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Exploring the use of Transition
Path Theory in building an oil spill
prediction scheme

M. J. Olascoaga1* and F. J. Beron-Vera2

1Department of Ocean Sciences, Rosenstiel Shool of Marine, Atmospheric, and Earth Science, University
of Miami, Miami, FL, United States, 2Department of Atmospheric Sciences, Rosenstiel Shool of Marine,
Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
The Transition Path Theory (TPT) of complex systems has proven to be a robust

means to statistically characterize the ensemble of trajectories that connect any

two preset flow regions, sayA and B, directly. More specifically, transition paths are

such that they start in A and then go to B without detouring back to A or B. This
way, they make an effective contribution to the transport from A to B. Here, we

explore its use for building a scheme that enables predicting the evolution of an oil

spill in the ocean. This involves appropriately adapting TPT such that it includes a

reservoir that pumps oil into a typically open domain. Additionally, we lift up the

restriction of the oil not to return to the spill site en route to a region that is targeted

to be protected. TPT is applied on oil trajectories available up to the present, e.g., as

integrated using velocities produced by a data assimilative system or as inferred

from high-frequency radars, to make a prediction of transition oil paths beyond,

without relying on forecasted oil trajectories. As a proof of concept, we consider a

hypothetical oil spill in the Trion oil field, under development within the Perdido

Foldbelt in the northwestern Gulf of Mexico, and the Deepwater Horizon oil spill.

This is done using trajectories integrated from climatological and hindcast surface

velocity and winds as well as produced by satellite-tracked surface drifting buoys,

in each case discretized into aMarkov chain that provides a framework for the TPT-

based prediction.

KEYWORDS

Transition Path Theory, Markov chain, open dynamical system, nirvana and reservoir
states, oil spill prediction
1 Introduction

The physical and chemical characteristics of oil accidentally spilled in the ocean, as this

evolves under the action of the currents and winds, interact with the environment undergoing a

number of physical and biogeochemical transformations collectively referred to as “weathering”

(Spaulding, 2017). An example of a popular modeling framework that fully accounts for these

effects (e.g (Pé rez Brunius et al., 2021; Romo-Curiel et al., 2022) is the oil spill module of the

OpenDrift software package (Dagestad et al., 2018). The input for this and similar oil spill models,

such as GNOME (General NOAAOil Modeling Environment) (Beegle-Krause, 2001), is given by
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the three-dimensional currents produced by some ocean general

circulation numerical model and the near-surface winds produced by a

numerical model of the same type, but for the atmosphere. The current is

recommended to include, to attain a great deal of realism, a

representation of the wave-induced drift varying with depth (Röhrs

et al., 2015), which contributes to the mixing of an oil slick below the

surface, whereas the wind drag does it mainly while the slick is on the

surface (Drivdal et al., 2014). Weathering is represented through a series

of sophisticated parametrizations accounting for evaporation, dissolution,

dispersion, emulsification, biodegradation, oxidation, and sedimentation

(Röhrs et al., 2018).

The output from the above oil spill models is a multitude of oil

parcel trajectories that emerge from the spill site, whether directly

located at the ocean surface (e.g., when a disabled vessel discharges oil

in the ocean) or at the ocean floor (e.g., due to the blowout of a rig). If

there is interest to predict the location where these trajectories will hit,

for instance, a near coastal area, the oil spill models above and similar

ones will invariably rely on forecasted currents plus wave-induced

drift and winds.

Clearly, in the first place, the success of such a prediction will

depend on the reliability of the forecasts. Second, arguably it is the oil

paths that contribute the most to the bulk transport from the spill site

into the coastline that one wants to frame as this can help direct

cleanup efforts most effectively and efficiently than on generally

convoluted individual oil parcel trajectories.

Our goal here is twofold. First, we propose an oil spill modeling

framework specifically designed to isolate such trajectories that make

the bulk oil mass transport. Second, we propose a specific application

thereof that can help improve the reliability of the forecasts.

The modeling framework is rooted in the Transition Path Theory

(E and Vanden-Eijnden, 2006; W and Vanden-Eijnden, 2010) of

complex systems. Widely known as TPT, it provides rigorous

statistical means for highlighting the dominant pathways

connecting a source and a target in the phase space of a dynamical

system. That is, instead of studying the individual complicated paths

connecting them, TPT concerns their average behavior and shows

their dominant transition channels. TPT produces a much cleaner

picture, and hence is much easier to interpret, allowing one to frame

the relative contribution of a myriad of competing paths in the

presence of stochasticity.

The oil spill evolution problem is a quite natural quarry for TPT,

with a well-defined source—the oil spill site—and target—a nearby

coastline or marine ecosystem (e.g., a coral reef barrier) that is

targeted to be protected—in a generally turbulent flow environment.

TPT was originally conceived to study molecular systems

(Metzner et al., 2009; Noé et al., 2009; Meng et al., 2016; Liu et al.,

2019; Thiede et al., 2019; Strahan et al., 2021). Such applications

involve reactions, which, to develop fully, must overcome barriers in

the energy landscape. However, TPT applications have now grown

way beyond those that motivated its conception. Indeed, TPT has

been recently used to investigate tipping atmospheric phenomena

such as sudden stratospheric warmings (Finkel et al., 2020; Finkel

et al., 2021). However, departing from the rare event framing setting is

possible and motivated by the fact that in other types of applications,

particularly fluid mechanics as the focus here, there is a basic interest

of understanding how two regions (of the flow domain) are most

effectively connected. With this idea in mind, TPT has been used in
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oceanography to bring additional insight into pollution (Miron et al.,

2021) and macroalgae pathways in the ocean (Beron-Vera et al.,

2022a), as well as paths of the upper (Drouin et al., 2022) and lower

(Beron-Vera et al., 2022b; Miron et al., 2022) limbs of the meridional

overturning circulation in the Atlantic Ocean.

The insight provided by the TPT applications, particularly those

pertaining to oceanography, cannot be overemphasized. Indeed, TPT

was able to frame pollution sources along coastlines as well as

pathways into the great garbage patches in the centers of the

subtropical gyres (Miron et al., 2021). This has implications for

activities such as ocean cleanup as the revealed transition pollution

routes provide targets, alternative to the great garbage patches

themselves, to aim those efforts. In addition, TPT has shown that

heterogeneous sampling may be behind the impossibility of revealing

a deep boundary current around the subpolar North Atlantic for

overflow water (Beron-Vera et al., 2022b; Miron et al., 2022).

Moreover, TPT was able to reveal an alternative pathway of

Sargassum from the west coast of Africa into the Intra-Americas

Seas to the one that satellite imagery is able to capture (Beron-Vera

et al., 2022a).

These encouraging results give us enough confidence to apply

TPT to the oil evolution problem. We more specifically explore the

use of TPT in building an oil spill prediction scheme that relies on

surfaced oil parcel trajectory information up to the time of the

prediction. This aims to improve the forecasts. That is, the scheme

assumes that time-resolved validated model velocities are available up

to the present time when the prediction is made. No assumption is

made on the availability of forecasted velocities from numerical

models. The basic assumption is that environmental conditions,

namely, near-surface ocean currents and winds, prior to the

prediction instant prevail for some time past this instant. The

scheme, however, enables updating the predictions over time as

new velocity information becomes available, which may include

velocity data as inferred from high-frequency radars (Graber et al.,

1997; Shay et al., 2006; Röhrs et al., 2015). This idea was put forth in

(Olascoaga and Haller, 2012) to predict sudden changes in the shape

of the oil slick from the Deepwater Horizon spill, yet using an

approach different from the one proposed here based on TPT. The

setup for TPT is a Markov chain on boxes resulting from discretizing

of the oil parcel motion. Such a setup has been used in (Pé rez Brunius
et al., 2021), but to describe general oil spill scenarios based on

climatological velocities. Because TPT is applied on trajectories,

forecasting might be improved even further by incorporating the

information provided by satellite-tracked trajectories of surface

drifting buoys deployed in the region occupied by the oil, as

advocated by Coelho et al. (2015), but directly, without being

assimilated into an ocean circulation model.

The rest of the paper is organized as follows. In Section 2.1, we

review the formulas of TPT for autonomous, i.e., time-homogeneous,

discrete-time Markov chains. Section 2.2 presents the proposed

extension of the standard TPT setup for the case of oil spills. The

TPT-based prediction scheme is presented in Section 2.3. In Section 3,

we test the scheme assuming a hypothetical spill in the northwestern

Gulf of Mexico (Section 3.1) and by considering the Deepwater

Horizon oil spill (Section 3.2). Finally, in Section 4, we present a

summary of the paper along with several ideas as to how to improve

the proposed prediction scheme.
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2 Methods

2.1 Transition path theory for Markov chains

Let Xn denote the position of a random walker at discrete time nT,

n∈Z, T>0 , in a closed two-dimensional domain D covered by N

disjoint boxes {B1,…,BN} . [For simplicity, we will avoid using a

different notation for the covering of D . Also, Xn∈Bi and i:Bi∈D (or

similar) will be simplified to Xn=i and i∈D , respectively.] Then, Pr

(Xn+1 = j) =oi∈DPij Pr (Xn = i), where

Pij : = Pr  (Xn+1 = jjXn = i), oj∈DPij = 1 ∀ i ∈ D, (1)

which describes the proportion of probability mass in Bi that flows to Bj
during T , called a transition time step. The row-stochastic matrix P=

(Pij)i,j∈D is called the transition matrix of the (two-sided) autonomous,

discrete-time Markov chain {Xn}n∈Z. We assume that the process is

ergodic and mixing with respect to the stationary distribution p=(pi)
i∈D. Namely, a componentwise positive vector on D , seen as an N

-dimensional state (vector) space, is invariant and limiting. Normalized

to a probability vector, i.e., such thatoi∈Dpi = 1, p satisfies p=pP=vP∞

for any probability vector v (on D ). For details, cf (Norris, 1998).

TPT provides a rigorous characterization of the ensemble of

trajectory pieces, flowing out last from a region A⊂D, followed by going

to a region B⊂D, disconnected from A . Such trajectory pieces are called

reactive trajectories. This terminology (E and Vanden-Eijnden, 2006; W

and Vanden-Eijnden, 2010) originates in chemistry, where A (B ) is

identified with the reactant (product) of a chemical transformation. The

fluidic interpretation of reactive trajectories is of trajectories of diffusive

tracers that contribute to the bulk transport betweenA and B , which can
be thought as a source and a sink or target, respectively.

REMARK 1. For a diffusive tracer to fit the above interpretation, its

evolution must be described by a stationary stochastic process, i.e., an

advection–diffusion equation with a steady velocity. This can be seen by

discretizing its Lagrangian motion using, for instance, Ulam’s method

(e.g Kovács and Tél, 1989; Koltai, 2010), which consists in projecting the

probability density of finding a tracer on a given spatial location at a

discrete time instant onto a finite-dimensional vector space spanned by

indicator functions on boxes, which, covering the flow domain, are

normalized by their area (Miron et al., 2019a). The boxes represent the

states of the autonomous, discrete-time Markov chain that the diffusive

tracer parcels wander about.

The main objects of TPT are the forward, q+ = (q+i )i∈D, and
backward, q− = (q−i )i∈D, committor probabilities. These give the

probability of a trajectory initially in box Bi to first enter B and last

exitA , respectively. The committors are fully determined by P and p by

solving two linear algebraic systems with appropriate

boundary conditions.

Specifically,

t+S : = inf   nT ≥ 0 :Xn ∈ Sf g,  inf  ∅ : = ∞, (2)

is the (random) first entrance time of a set S⊂D. The forward

committor is

q+i : = Pr  (t+B 〈 t
+
AjX0 = i) : (3)
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Note that q+i∈A = 0 and q+i∈B = 1. For i ∈ D \ (A ∪ B),

q+i = o
i∈D

Pijq
+
j : (4)

In turn,

t−S : = sup   nT ≤ 0 :Xn ∈ Sf g,  inf  ∅ : = −∞, (5)

which is a stopping time, but for the reversed chain X−
n : = X−n, i.e.,

the one that traverses the original Markov chain backward in time,

i.e., X−
n :X−n. The reversed chain’s transition matrix, P− = (P−

ij )i,j∈D,
where

P−
ij : = Pr  (X−

n+1 = j X−
n = i) = Pr  (Xn = jj jXn+1 = i) =

pj
pi

Pji, (6)

since Pr (Xn=i)=pi , the chain is in stationarity. The time-reversed

transition matrix P− is ergodic and mixing and has the same

stationary distribution p as P . The backward committor,

q−i : = Pr  (t−B 〈 t
−
AjX0 = i) : (7)

In this case,

q−i = o
i∈D

Pijq
−
j (8)

for i ∈ D \ (A ∪ B), subject to q−i∈B = 0 and q−i∈A = 1.

Four main statistics of the ensemble of reactive trajectories are

expressed using the committor probabilities:

1. The reactive probability distribution, pAB = (pABi )i∈D, where
pABi is defined as the joint probability that a trajectory is in box Bi
while transitioning from A to B . This is computed as (Metzner et al.,

2009; Helfmann et al., 2020)

pABi = q−i piq
+
i : (9)

2. The reactive probability flux, f + = (f +ij )i,j∈D, where f
+
ij gives the

net flux of trajectories going through Bi and Bj in one time step on

their direct way from A to B , indicates the dominant transition

channels from A to B . According to Noé et al. (2009) and Helfmann

et al. (2020), this is computed as:

f +ij : = max   fABij − fABji , 0
n o

, fABij = q−i piPijq
+
j : (10)

3. The reactive rate of trajectories leaving A or entering B,
defined as the probability per time step of a reactive trajectory to

leaveA or enterB, is computed as (Metzner et al., 2009; Helfmann et al.,

2020)

kAB : = o
i :∈A,j∈D

f ABij ≡ o
i∈D,j∈B

f ABij : (11)

ivided by the transition time step T , kAB is interpreted as the frequency
of transition paths leaving A or entering B (Miron et al., 2021).

4. Finally, the reaction duration, tAB , of a transition fromA to B is
obtained by dividing the probability of being reactive by the reactive

rate, interpreted as a frequency (Helfmann et al., 2020):

tAB : = oi∈Dp
AB
i

kAB=T
: (12)
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2.2 Adapting transition path theory to the oil
spill problem

Let x(t) represent a very long oil parcel trajectory visiting every

box of the covering of D . Assume that this not different from any

other trajectory, namely, it represents a realization of a stationary

random process. Then, x(t) and x(t+T) at any t>0 provide

observations for Xn and Xn+1 , respectively. Under these conditions,

we can approximate Pij via counting transitions between covering

boxes, viz.,

Pij ≈
# x(t) ∈ Bi, x(t + T) ∈ Bj

� �
# x(t) ∈ Bi,f g , t : any: (13)

In general, the domain D potentially affected by an oil spill will

represent some portion of the ocean. This makes D an open flow

domain. In such a case, P cannot be row-stochastic, which requires an

adaptation of TPT. To achieve the required adaptation, we first

replace P by a row-stochastic transition matrix ~P defined by

~P : =

P pD!w 0

pD w 0 0

pO R 0 pR!R

0
BB@

1
CCA (14)

on the extended (N+2) -dimensional state space

~D : = D ∪ w ∪ R (15)

Here, w denotes a virtual state, called a two-way nirvana state, which

absorbs probability mass imbalance in D and sends it back to the

chain. More precisely, in Eq. 14,

pD!w = 1 − o
j∈D

Pij

 !
i∈D

(16)

gives the outflow from D , while pD w gives the inflow, which can be

constructed, as we do below, using reentry information available from

trajectory data outsideD . In turn,R is another virtual state, called an

oil reservoir state, from which the chain drains probability mass

through the oil spill site O⊂D . That is,

pO R =
1O
Oj j (1 − pR!R), (17)

so thatoi∈Dp
O R
i + pR!R = 1. [The notation 1S is used to mean a

vector on (the N -dimensional space given by the covering of) D with

ones in the entries corresponding to (subcovering) S⊂D and zeros

elsewhere]. Below, we will expand on how to set pR!R. As in the

standard TPT setup presented in Section 3.1, the stochastic process

described by ~P in Eq. 14 is assumed to be in stationarity. The

stationary distribution on ~D is denoted ~p . (Herein, a tilde is used to

emphasize that the quantity in question is computed using the

extended Markov chain on ~D.) A caveat to note is that the Markov

process on ~D cannot be strictly ergodic becauseR is never visited by a

trajectory unless it starts there. Yet, this does not rule out the existence

of a well-defined ~p (unless pR!R=0, in which case ~p jR = 0, and

hence ~p will not be strictly componentwise positive).

Now, arguably, it is the oil that reaches the coastline or any region

one may want to protect what really matters, irrespective whether oil

trajectories visit the spill site many times in between. Call this region
Frontiers in Marine Science 04
P ⊂ D. The former cannot be achieved by simply setting A=O and B
= P.

PROPOSITION 1. To achieve the desired effect, which requires a

slight deviation from the standard TPT setting, one must setA =R ∪ w
and B = P for the computation of ~q+ for extended chain on ~D, while
A=R and B=P∪w for the computation of ~q−(on ~D).

Indeed, placing the source in R enables oil paths visiting O , and

including w as indicated prevents trajectories from escaping the flow

domain, thereby highlighting the portion that flows into through D
(Figure 1). The TPT formulas in Section 2.1 remain the same with the

above choices of A ⊂ ~D and B ⊂ ~D, and, of course, the use of ~P and
~p in place of P and p , respectively, in them.

Inclusion of a two-way nirvana state is not new, as it was first

applied by Miron et al. (2021) to treat transition paths of marine

debris into the subtropical oceans’ great garbage patches. Additional

TPT applications involving this type of closure include those detailed

in Refs (Beron-Vera et al., 2022a; Beron-Vera et al., 2022b; Drouin

et al., 2022; Miron et al., 2022). The use of an oil reservoir state is

novel in TPT.
2.3 A proposal for using transition path
theory to predict oil paths and arrival

We propose to apply TPT such that it makes use of available oil

trajectories up to the present, to make a prediction beyond, so it does

not rely on forecasted oil trajectories. This follows precedent work

(Olascoaga and Haller, 2012), which was able to predict sudden

changes in the shape of the oil slick during the Deepwater Horizon

spill. The expectation is that such a type of prediction should be

superior than that based on forecasted velocities, which are not

validated by data as is the case of hindcast velocities from an

analysis system. Moreover, when available, the scheme enables the

use of velocities inferred from high-frequency radar measurements

and even trajectories of appropriate satellite-tracked surface

drifting buoys.

The proposed prediction scheme more specifically consists in

applying TPT using trajectories over a few time steps prior to the

prediction time, say t0=n0T . That is, we propose to compute the

closed transition matrix ~P for the augmented Markov chain on ~D, as
given by Eq. 14, and the various TPT statistics from it according to

Proposition 1, by making use of all trajectories available over t∈{(n0
−m)T,…,(n0−1)T,n0T} for some m≤n0 . This way, a prediction for the

spilled oil distribution on t=(n0+1)T , in direct transition into the

region to be protected, P, is obtained. The skeleton thereof will be

provided by the two-dimensional vector field taking values at discrete

positions xi , where xi is the center of box Bi∈D , given by

J(xi) : = o
j∈D

~f +ij e(i, j), (18)

where e(i,j) is the (two-dimensional) unit vector pointing from xi to xj,

the center of box Bj∈D . The above is a visualization means of reactive

probability flux, proposed in (Helfmann et al., 2020). We will refer to

Eq. 18 as the reactive current at position xi . The prediction can be

updated, as we will do in the examples we provide below, by

computing TPT using trajectories within time windows sliding over

the prediction time t0 (or n0).
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In the present exploratory work, the oil evolution in every case

will be obtained by pushing forward a probability vector on ~D with

support in R at time t=0 , namely,

~o(0) =
~1R
Rj j , (19)

under right multiplication by a nonautonomous version of the

augmented chain transition matrix ~P in Eq. 14. Denoted by ~P(n) to

make explicit its dependence on t=nT , this will be constructed by

accounting for the start time t in the estimation of P in Eq. 13. To add a

bit of extra realism, we will set pR!R in Eq. 14 to

pR!R(n) =
1

N − n + 1
, (20)

representing an oil reservoir that is drying over the time interval t∈{0,
T,2T,…,NT} . Indeed, when n=N , pR!R=1 , meaning that the

probability mass flux into the ocean domain D through the oil spill

site O is nil. That is, the reservoir R has completely dried out by

t=NT. This assumption may be adapted based on any information

available about how quickly the oil reservoir may be expected to
Frontiers in Marine Science 05
empty or a spilling oil well may be capped. The total accumulated oil,

which flows out from R into D through O in an uninterruptedly but

decaying in time manner, at discrete time t=nT will be given by o(n) =
~o(n)jD , where

~o(n) = ~o(0) Id  +o
n−1

k=0

Yn−1
l=k

~P(l)

 !
: (21)

Note that ~o(n), and hence o(n), does not need to be a probability

vector, and the units in which o(n) is measured are determined by the

units assigned to ~o(0).

To incorporate the effects of a drying oil reservoir in the TPT

prediction step, the autonomous transition matrix ~P used in that step

will have to be constructed using pR!R in Eq. 14 as the average value

of over the corresponding time interval.

The idea of using trajectory information up to the present

prevents us from using the extension of TPT for time-

inhomogeneous Markov chains proposed in (Helfmann et al.,

2020), as it might be thought to be more suitable for a prediction

scheme in a naturally time-varying environment. The reason is that,
FIGURE 1

The framework for the TPT-based prediction scheme is an autonomous, discrete-time Markov chain on a state space given by the box covering of a
two-dimensional, open ocean domain, D, augmented by two virtual boxes or states. One state, called a two-way nirvana state and denoted by w ,
compensates for probability mass imbalances due to the openness of D. The other state, called an oil reservoir state and denoted by R, injects
probability mass into the chain through the spill site, O⊂D. Highlighted in red is the restriction to D of a reactive trajectory connecting R with P ⊂ D, a
region that is targeted to be protected, chosen to be the shoreline in the cartoon. Such a trajectory flows last from R and next goes to P, while being
constrained to stay in D, once it enters D. So defined, a reactive trajectory of oil may return back many times to the spill site before reaching the
protected area. TPT provides a statistical characterization of the ensemble of reactive trajectories, highlighting the dominant paths of oil into P. The
reentry into D from w uses information available from trajectory data outside D. There are many reentry doors; we depict, for illustrative purposes, the
trajectory through one such doors.
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as formulated, nonautonomous TPT requires unavailable trajectory

information and knowledge of when P will be hit by transition paths.

A final comment is reserved to the oil trajectories themselves. If

u(x,t) denotes the surface ocean velocity, as output from an ocean

circulation model, and u10(x,t) is the wind velocity at 10 m above the

sea surface, as produced by some atmospheric circulation model, the

oil trajectories will here be obtained by integrating

_x = u(x, t) + au10(x, t), 0 < a ≪ 1, (22)

for many initial conditions over a domain including the ocean

domain D of interest; thus, reentry information, namely, that

required to evaluate pO w in Eq. 14, is available. Equation 22 is a

minimal law for oil parcel motion (Abascal et al., 2009; Abascal et al.,

2012). It exclusively accounts for the wind action on oil parcels,

neglecting weathering effects. Typically employed values of a range

from 2% to 4% (ASCE, 1996).
3 Results

3.1 Hypothetical oil spill in the Trion field

We begin by applying our proposed TPT-based prediction

scheme to a hypothetical oil spill in the Trion field, located within

the Perdido Foldbelt, a geological formation in the northeastern

Gu l f o f Mex i co wi th an impor tan t o i l r e s e rvo i r f o r

u l t radeepwater dr i l l ing under deve lopment (Off shore

Technology, 2020). This will be done by considering two

different velocity representations.
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In the first representation, u in Eq. 22 is chosen to be given by a

daily climatology of surface velocity constructed from velocities over

18 years (1995–2012) produced by a free-running regional

configuration for the Gulf of Mexico at 1/36∘ horizontal resolution

(Jouanno et al., 2016) of the ocean component of the Nucleus for

European Modelling of the Ocean (NEMO) system (Madec and the

NEMO team, 2016). This dataset was used in (Gough et al., 2019) to

investigate persistent passive tracer transport patterns using so-called

climatological Lagrangian coherent structures (cLCSs) (Duran et al.,

2018). A main finding was the presence of a mesoscale hook-like cLCS

providing a barrier for cross-shelf transport nearly year-round.

Consistent with the motion of historical satellite-tracked drifting

buoys, with the majority of them including a drogue, albeit shallow

(cf (Miron et al., 2017) for details), synthetic drifters originating

beyond the shelf were found to be initially attracted to this cLCS as

they spread anticyclonically and eventually over the deep ocean. In

(Gough et al., 2019), it is noted that this should have implications for

the mitigation of contaminant accidents such as oil spills. This

picture, however, may be altered for oil, as this is expected to be

influenced by the wind action, which, in (Gough et al., 2019), was not

accounted for when winds are strong. To evaluate their effect, we need

a representation for u10 in Eq. 22, which is chosen to be provided by

daily climatological wind velocity at 10 m height from the European

Centre for Medium-Range Weather Forecasts (ECMWF)

atmospheric reanalysis ERA-Interim (Dee et al., 2011).

In Figure 2, we present our first set of results. These are based on

the use of trajectories obtained by numerically integrating Eq. 22 with

the daily climatological NEMO + ECMW velocity data above, using a

fourth-order Runge–Kutta scheme with cubic interpolation in space
FIGURE 2

(Top panels) Based on the daily climatological NEMO + ECMW oil velocity model, predictions on time t=t0 of (normalized) reactive rates of arrival of
transition paths, through the open northwestern Gulf of Mexico domain D and into the coastline (P), of oil emerging from a hypothetical open well in
the Trion field (O), located within the Perdido Foldbelt, since t=0, corresponding to February 1. The transition time step, T=1 day. (Bottom panels)
Relative distribution of accumulated oil on t=t0+T, overlaid with predicted (on t=t0 ) reactive currents, indicating transition oil paths into P.
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and time. The integrations, reinitialized every day along the month of

February, span T=1 day. We consider initial conditions distributed

uniformly over an ocean domain larger (by 1∘ to the east and south)

than that one (D) contained inside [98∘ W, 93∘ W] × [24 ∘ N, 30 ∘ N],

shown in Figure 2. To evaluate the transition matrix on D, using Eq.
13, we cover D with boxes of about 1/6∘ side, including roughly 100

test points per box when trajectories initialized once are only

considered. The transition time step T=1 day guarantees sufficient

loss of memory into the past for the Markovian assumption to hold;

indeed, the typical decorrelation timescale on ocean surface is not

longer than 1 day as estimated from drogue drifting buoys (LaCasce,

2008) and is likely to be even shorter when the wind action is

accounted for. Stationarity of the Markov chain on the extended

domain ~D is checked numerically. That is, we check that the largest

eigenvalue of the transition matrix ~P has multiplicity 1, and is equal to

1, to numerical precision. However, in the computation of P, namely,

the transition matrix on the open domainD, we make sure to allow as

much communication as possible along the corresponding Markov

chain by applying Tarjan’s (Tarjan, 1972) algorithm on the associated

directed graph, as we have done in earlier work [e.g (Miron et al.,

2017; Miron et al., 2019a; Miron et al., 2019b; Beron-Vera et al., 2020].

This can result in some boxes of the covering of the ocean domain to

be excluded, particularly when dealing with observed (satellite-

tracked) trajectories, as we consider in Section 3.2 below.

With O, the oil spill site, taken to be a box of the covering of D
closest to the Trion field and P, the region to be protected, taken to be

the coastal boxes, the top row of Figure 2 shows the predicted reactive

rate of (oil) trajectories entering each box of P for selected times since

since 1 February when the oil spill is hypothetically initiated.

Specifically, we show this normalized to a probability vector on D,
viz.,

k  : = o
i∈P

~kRBi

oi∈P
~kRBi

1Bi
jp,~kRBi = o

l∈D

~fli = o
l∈D

~fil ,   i ∈ P, (23)

where the TPT computation follows Proposition 1. More precisely, in

the TPT calculation, we apply Proposition 1 for each i∈ P, i.e., with P
replaced by i∈P. The transition matrix of the augmented chain in ~D,
given by Eq. 14, is computed using trajectories over t∈{t0−2T,t0−T,t0}
for every t0 in Figure 2. The coastal boxes that are predicted to be most

affected by the oil spill correspond to those where components of k in

Eq. 23 take the largest values. Note, in this case, that the predicted

coastal boxes that will be most affected change over time, moving

from the boxes corresponding to the Mexican state of Tamaulipas

north toward the international border with the United States. This is

consistent with the updated reactive current predictions and, most

importantly, with the portion of the simulated spilled oil distribution

directed into the coastline. This is depicted in the bottom row of

Figure 2. More specifically, the heatmap in each panel is of o(n0 + 1) =
~o(n0 + 1)jD, with ~o(n) given in Eq. 21, but normalized to a probability

vector, giving the relative distribution of oil that has accumulated on

D at time t=t0+T=(n0+1)T. Overlaid on each heatmap are the

predicted reactive currents (Eq. 18) on each t0. These are seen to

anticipate, T=1 day in advance, the motion of the oil directed into the

coastline quite well. An important observation is that the main factor

responsible for this motion is the wind action on the oil, which makes

it bypass the cross-shelf transport barrier for passive tracers shown
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(Gough et al., 2019) to be supported nearly year-round by the

climatological NEMO surface ocean velocity field. Indeed, the

winter season is dominated by “nortes” (Gómez Ramı́ rez and

Reséndiz Espinosa, 2002). These are strong, predominantly

northerly winds suddenly produced after the passage of a cold

front, which, imprinted in the daily climatology, promote the

accumulation of the oil toward the coastline.

In addition to predicting the transition paths of oil into the

coastline, TPT can give a prediction for the arrival time of the oil.

Using the reaction duration formula (Eq. 12), but on the extended

Markov chain on ~D and for each i ∈ P, as done to compute the

reaction rate (Eq. 23), we compute on t0=2 days, the first time a

prediction can be made, that

min
i∈P

~tRBi
� �

= min
i∈P

ol∈~D~p
RBi
l

~kRBi=T

( )
≈ 14 days: (24)

early prediction turns out be somewhat longer than the actual arrival

time to the coast, which happens approximately 11 days after the

(simulated) oil started. This assessment is rough, based on when oil

probability mass is found for the first time in a coastal box,

independent of how much. With this in mind, early prediction (Eq.

24) is not that off at all, but one may wonder if it could be updated

with time, i.e., as newer data become available. This is hopeless using

Eq. 12, as it computes the duration of the whole reaction from source

to target, which are fixed in space. However, the desired update of the

arrival time prediction may indeed be accomplished. We discuss how

in the last section.

The second representation for u in Eq. 22 that we consider is

provided by hourly surface ocean velocity output from the HYCOM

(HYbrid-Coordinate Ocean Model) + NCODA (Navy Coupled

Ocean Data Assimilation) Gulf of Mexico 1/25∘ Analysis

(GOMu0.04/expt_90.1m000) (Chassignet et al., 2007). For u10 in

Eq. 22, we use three-hourly wind velocity, 10 m above the sea surface,

from the National Centers for Environmental Prediction (NCEP)

operational Global Forecast System (GFS) analysis and forecast at 1/4∘

horizontal resolution (National Centers for Environmental Prediction

et al., 2015). In neither case did we consider forecasted velocities;

instead, we considered a record, from 22 July 2022 through 8 August

2022, of hindcast velocities, i.e., as produced by the systems while they

assimilated observations “on the fly” to make the forecasts. The TPT

setup for the HYCOM + NCEP oil velocity is similar to that for the

climatological NEMO + ECMWF oil velocity. For instance, trajectory

integrations are reinitialized daily and span T=1 day, and the number

of boxes of the domain partition is similar to a comparable number of

test points per box. Unlike the climatological case, the time origin (t=0

) of the oil spill simulation corresponds to a specific day of the current

year, chosen to be 22 July 2022. The simulation extends out to 8

August 2022. Covering a summer time period, it is not affected by

“nortes” wind events, which prevail in winter. The results are shown

in Figure 3. As can be expected, an important difference with those

shown in Figure 2 is a stronger influence of the cross-shelf transport

barrier for passive tracers on the distribution of the simulated oil,

which, while eventually reaching the coastline, starts to develop a

hook-like shape pointing into the open ocean by t=16 days, similar to

that described in (Gough et al., 2019). This happens after part of the

oil is trapped in an anticyclonic circulation. The predicted arrival
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location on t0=2 days falls quite close to the arrival location, which

takes place between the southern Texas cities of Corpus Christi and

Galveston on t≈9 days. The early prediction (on t0=2 days) of arrival

time is t≈6 days, which is shorter than the arrival time, calling for

an update.

Overall, the above results provide support to our proposed TPT-

based oil spill prediction scheme, based on the assumption that the

motion prior to the prediction time is representative of motion

beyond it, for some time, which we test against observations in the

section that follows.
3.2 The Deepwater Horizon oil spill

The basic assumption on which the TPT-based oil prediction

scheme builds on, namely, that environmental conditions prior to the

prediction time can be prolonged beyond it, for some time, is here

tested using oil arrival time estimates for the Deepwater Horizon spill

(Crone and Tolstoy, 2010). Shown in the heatmap in the center panel

of Figure 4, the arrival time estimates are inferred using available

satellite images of the oil slick, as produced by the National Oceanic

and Atmospheric Administration (NOAA) National Environmental

Satellite Data and Information Service (NESDIS) Marine Pollution

Surveillance Program (Streett, 2011). The time origin is 22 April 2010,

when the Macondo well started to spill oil due to the sinking of the

mobile offshore rig after an explosion caused by a blowout 2 days

before (Crone and Tolstoy, 2010). The value assigned to each colored

pixel corresponds to the first time (in days) the oil visited that pixel.

Four TPT-based estimates, based on four different Markov chains,

of the arrival time are shown in Figure 4, two in the top panels and

two in bottom panels. More specifically, these are reaction durations
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(Eq. 12) into each box (Bi) of the set S of the domain covering (D) that
most closely intersects the region in the center panel of Figure 4 where

the oil was observed to be occupied in the satellite imagery. More

specifically, we show

t : = o
i∈S

~tRBi1Bi
j
S
, (25)

computed using Proposition 1 with P replaced by i∈S. The Markov

chains are constructed as follows.

For the top panels of Figure 4, we use T= 1 -day-long trajectories

integrated from Eq. 22 in the interval 22 April 2010 through 29 April

2010, the day when the satellite images record reveal oil on the surface

for the first time (since the spill started, on 22 April 2010). For both

panels, we use u in Eq. 22 represented by daily surface ocean velocities

produced by the experimental real-time Intra-Americas Sea Nowcast/

Forecast System (IASNF) at 1/25∘ horizontal resolution, which is

based on the U.S. Naval Coast Ocean Model (NCOM) (Ko et al.,

2003). In turn, the wind (u10) velocity representation is obtained from

daily 1/4∘ horizontal resolution winds at 10 m from the NOAA/

National Centers for Environmental Information (NCEI) Blended Sea

Winds product (Zhang et al., 2006). The difference between the top

left and right panels is that in the former, the oil model velocity uses

a=0 , i.e., the wind effect is shut off, and in the latter, a=0.03, as we
have set above. The size of each box of the covering is 1/25∘×1/25∘, and

the number of test points per box is (roughly) 100.

For the bottom panels of Figure 4, we consider pieces of length T=1

day of historical, i.e., available since 1992 to date, satellite-tracked

trajectories of surface drifting buoys from the NOAA Global Drifter

Program (GDP) (Lumpkin and Pazos, 2007) with the following

distinction: in the left panel, we consider drifters that have their (15-

m-long) drogues (sea anchors) attached at all times, while in the right
FIGURE 3

As in Figure 2, but based on the HYCOM + NCEP oil velocity model and t=0 corresponding to 22 July 2022.
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panel, only those that do not have a drogue attached during the extent of

the record (because this has been lost at the beginning of the record, after

deployment, as assessed by the drogue presence algorithm of (Lumpkin

et al., 2012), or because the drifter was intentionally deployed

undrogued). The size of each box of the covering is. for the drogued

and the undrogued drifters. The number of test points per box is small

compared to that of the simulated oil trajectories, with only about test

points per box.

Comparison of the top right panel of Figure 4 with the center

panel reveals that our assumption that simulated trajectories up to the

prediction time can be used to indeed make reliable predictions

(beyond) holds quite well, at least for environmental conditions

prevalent during the Deepwater Horizon spill, and during the

timespan covered by the satellite imagery of the oil slick. In this

case, windage in the minimal oil parcel trajectory model (Eq. 22) does

not dramatically impact the TPT-based computation, as can be seen

from the comparison of the top right panel with the top left panel.

Recall that these use trajectories integrated over 7 days prior to the

first time oil is observed on the ocean surface and that the satellite oil

images record extends for 30 days. Moreover, even TPT results based

on historical drifter trajectories are reasonable, irrespective of whether

the drifters are drogued or undrogued, as it follows from the

inspection of the bottom panels of Figure 4. These results might
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not come as a big surprise, as an analysis of daily climatological model

velocities was successful in reproducing the “tiger tail” shape

produced by the Deepwater Horizon oil slick (Duran et al., 2018).

Similarly, the analysis of altimetry-derived surface ocean velocities

was capable of reproducing a similar shape into which drifting buoys

from the Grand Lagrangian Deployment (GLAD) organized along

(Olascoaga et al., 2013).

Clearly, the above results for the Deepwater Horizon oil spill, the

largest and best documented oil spill, may not be made extensible to

other oil spills in other regions of the ocean and in seasons with more

variable environmental conditions. Yet, they are an encouraging sign

of the validity of the assumption on which our TPT-based oil

prediction scheme builds on. In such more variable environments, a

more sophisticated model than Eq. 22 may be needed and there is also

ample space to improving the TPT setup. We highlight possible or

required improvements below.
4 Summary and concluding remarks

In this paper, we have given the first steps toward building an oil

spill prediction scheme based on the use of TPT for autonomous,

discrete-time Markov chains on boxes, which cover a typically open
FIGURE 4

Estimated from satellite images of the Deepwater Horizon oil slick, time to first find oil on the surface of the ocean since 22 April 2010, when the spill
started to spill from the Macondo well (center panel), along with the reaction duration of transition paths into each box of the subset S of the domain
covering D that most closely intersects the region visited by the surfaced oil according to trajectories integrated from surface NCOM velocities (top left
panel) and the latter with the addition of 3% NOAA/NCEI windage (top right panel) over a period of 7 days prior to the first time oil was found on the
ocean surface on 29 April 2010, and trajectories produced by historical satellite-tracked surface drifters with drogue present (bottom left panel) and
absent (bottom right panel).
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flow domain, a result under an appropriate discretization of the oil

motion, assumed to be described by a stationary stochastic process,

namely, to obey an advection–diffusion with a steady velocity.

Transition paths highlight the main conduits of communication

between a source and a target in the phase of a dynamical system

under noise, and thus, they can be used to unveil the main routes of

oil from an accidental spill in the ocean into a region that

needs protection.

The basic premise of the TPT-based oil prediction scheme is that

trajectory information up to the prediction time can be used to infer

oil motion beyond it. The TPT setup deviates from the standard

TPT setup in that one needs to cope with the openness of ocean flow

domain where a spill takes place, which is accounted for by the

addition of a virtual box (state) that compensates for probability

mass imbalances, and also with a way to represent the injection of oil

in to the open flow domain, which is done via the addition of

another virtual state representing an oil reservoir. The scheme was

tested by considering a hypothetical oil spill in the Trion field,

located within the Perdido Foldbelt in the northwestern Gulf of

Mexico, and the Deepwater Horizon oil spill, giving good signs of

its validity.

Several improvements to the proposed scheme are possible or

required. These should help increase the quality of the predictions,

particularly under environmental conditions that are more variable

than those of the situations considered here.
Fron
• In the examples considered, the prediction time increment, say

Dt0 , was chosen to be equal to the transition time step (T).

For the Markovianity assumption to be fulfilled, T should not

be taken shorter than 1 day, the typical Lagrangian

decorrelation time in the surface ocean. However, there is

no restriction on the choice of Dt0 , and the frequency of

prediction updates may be higher than daily.

• In a similar manner to the prediction of transition paths of oil

into the region one desires to protect being updated over

time, the duration of the paths should also be updated, as it is

not just where oil will end that needs to be known, but when it

will arrive at the protected area. This will require one to

compute the reaction duration into the target region from any

place in between it and the source. Mathematically, this is

given by the expectation of the random time to first enter the

target conditioned on starting on any box (state) of the chain

while the trajectory is reactive. A collection of such boxes can

be chosen to be those where the updated reaction distribution

(Eq. 9), which tells one where the reactive flux bottlenecks are,

acquires the largest values. There is currently no TPT formula

that accounts for this in the case of the Markov chain setting

of this paper. For diffusion processes, a related statistic is

derived in (Finkel et al., 2021).

•Another aspect that we have not accounted for is oil beaching. This

is an additional source of openness of the flow domain. Beaching

has been incorporated in a physically consistent manner in the

problem of plastic pollution (Miron et al., 2021). Such a solution

does not seem appropriate for the oil problem, and beaching
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may necessarily result in a nonstationary Markov chain. The

nonautonomous extension of TPT in (Helfmann et al., 2020)

does not require the Markov chain to be stationary, which may

provide a resolution to this aspect. However, nonautonomous

TPT requires trajectory information past the prediction time,

and thus, a different strategy to cope with beaching will need to

be designed.

• Last but not least is the oil parcel trajectory model. We have

considered the minimal possible model, which only accounts

for windage in a bulk manner. The typically used windage

accounts for the effects of wave-induced Stokes drift, which

may be explicitly added to the ocean surface velocity with the

corresponding reduction of the windage. The Stokes drift

may be obtained from a wave model. The full ocean surface

plus wave-induced drift is measured, partially at least (Graber

et al., 1997; Röhrs et al., 2015), by high-frequency radars,

which, when available, may be easily incorporated. Additional

improvements may be provided by the Maxey–Riley theory

for floating material on the ocean surface (Beron-Vera et al.,

2019; Olascoaga et al., 2020), which includes a law for

windage depending on buoyancy in closed form, or

consideration of the output from an oil spill trajectory

model like OpenDrift, which accounts for weathering

effects, as noted in the Introduction. The trajectories

produced by the minimal model or improvements thereof

may be combined with trajectories of satellite-tracked

appropriate drifting buoys, if these are deployed in the area

where the oil spill takes place.
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