66 significant DEGs were detected in the IL-22 group compared

to the LPS group, including 51 upregulated DEGs and 15

downregulated DEGs (Figure 4B–D).

A total of 134 DEGs were clustered in the intersection

between the LPS vs. PBS groups and IL-22 vs. PBS groups,

which stood for the coactivated genes of both LPS and IL-22
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(Figure 5A). The heatmap indicated that the expression patterns

of these 134 DEGs were similar in the IL-22 and LPS groups

(Figure 5B). Further annotation of these 134 DEGs is presented

in Figures 5C, D. KEGG enrichment analysis identified 20

pathways, which were considered to be related to the

following: immune response (13 pathways), PG synthesis (3

pathways), angiogenesis (2 pathways) and cell death (2

pathways) (Figure 5C). GO enrichment analysis showed that

the top 10 GO terms in the Biological Process were classified into

four categories: immune response (GO: 0006955, 0002376), fatty

acid metabolism (GO: 0006633, 0006631, 0044255), stress

response (GO: 0006979, 0006950), and monocarboxylic acid

(GO: 0072330, 0032787) (Figure 5D). The PPI analysis

revealed a complex network of interactions among 134 DEGs

in which chemokines, cytokines and PG synthesis-related

proteins were the main focus (Figure 6A). In addition, 34
A B

C

FIGURE 3

(A) SDS-PAGE analysis of purified rIL-22 (M: Marker; lane 1: Total protein in the thallus before induction; lane 2: Total protein in thallus after
induction; lane 3: Protein in the precipitate after induction; lane 4: Protein in the supernatant after induction; lane 5, 6: The non-target proteins
are washed down; lane 7, 8: Purified rIL-22 (18.17 kDa)). (B) Relative expression of il6 under PBS and different concentrate LPS and rIL-22
stimulation (n=3). (C) Relative expression of il6 and ptgs2 after PBS, LPS, rIL-22 and rIL-22 + LPS incubation, respectively (n=3). The X axis
indicates different treatments. The Y axis indicates the relative expression normalized to 18s rRNA. All data are presented as the mean ± SD.
Different letters indicate significant differences (P < 0.05).
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DEGs were identified and responded only to IL-22 stimulation.

There were particular interactions between the 34 DEGs through

the PPI analysis (Figure 6B). They are mainly classified as

immune-related and cytoskeleton reorganization-related. To
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verify the expression levels of genes in transcriptome data, 7

DEGs were randomly selected for qPCR. As shown in Figure 6C,

the gene expression levels obtained by qPCR were basically

consistent with the transcriptomic data.
D

A

B

C

FIGURE 5

(A) Venn diagram of the DEGs of LPS vs PBS group and IL-22 vs PBS group. (B) Heatmap of 134 DEGs in the three groups (PBS, LPS, and IL-22).
Yellow and blue colors indicated up- and down-regulated transcripts, respectively. (C) KEGG analysis of the 134 DEGs. Enriched pathways were
classified into four classifications including Immune response, PG synthesis, Angiogenesis, and Cell death. (D) The top 10 GO terms of the 134
DEGs were classified into Immune response, Fatty acid metabolism, Stress response, and Monocarboxylic acid.
DA B C

FIGURE 4

(A) PCA of the nine libraries treated with PBS (PBS_1, PBS_2, PBS_3), LPS (LPS_1, LPS_2, LPS_3), and IL-22 (IL22_1, IL22_2, IL22_3), respectively.
Volcano plots represented the DEGs in LPS vs. PBS group (B), IL-22 vs. PBS group (C), and LPS vs. IL-22 group (D), respectively.
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4 Discussion
IL-22 is a member of the IL-10 cytokine family. Protein

modeling revealed that the six a-helices in IL-22 were similar to

those in other IL-10 family members (Wolk et al., 2010). The

sequence alignment results showed that IL-22 of black rockfish

had two adjacent disulfide bridges, which is consistent with a

study in teleosts (Siupka et al., 2014). The phylogenetic trees

showed that IL-22 congregated with teleosts and differed from

mammals. IL-22 acts via the IL-22 receptor, which is a

heterodimer consisting of IL-22RA1 and IL-10RB (Trevejo-

Nunez et al., 2016). The IL-22 receptor complex is a

transmembrane complex associated with JAK and TYK. It

triggers a cascade of downstream reactions when IL-22 binds

to its receptor complex, including phosphorylation of JAK and

TYK2 and activation of STAT3 (Wu et al., 2020). In addition,

other molecules include P38, ERK, JNK, and PI3K (Sabat et al.,

2014). IL-22 also possesses the soluble receptor IL-22RA2, also

known as IL-22BP, which can competitively combine with IL-22.

In humans, pregnancy is thought to be a state of

immunosuppression, whereas delivery is a reactivation of local

inflammation (Osman et al., 2003). Studies have shown that the

volume of the uterus occupied by the embryo acts as a signal that

is sensed by the uterus (Shynlova et al., 2013a). The plateau

reached in embryonic growth may act as a signal to start
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parturition. In mice, the myometrium cells can sense

mechanical stretching signals from the growing embryo

(Shynlova et al., 2008). Meanwhile, it has been reported that

mechanical stretching can stimulate uterine chemokine

expression, such as CCL2 (Shynlova et al., 2008), C-X-C motif

chemokine 1 (CXCL1) (Hilscher et al., 2019), CXCL5

(Bollapragada et al., 2009), and CXCL8 (Lei et al., 2011),

which aggregate immune cells. The immune cells that

accumulate include T cells (Hamilton et al., 2012), neutrophils

and macrophages (Gimeno-Molina et al., 2022). These immune

cells are recruited from the peripheral circulation to cause

decidual infiltration (Shynlova et al., 2013b). The large

accumulation of immune cells at the maternal-fetal interface

in turn produces extracellular matrix (ECM) degradation

proteases such as MMP to promote cervical relaxation (Kelly,

2002), and are also a source of cytokines such as IL-22, IL-1b, IL-
6 and TNF-a. IL-22 promotes chemokine and cytokine

production. IL-1b could promote prostaglandin E2 (PGE2)

synthesis in uterine tissues harvested from pigs (Franczak

et al., 2010). IL-6 and TNF-a upregulate the expression of

ptgs2 in different cell types (Honda, 2011; McHale et al., 2018;

Koyama et al., 2021). PGE2 is an inducer of parturition due to its

increased levels in the uterus during parturition and its ability to

cause strong uterine contractions (Sugimoto et al., 2015). During

the complex process of parturition, inflammatory cytokines play

a very important role.
A B

C

FIGURE 6

(A) The PPI analysis of the 134 DEGs enriched from the intersection of LPS vs. PBS group and IL-22 vs. PBS group. Red circle represented
DEGs related to cytokine. Black circle represented DEGs related to chemokine. Blue circle represented DEGs related to prostaglandin synthesis.
(B) The PPI analysis of the 34 DEGs only expressed in IL-22 vs. PBS group. Red circle represented DEGs related to reorganization of
cytoskeleton. Blue circle represented DEGs related to immune related. (C) The qPCR validation of seven DEGs generated from the RNA-Seq
results. These genes include il6, Cis-aconitate decarboxylase (acod1), endod1, il12b, B cell lymphoma 2 (bcl2), protein phosphatase 1 regulatory
subunit 9B (ppp1r9b), and leucine rich repeat neuronal 1 (lrrn1).
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The il22 level was significantly increased during the

parturition of black rockfish, suggesting that IL-22 plays an

important role in parturition. According to the transcriptomic

results, 134 DEGs involved in chemokine, cytokine, and PG

synthesis were identified in both the IL-22 and LPS groups. A

similar expression pattern of these DEGs was also found in the

transcriptomic data of the human myometrium (Mittal et al.,

2010). These results indicated a conserved mechanism in

parturition between mammals and ovoviviparous fish. In our

results, IL-22 induced the production of chemokine-related

genes such as CXCL10/CXCR3, CXCL12 and CXCL8 in the

ovary at parturition. In human preterm parturition, the

CXCL10/CXCR3 system can recruit T lymphocytes to cause

placental infiltration (Romero et al., 2017). CXCL12 is widely

present in placental cells and is considered a key component of

fetal outcome (Ao et al., 2020). Higher levels of CXCL8 have

been reported to be associated with preterm parturition (Rode

et al., 2012). These chemokines recruit immune cells to the

materna l - f e ta l in te r face to ampl i fy inflammatory

signaling cascades.

IL-6 and TNF-a are considered to be involved in parturition

through the PG signaling pathway (Keelan et al., 2003). In mice,

IL-6 promotes the expression of genes that control PG synthesis

and signaling in isolated uterine cells (Robertson et al., 2010).

Meanwhile, TNF-a promotes the production of ptgs2, which

leads to the upregulation of prostaglandin F2a (PGF2a) in bovine

endometrial stromal cells (Sakai et al., 2021). In our results,

proinflammatory cytokines (IL-6, TNF-a and IL-17) and PG

synthesis-related genes (ptgs2, ptgis, and ptges) were upregulated,

which is consistent with the results in mammals. The

fertilization process of black rockfish occurs in situ, and the

parturition process is similar to ovulation in oviparous teleosts.

Studies on oviparity ovulation have proven that PGs can activate

ovulation in medaka (Oryzias latipes) (Fujimori et al., 2011),

pacu (Piaractus mesopotamicus) (Criscuolo-Urbinati et al.,

2012), goldfish (Carassius auratus) (Sorensen et al., 2018),

catfish (Heteropneustes fossilis) (Joy and Singh, 2013), and

longchin goby (Chasmichthys dolichognathus) (Baek and Lee,

2019). In ovoviviparous guppies (Poecilia reticulata),

intraperitoneal administration of PGF2a significantly induces

parturition (Lyu et al., 2021). In a previous study on black

rockfish, ptgs2, a key enzyme in PG synthesis, was also proven to

be related to parturition (Lyu et al., 2022). Taken together, IL-22

was involved in parturition by promoting PG synthesis in black

rockfish. Meanwhile, rIL-22 significantly upregulated the

expression of ptgs2 and il6 in the spleen and ovary. The above

processes of parturition induced by IL-22 appear to be similar to

those induced by pathogenic bacterial infections.

In addition, our transcriptomic data showed that 34 DEGs

were mainly enriched in immune-related and cytoskeleton

reorganization-related genes that respond to IL-22 stimulation

but not LPS. The immune-related genes included fas associated

via death domain (fadd), transcription factor RelB (relb),
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endonuclease domain containing 1 (endod1), and suppressor

of cytokine signaling 1 (socs1), etc. As a ubiquitous adaptor

protein, FADD, regulates cell apoptosis and autophagy to

maintain homeostasis. Meanwhile, FADD inhibits typical cell

death, such as necroptosis, which can trigger inflammatory

responses (Mouasni and Tourneur, 2018). Therefore, we

speculated that FADD may maintain ovarian homeostasis by

regulating cell death. RELB can activate NF-kB through both

classical and nonclassical pathways as a key molecule (Madge

and May, 2011). Our results showed that RELB was upregulated,

suggesting that IL-22 could activate NF-kB through a

nonclassical pathway in black rockfish parturition. Studies

have shown that RELB can limit acute inflammation and

repress innate immunity by blocking or replacing RELA in the

classical pathway (Millet et al., 2013). Therefore, we

hypothesized that IL-22 may play a limiting role in preventing

the expansion of inflammation during the local inflammatory

reaction of black rockfish. Our results above showed that

inflammation in black rockfish parturition is similar to the

inflammation caused by recognition of pathogen-associated

molecular patterns (PAMPs). However, ENDOD1 can

participate in the degradation of neutrophil extracellular traps

(NETs) after pathogen clearance to protect the host from

autoimmune damage (Lyu et al., 2016). In addition, SOCS1 is

a representative negative regulator of JAK/STAT-mediated

cytokine signaling and strictly regulates pathways related to

inflammation (Yoshimura et al., 2021). These results suggested

that IL-22 may protect the ovary from autoimmune damage and

play a limiting role in inflammatory pathways during parturition

in black rockfish. The reorganization of cytoskeletal genes,

including inositol-trisphosphate 3-kinase B (itpkb), WD repeat

domain 59 (wdr59), and spectrin repeat containing nuclear

envelope protein 2 (syne2), was also enriched in the IL-22 vs.

PBS groups. Studies have shown that the F-actin binding domain

of the ITPKB isoenzyme exhibits the ability to reorganize

cytoskeletal networks to influence cell movement and

migration (Erneux et al., 2016). An important cause of

parturition events is ovary contraction due to cytoskeletal

remodeling and motility (Taggart and Morgan, 2007). In our

results, the wdr59 gene was significantly downregulated. WDR59

is a component of the GATOR2 protein complex that can

indirectly promote mammalian target of rapamycin C1

(mTORC1) activity (Kim et al., 2015b). Activation of

mTORC1 can promote cell motility and invasion (Zhou and

Huang, 2011). The mechanical connection between the nucleus

and the cytoskeleton is provided by nesprins, including syne2

(also called nesprin2). SYNE2 can bind to the cytoskeleton and

work with actin to drive cellular nuclei and movement

(Davidson et al., 2020). Fertilization and embryo development

of black rockfish was processed inside the ovary. It is also

indicated that the process of parturition is similar to oviparity

ovulation. The process of parturition involves follicular layer and

egg envelope rupture, which are all associated with cytoskeletal
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remodeling. In our results, DEGs regulated by IL-22 were

associated with cytoskeletal remodeling in ovarian cells,

suggesting that IL-22 may function in ovarian cell migration

or motility during parturition in black rockfish.

IL-22 activates different important pathways in black

rockfish parturition. The transcriptomic results included

pathways related to the immune response, PG synthesis,

angiogenesis and cell death. The activation of the immune

response plays an important role during parturition. The Toll-

like receptor (TLR) signaling pathway regulates the downstream

inflammatory response by activating the transcription factors

NF-kB and JNK through the MyD88 adaptor (Takeda and

Akira, 2004). It has been shown that TLR4 expression is

significantly increased in human pregnancy tissues during

preterm and term parturition (Chen et al., 2020). In this study,

TLR signaling pathway-related genes were upregulated, similar

to research results seen in humans. The TLR signaling pathway

may play a role in the activation of inflammatory cytokines in

the ovarian stroma during black rockfish parturition. The

cytokine−cytokine receptor interaction was also significantly

upregulated, which was expected. C-type lectin receptors

(CLRs) can trigger a variety of signaling pathways that broadly

lead to the activation or inhibition of cellular functions. CLRs

can induce a large number of cytokines and chemokines. In

general, CLRs induce a proinflammatory response, which can

directly or indirectly induce the production of IL-1b, IL-6, TNF
and leukotrienes (LTs) (Brown et al., 2018). The CLRs may be

involved in the production of cytokines in the parturient period

of black rockfish. PG is a key factor in parturition.

Correspondingly, PG synthesis was significantly enriched in

our results. The results included linoleic acid metabolism and

arachidonic acid metabolism. Arachidonic acid can form PGE2

in the presence of ptgs2 (Wang et al., 2019). However, linoleic

acid is an upstream provider that generates arachidonic acid

(Szczuko et al., 2020). Research has shown that both full-term

spontaneous parturition and preterm parturition lead to a high

expression of genes related to angiogenesis (Haddad et al., 2008).

Similarly, vascular endothelial growth factor (VEGF) signaling

pathway-related genes were significantly upregulated in our

results. In human research, VEGF not only plays an important

role in decidua growth and maintenance but also may stimulate

leukocyte extravasation into the decidua and promote decidua

inflammation (Christiaens et al., 2008). The transforming

growth factor beta (TGF-b) signaling pathway is a

multifunctional cellular pathway. TGF-b in bovine placenta

may play an important role in fetal membrane dissection after

parturition through cell inhibitory activity and ECM remodeling

(Hirayama et al., 2015). Because black rockfish expel their larvae

directly at parturient time, TGF-b may play a potential role in

the process of the larvae leaving the ovary. Intracellular

components released by cell death are one of the stimuli that
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trigger the proinflammatory gene expression program in innate

immune cells (Pasparakis and Vandenabeele, 2015). In our

results, cell death-related pathways such as the necroptosis

pathway were significantly enriched.

In summary, we propose that IL-22 plays an important role

in the parturition of black rockfish by upregulating PG

synthesis and promoting parturition-related inflammatory

signals. On the one hand, chemokines (CXCL10/CXCR3,

CXCL12, and CXCL8) and proinflammatory cytokines (IL-6,

TNF-a, and IL-17) caused the destruction of the immune

tolerance balance in the ovary and further increased PG

synthesis. On the other hand, IL-22 also activated PG

synthesis directly by regulating related PG synthetase levels. In

addition, IL-22 may play a protective role by maintaining

ovarian homeostasis and limiting inflammatory amplification

and cytoskeletal remodeling.
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