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Polyethylene microplastics
increases the tissue damage
caused by 4-nonylphenol in
the common carp (Cyprinus
carpio) juvenile

Esraa Ammar1, Mahmoud S. Mohamed2

and Alaa El-Din H. Sayed2*

1Department of Molecular Biology, Molecular Biology Researches & Studies Institute, Assiut
University, Assiut, Egypt, 2Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
Plastic particles have the ability to transfer harmful chemical pollutants due to

their high adsorption capacity. Therefore, this study aimed to investigate the

effects of combined exposure to polyethylene microplastics (PE-MPs) and 4-

nonylphenol (4-NP) on juvenile common carp (Cyprinus carpio) using

histopathological and histochemical biomarkers. Fish were separated into a

control group and three treatment groups (10 mg/L PE-MPs; 10 mg/L PE-

MPs + 200 µg/L 4-NP; 200 µg/L 4-NP) for a two-week continuous exposure

experiment followed by two weeks of recovery. The three treatment groups

showed histopathological changes compared to the control. These alterations

included severe edema, lifting of the outer epithelium, interlamellar fusion and

vacuolation, secondary lamellar shortening and complete fusion, increased

mucous cell numbers in the gill tissue, enlargement of inner layer stratum

periventricular, cell degeneration with pyknotic nuclei, increased blood

capillaries, spongiosis in the brain tissue (optic tectum), central vein

hemorrhage, shrunken and fatty degeneration of hepatocytes, rosette shapes

around small congested blood sinusoids, vacuoles, necrosis, and severe

glycogen reduction in the liver tissue. Some tissue changes improved during

the two-week recovery period but did not return to normal. In conclusion, the

mixture exposure of the PE-MPs and 4-NP on fish carp induced some

histological alterations in most studied tissues and post-exposure made

improvement in cellular and tissue structure.
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Introduction

Plastic pollution is a serious global problem, especially in

aquatic environments contaminated by industrial chemicals that

can cause serious damage during the developmental and adult

stages of fish, amphibians, and other organisms (Radhaiah et al.,

1987). Plastic wastes decompose into small fragments when

exposed to ultraviolet light, hydrolysis, mechanical wearing, and

biodegradation (Andrady, 2011). The capacity for heavy metal

adsorption on microplastic (MP) surfaces increases as particle size

decreases, confirming the importance of particle size in adsorption

(Wang et al., 2019a;Wang et al., 2019b). Due to their small size and

low density, MPs can be transported over long distances (Cózar

et al., 2017; Barboza et al., 2018a) and have become globally

distributed (Suaria et al., 2016; Auta et al., 2017). MPs are defined

as plastic particle fragments ranging in size from 5 to 100 nm

(Gigault et al., 2018) and can be classified according to their

monomer backbone structure as polypropylene, polystyrene,

polyamide, polyvinyl chloride, or polyethylene (PE)

(Bouwmeester et al., 2015; Li et al., 2016). PE is the most

common type of plastic, with the chemical composition (C2H4)n

(da Costa et al., 2016; de Sá et al., 2018). Products made from PE

include plastic bags, storage containers, packaging, and toys

(Lusher et al., 2020). The toxic effects of exposure to PE-MPs can

produce more severe alterations in some tissues than exposure to

larger PE particles (Hamed et al., 2022).

As a result of their high adsorption capacity, plastic particles

can adsorb or accumulate other environmental contaminants on

their surface, exceeding the concentrations found in the

surrounding water (Mato et al., 2001). Aquatic organisms may

respond differently to combined exposures to MPs and other

contaminants than to individual contaminants (Yi et al., 2019).

The presence of MPs has been suggested to aggravate the toxicity

of coexisting contaminants in aquatic organisms in this regard,

according to some previous studies (Jinhui et al., 2019). The

toxic effects of MPs on aquatic communities can be ascribed to

the ingestion of MPs and their additives by fish, mussels, turtles,

and zooplankton (Fossi et al., 2016; Botterell et al., 2019; Li et al.,

2019). Ingestion of MPs can physically and chemically affect

aquatic organisms, with additives and adsorbed organic

chemicals having a significant impact on physiology (Barboza

et al., 2018a; Barboza et al., 2018b). Plastic debris can cause

negative effects via structural damage caused by the particles,

chemicals added to plastic products during their manufacture

and their use (such as abrasives), and environmental

contaminants absorbed by the plastic (Teuten et al., 2009;

Frias et al., 2010; Hahladakis et al., 2018).

Chemical contaminants and MPs have been shown to

synergistically interact, causing significant changes to the liver,

brain, muscle, and intestinal homeostasis (Rainieri et al., 2018).

MPs are accumulated in the guts of aquatic organisms and

transported to other organs via the circulatory system (Jin et al.,

2018). Plastic additives like nonylphenol and brominates are
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known carcinogens and environmental endocrine disruptors. In

freshwater and marine organisms, 4-nonylphenol (4-NP)

bioaccumulates from wastewater discharges and other sources

(Ekelund et al., 1990; Uguz et al., 2003; Ishibashi et al., 2006;

Spehar et al., 2010). At elevated concentrations, 4-NP can cause

cell lysis, kidney exhaustion, tissue damage, and reduced

hemopoietic activity in aquatic life (Senthil Kumaran et al.,

2011). Exposure to plastics and 4-NP separately can cause

various alterations, starting from changes in single cells and

ending with changes in the whole tissue and organism (Sayed

and Soliman, 2018; Ahrendt et al., 2020; Hamed et al., 2022). In

teleost fishes, the liver is essential for the metabolism of lipids

and carbohydrates and is highly sensitive to changes in the

environment. Heavy metals and other contaminants accumulate

in the liver, causing tissue damage; thus, liver histopathology can

be used as biomarker for exposure to contaminants (Hinton and

Laurén, 1990). Additionally, fish regulate osmotic pressure and

excrete waste products through their gills, which function as gas

exchange organs. This delicate vital organ is in direct contact

with aquatic environments and often suffers damage due to

environmental contaminants (Parashar and Banerjee, 2002). As

a result of water filtration, MPs are retained in the gills. Toxins

are blocked from entering the body through the gills, which

decreases their uptake by other organs but magnifies their effect

(Shah et al., 2020). MP uptake through the gills is dependent on

their size and morphology, as well as the efficiency of the filtering

apparatus (Collard et al., 2017). Contaminant exposure can also

be detected by biomarkers in the brain that are regarded as good

indicators of pollution (Ferrando and Andreu-Moliner, 1991).

We selected the common carp, Cyprinus carpio, to assess the

toxicity of PE-MPs because it is one of the most widely cultured

freshwater fish in the world (Xu et al., 2012) and a common

ecotoxicological test organism (Hamed et al., 2022). There is a

lack of understanding of the combined impact of PE-MPs on

aquatic organisms, which warrants investigation. Therefore, in

the current study, we investigated the combined toxic effects of

PE-MPs and 4-NP on juvenile C. carpio using histopathological

and histochemical biomarkers.
Materials and methods

Chemicals

We obtained 4-NP with a purity of 99.3% from Sigma-

Aldrich (Schnelldrof, Germany) and PE-MPs from Toxemerge

Pty Ltd., Australia.
Stock preparation

One gram of PE-MPs was dissolved in 1 L of distilled water,

and1g of 4-NP was dissolved in 1 L of distilled water to prepare
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the stock solutions. Both stock solutions were maintained at 4°C

in the dark and shaken before every use.
Fish acclimation

Juvenile common carp (C. carpio) (weight: 5 ± 1 g; length: 8.5 ±

1cm)wereused for this experimentwherefishstockswere regularly

maintained in the laboratory. Fish acclimation and exposure

experiments were conducted at the Fish Biology and Pollution

Laboratory of the Zoology Department, Faculty of Science, Assiut

University under physicochemical conditions: 28.5°C, pH 7.4, 6.9

mg/L DO, 12:12 h (light:dark), and 260.8 mM/cm conductivity.
Experimental design

Fish were divided into four groups, with each treatment group

containing 36 fish; treatments were performed in triplicate. The

control group and three treatment groups (10 mg/L PE-MPs; 10

mg/L PE-MPs + 200 µg/L 4-NP; 200 µg/L 4-NP) underwent a two-

week continuous exposure followed by twoweeks of post exposure.

The doses were selected according to (Sayed and Soliman, 2018;

Hamed et al., 2019). Fishwere fed a fish food pellet diet (3% of their

body weight per day), and the water was changed (50%) every day

with redosing. The physicochemical properties of the water were

monitored in the tanks (100 cm × 70 cm × 50 cm), where

acclimatization and exposure experiments were done. The water

exhibited in average 28.5°C, pH 7.4, 6.9 mg/L of dissolved oxygen,

and conductivity of 260.8 mM/cm. After the two-week exposure

and after the two-week post exposure period, six fish from each

treatmentwere randomly collected and ice-benumbed to lessen the

handling stress (Wilson et al., 2009).
Histological and histochemical analysis

The gills, brain, and liver tissues of juvenile carp were collected

and fixed in 10% neutral buffered formalin. Samples were routinely

processed using paraffin techniques and cut into 5-mm thick

sections. The sections were stained using Harris’s hematoxylin

and eosin (H & E) stain for general histology, periodic acid Schiff’s

reagent (PAS) for polysaccharides, and crystal violet for Nissl

bodies. Stained sections were examined using a VE-T2

microscope, and selected regions were photographed using a

14MP OMAX Camera (MN: A35140U3, China).
Results

Histopathology of the gills

Gill sections from the control group showed primary gill

filaments containing blood capillaries and secondary gill
Frontiers in Marine Science 03
filaments with epithelial cells in their cores, which appeared in

a ladder shape. Supportive pillar cells alternate with blood

capillaries that rest on the basement membrane and are

externally surrounded by pavement cells also resting on the

basement membrane (Figure 1A). All treated groups showed

severe deformation in gill morphology, including shortening of

the secondary lamellae (SL), atrophy, decreases in pillar cells and

blood capillaries, fusion, and vacuolation of the interlamellar

epithelium(Figure 1B). The primary gill contains thick cartilage

and shortening of the SL, epithelial cell hyperplasia and complete

fusion reaching the whole length of the SL, and displacement of

epithelial cells toward the periphery, leaving wide spaces and

vacuolated blood capillaries (Figure 1C). The primary gill

contains thick and wavy cartilage surrounded by dense

connective fibers. The secondary gill lamellae are curly in

appearance on one side and directed upward on the other side.

Displacement of the interlamellar epithelium from the basement

membrane, leaving a large irregular space, hyperplasia of cells

inside the core of SL with clear hyperemia and edema, and lifting

of the epithelium were observed (Figure 1D). Narrowing and

deformation of the primary gill core and connective tissue

degeneration, severe edema, thinning core of the SL,

hyperemia, and lifting of the outer epithelium, deformation,

atrophy, and displacement of interlamellar epithelial cells from

the basement membrane leaving a large irregular space, were

observed (Figure 1E). Wing shape and displacement of the SL

core at one side, lifting of the outer epithelial cells leaving space,

and hyperemia were observed (Figure 1F). The SL core

disappeared, and the interlamellar epithelium becomes

connected, except the central line of SL, marked thinning and

elongation of the SL were observed, and brown pigments were

noticed in the core of primary lamellae (PL) (Figure 1G).
Histochemistry of the gills

After applying PAS reagent for the detection of polysaccharide

sat the end of the two-week continuous exposure, the control

groups showed marked intensity in the BM of the PL, the

external boundary of the SL, and a few mucous-secreting cells at

the surface of the interlamellar epithelium between or at tips of the

SL (Figure 2A). The treatment groups showedmarked increases in

polysaccharides contents compared to the control group. In the

treatment groups, polysaccharides were concentrated at the basal

membrane of the PL and the periphery of the SL. Deeply stained

mucous cells migrating upward toward the external part of the SL

were also observed after exposure toPE-MPs (Figure 2B). Exposure

to PE-MPs + 4 NP resulted in increased polysaccharide contents

concentrated in the connective tissues of the PL. A faint reaction

was observed in the gill tissues, and the main concentration

occurred at the apical surface of the SL, with an increase in

mucous cells migrating upward at separate or fused SL

(Figure 2C). In the 4-NP-treated group, a faint positive reaction
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in gill polysaccharides contents was located at the rim of the

covering epithelial, with an increase in mucous cells (Figure 2D).

After the two-week post exposure period, the control group

showed a normal distribution of polysaccharides in the BM of the

PL and the surface contour of the SL, as well as mucous-secreting

cells located at the surface of interlamellar epithelium between the

SL (Figure 2E).The intensity of positive color of polysaccharide

content was observed in tissues with an increment of mucous-

secreting cells in different locations at the boundary of covering
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epithelium for the PE-MP-treated group (Figure 2F). A marked

increase in polysaccharides was observed throughout the gill,

especially at the contour of the SL. Deeply stained enlarged

mucous cells were arranged at the contour of the covering

epithelium between the SL at one side in the group exposed to

PE-MPs + 4-NP (Figure 2G). An increase in mucous cells

containing a deeply stained red mucous substance were arranged

at the contour of the covering epithelium between the SL in the

group exposed to 4-NP (Figure 2H).
B C

D E F

G

A

FIGURE 1

H & E-stained gill sections of common carp showing the normal morphological structure of the control group (A) and selected deformations
after treatment with10 mg/L PE-MPs (B, G), 10 mg/L PE-MPs + 200 µg/L 4-NP (C, F), and 200 µg/L 4-NP (D, E), as (B, C, E) for exposure period
and (D, F, G) for post exposure period. Primary lamellae (PL), secondary lamellae (SL), epithelial cells (EC), blood capillaries (BC), pavement cells
(PC), supportive pillar cells (SPC), vacuoles(V), space (S), connective fibers (CF), basement membrane (BM), lifting epithelium (LE), and edema (E).
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Histopathology of the optic tectum

The brain of common carp in the control group showed the

optic tectum region containing six major layers: the first layer

SPV in contact with ependyma containing large groups of

densely populated and small-sized neurons with deeply stained

nuclei connected by fibers and glial cells; the second layer

stratum album centrale (SAC); the third layer stratum griseum

centrale (SGC); the fourth layer stratum fibrosum et grisium

superficiale (SFGS)containing several tiny irregular spaces in an

acidophilic neuropile, spongiosis, glial cells, blood capillaries

located beside the unstained area and few large neurons with

vesicular nuclei were dispersed in these layers; the fifth layer

stratum opticum (SO) containing neuropile with unstained

space rich with blood capillaries; the outer sixth layer, the

stratum marginale (SM), is divided into three layers, the

internal layer(1) contains acidophilic neuropile with large

regions of spongiosis with blood capillaries and glial cells,

followed by the external layer (3), which consists of blood

capillaries and connective tissues covered by epithelial cells.

The internal and external layers are separated by unstained

region (2) (Figures 3A–D). Treated groups showed enlargement

of the SPV, including large groups of densely populated

differentiated neurons with vesicular nuclei at the basal regions

separated by unstained space containing fibers. Separation of the
Frontiers in Marine Science 05
apical regions, which contain degenerated cells with pyknotic

nuclei, hydropic degeneration, and hemorrhage with congested

blood capillaries, was observed. The SAC, SGC, and SFGC layers

contain several tiny irregular spaces in an acidophilic neuropile

edema/spongiosis, small blood capillaries, many glial cells, and a

few large, dispersed neurons with vesicular nuclei. The SO layer

contains meshwork acidophilic neuropile with deeply stained

degenerated neurons aggregated at the boundary and more

vascularization than the control group. The SM layer (1)

contains homogenous acid ophilic neuropile with a tiny

unstained space of edema surrounded by blood capillaries and

a small area of unstained neuropile (2), followed by (3) which

contains degenerated connective tissues and squamous

epithelial, edema, and high vascularization compared with the

control group (Figures 3E–M).
Histochemistry of optic tectum

In the control group optic tectum, a high intensity of violet

color was observed in the small neurons of the SPV filled with

Nissl bodies. The second to fifth layers contain small basophilic

Nissl bodies scattered within the large neurons; a purple stain

was present in the epithelial cells and connective tissues of the

last layer alongside glial cells (Figures 4A, a). The violet color in
B C D

E F G H

A

FIGURE 2

Gill sections (PAS reaction showing polysaccharides) of common carp showing the control group, and after treatment with 10 mg/L PE-MPs, 10
mg/L PE-MPs + 200 µg/L 4-NP, and 200 µg/L 4-NP, as (A–D) for exposure and (E–H) for post exposure, respectively. Primary lamellae (PL),
secondary lamellae (SL), connective tissue (CT), basement membrane (BM), and mucous cell (MC).
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the neuronal cells of the internal layer appears less compacted

and filled with ribonucleic acids. The second to fifth layers

contain dispersed shapes of large neurons with deeply stained

basophilic Nissl granules and perinuclei. The last layer shows
Frontiers in Marine Science 06
deeper staining after exposure to PE-MPs than the control group

(Figures 4B, b). Small neurons in the internal layer have a slight

reduction in color intensity compared to control. Degenerated

large neurons are dispersed among a layer of deeply stained
FIGURE 3

H&E-stained sections of the optic tectum region of the brain of juvenile common carp showing general morphological structure of the control group (A–D).
Selective deformations in the optic tectumafter treatmentwith 10mg/L PE-MPs (E–G, L), 10mg/L PE-MPs +200 µg/L 4-NP (H, K), and 200 µg/L 4-NP (I, J,M), as
(E–J) for exposure period, and (K–M) for post exposure period. Stratumperiventricular (SPV), stratumalbumcentrale (SAC), stratumgriseumcentrale (SGC), stratum
fibrosumet grisium superficiale (SFGS), stratumopticum (SO), stratummarginale (SM), neurons (N), fibers (F), glial cells (g), neuropil (NP), large neurons (LN), blood
capillaries (BC), hemorrhage (h), pyknotic nuclei (PN), hydropic degeneration (HD), spongiosis (S), edema (E), connective tissue (CT), epithelial cells (EC).
frontiersin.org

https://doi.org/10.3389/fmars.2022.1041003
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ammar et al. 10.3389/fmars.2022.1041003
basophilic ribonucleic acids in the second to fourth layers. The

fifth layer contains deeply stained aggregated neurons, and the

last layer shows less staining after exposure to PE-MPs

compared with the control group (Figures 4C, c). Internal

layer small neurons show a slight increase in color intensity,

the second to fourth layers contain large degenerating neurons

with perinuclei that are stained with basophilic ribonucleic acids,

the fifth layer contains deeply stained aggregated neurons, and

the last layer shows less staining after exposure to 4-NP

compared with the control group (Figures 4D, d).

After the post exposure period, the control group shows

lower intensity of violet color in all optic tectum layers compared

with the control fish (Figures 5A, a). Within the internal layer,

there is a strong violet color. The second to fourth layers contain

large numbers of dispersed and different shapes of neurons with

deeply stained basophilic Nissl granules with perinuclei. The

fifth layer is negatively stained, and the last layer shows deeper

staining concentrated in connective tissues and the outer

epithelial contour in the group exposed to PE-MPs

(Figures 5B, b). Within the internal layer, there is a strong

violet color in the small neurons, and the second to fourth layers

show numerous large neuronal structures containing basophilic

ribonucleic acids and peri nuclei dispersed widely in the tissue.

The fifth layer contains a few deeply stained neurons, and the

last layer shows deeply stained connective tissues and outer

epithelial contour in the groups exposed to PE-MPs + 4-NP and

4-NP (Figures 5C, c; D, d), respectively.
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Histopathology of liver

Liver sections of control carp show normal histological

structure with aggregated polygonal hepatocytes separated by

blood sinusoids; each hepatocyte contains acidophilic cytoplasm

situatedaround the centralnuclei (Figure6A).Treatedgroupsshow

selected deformations of the hepatocyte shape after exposure toPE-

MPs,PE-MPs+4-NP, and4-NP, includinghepatocytes collected as

a rosette shape around small congested blood sinusoids,

hepatocytes with faint heterogeneous acidophilic cytoplasm

concentrated around nuclei with degenerated or unclear borders,

necrotic areas of degenerated hepatocytes, small deeply stained

nuclei with eccentric positions in the cells and many pyknotic

nuclei, dilated and congested blood sinusoids, hemorrhage in the

central veins, and shrunken and fatty degeneration of the

hepatocytes characterized by large unstained vacuoles with sharp

outlines (Figures 6B–G).
Histochemistry of liver

Liver sections of the control group treated with PAS show

polysaccharides are abundant in hepatic cells, particularly

around both perinuclear regions, and periphery cells appear

with clear contours, fine glycogen granules in the cytoplasm, and

most positive staining occurring in the blood sinusoids (Figure

7A). The PE-MP-treated group shows diversity in the
B C DA

b c da

FIGURE 4

Crystal violet-stained sections of the optic tectum of common carp showing the control group (A, a), after a two-week exposure to 10 mg/L
PE-MPs (B, b), 10 mg/L PE-MPs +200 µg/L 4-NP (C, c), and 200 µg/L4-NP (D, d). Glial cells (g), large neurons (LN), connective tissue (CT),
epithelial cells (EC).
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distribution of positive staining materials, regions contain

glycogen granules normally distributed in hepatocytes and

other regions contain high intensity of staining, indicating

increased deposition of heavy glycogen (Figure 7B). Fewer

positively stained materials, faint reaction at the hepatocyte

contour, and internal rim beside blood sinusoids with severe

depletion of polysaccharides was observed after exposure to PE-

MPs + 4-NP (Figure 7C). This group also shows an increase in
Frontiers in Marine Science 08
the amount of polysaccharides (glycogen) in hepatocytes

compared with the previous two treatments. Whole

hepatocytes are engorged with glycogen deposition, and a few

cells contain aggregates of these positive materials with

perinuclei regions after exposure to 4-NP (Figure 7D). After

the post exposure period, polysaccharides are abundant in

hepatocytes, particularly around both basophilic materials with

perinuclei, and at the contour of cells with clear margins, marked
B C D

a b c

A

d

FIGURE 5

Crystal violet-stained sections of the optic tectum of common carp after the two-week post exposure period showing control group (A, a), 10
mg/L PE-MP group (B, b), 10 mg/L PE-MPs + 200 µg/L 4-NPgroup (C, c), and 200 µg/L 4-NP group (D, d). Large neurons (LN), connective
tissue (CT), epithelial cells (EC).
FIGURE 6

H&E-stained sections of liver of common carp showing the normal morphology of hepatocytes of the control group (A) and selective
deformations in shape after treatment with 10 mg/L PE-MPs, 10 mg/L PE-MPs +200 µg/L 4-NP, and 200 µg/L 4-NP, as (B–D) for exposure
period and (E–G) for post exposure period, respectively. Blood sinusoids (BS), pyknotic nuclei (P), fatty degeneration (fd), hemorrhage (h),
necrotic area (N), rosette shape (R), vacuoles (v).
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fine glycogen granules in the cytoplasm and positive materials

are observed at the circumference of blood sinusoids in the

control group (Figure 7E). High intensity of positive color

signals the deposition of polysaccharides due to the fatty

deposition. The deposition of material is located and

concentrated around these vacuoles, and the main cells

contain glycogen at one end of the hepatocytes for the group

exposed to PE-MPs (Figure 7F). Marked increase in stained

materials abundant located at the cell boundary and perinuclei

and depletion of these materials beside the blood sinusoids was

observed in the group exposed to PE-MPs with 4-NP

(Figure 7G). A sharp increase of positive material occurred at

one side of the hepatocytes or located in the perinuclei, and other

cells contain homogenous distribution of glycogen granules

around vacuoles for the group exposed to 4-NP (Figure 7H).

Discussion

Several contaminants have been shown to alter some tissues

in different types of fish (Sayed and Soliman, 2018; Sayed et al.,

2021; Hamed et al., 2022). In this study, the liver, gills, and brain

of juvenile carp showed some alterations after continuous

exposure to 10 mg/L PE-MPs, 10 mg/L PE-MPs + 200 µg/L 4-

NP, and 200 µg/L 4-NP for two weeks, followed by two weeks

of recovery.

Liver tissue in the exposed fish showed deformation of

hepatocytes, including hepatocytes collected in a rosette shape
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around the blood sinusoids, necrotic areas of degenerated

hepatocytes, many pyknotic nuclei, dilated and congested

blood sinusoids, hemorrhage in the central veins, shrunken

and fatty degeneration of hepatocytes, and severe depletion of

polysaccharide contents. Similar alterations were reported in

common carp exposed to lead acetate (Mustafa et al., 2017) and

PE-MPs (Hamed et al., 2022), in catfish exposed to MPs (Sayed

et al., 2022) and 4-NP (Sayed and Soliman, 2018), in zebrafish as

combined effects of MPs and chemical contaminants (Rainieri

et al., 2018), as well as other types of fish exposed to different

toxins (Figueiredo-Fernandes et al., 2007; da Costa et al., 2016;

Espinosa et al., 2019; Soliman et al., 2019; da Costa Araújo et al.,

2020; Naguib et al., 2020; Sayed et al., 2021). In addition to

glycogen and lipid deposition, the observed hepatic vacuolations

may reflect abnormal liver metabolic processes (Myers et al.,

1987). Increased vacuolation of the hepatocytes suggests

metabolic damage resulting from degenerative processes

caused by contaminated water (Pacheco and Santos, 2002).

Hepatocytes vacuolate to protect themselves against potentially

harmful materials (Mollendroff, 1973). Microplastics and 4-NP

may accumulate in the liver tissue causing hepatic necrosis and

degenerative changes. Histopathology studies indicate that

hepatocyte damage is related to energy reductions and

metabolic disturbances, microtubule disaggregation, protein

synthesis inhibition, and an increase in hepatic red blood cell

production (Laurén et al., 1990; da Costa Araújo et al., 2020;

Hamed et al., 2021). In the liver, PE plastics may block hepatic
B C D

E F G H

A

FIGURE 7

Sections of the liver (PAS reaction showing polysaccharides) of common carp showing the control group, and after treatment with 10 mg/L PE-
MP, 10 mg/L PE-MPs + 200 µg/L 4-NPgroup, and 200 µg/L 4-NPgroup, as (A–D) for 2 weeks of exposure and (E–H) for 2 weeks of post
exposure, respectively. Blood sinusoids (BS).
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capillaries, causing sinusoidal dilatation (Brancatelli et al., 2018;

Hamed et al., 2022). Some morphological changes might be

associated with these hepatic lesions due to the major role of the

liver in metabolism and the excretion of toxic agents (Rocha and

Monteiro, 1999).

The gills are directly exposed to pollution because they are

frequently in contactwithwater. In this study, the gill tissue showed

deformation, including shortening of the SL, fusion and

vacuolation of the interlamellar epithelium, displacement of

epithelial cells, vacuolation of the blood capillaries, severe edema,

hyperemia, and lifting of the epithelium. These alterations were

similarly reported in carp exposed to lead acetate (Mustafa et al.,

2017), catfish exposed to 4-NP (Sayed et al., 2012), Oreochromis

niloticus exposed to MPs (Hamed et al., 2021), and other types of

fish exposed to different contaminants (Cengiz and Unlu, 2006;

Figueiredo-Fernandes et al., 2007; Farrell et al., 2010; Hadi and

Alwan, 2012; Sayed et al., 2020). The gills of teleost fishes can be

damaged by exposure to high concentrations of different

contaminants (Dutta et al., 1996; Wendelaar Bonga, 1997). MP

accumulation in the gills may damage the filaments, increase the

probability of infections, and complicate the entry of MPs into the

body (Movahedinia et al., 2012; Jabeen et al., 2018). Contaminants

may cause changes in the gill morphology viamechanical damage

or leached chemical additives (Hu et al., 2020). Osmoregulation

disorders can be caused by epithelium separation from the basal

membrane, which may act as a protective mechanism

(Movahedinia et al., 2012). If the epithelium lifts or hyperplasia

reactions occur, the fish could collapse and ultimately die from

asphyxiation. Such phenotypic changes could result from toxicant

consumption or from increased capillary permeability, which

prevents pollutants from entering the gills (Mallatt, 1985). Ion

balance is negatively affected by discontinuities in the epitheliumof

the gills (Peuranen et al., 1994). Increased diffusion distance for gas

exchange could be caused by fluid infiltration between the

epithelium and basement membranes. There is some evidence to

suggest that vacuolation may be a protection mechanism against

injury that affects fish health (Shahid et al., 2020).

AbdelnaeimHussein and Cao (2018) state that the histological

and anatomical structure of the brain may differ from one type of

fish to another, but the number of parts is consistent. In this study,

brain tissue showed deformation, including highly vascularized

regions, edema/spongiosis, hemorrhage, enlargement of the SPV,

and hydropic degeneration. The alterations observed are similar to

those reported in Channa punctatus exposed to the pesticide

chlorpyrifos (Mishra and Devi, 2014), Gambusia affinis exposed

to lead chloride (Alkshab and Taha, 2021), carp exposed

toquinalphos (Chamarthi et al., 2014), carp exposed to

organophosphate insecticide (Lakshmaiah, 2017), African catfish

exposed to glyphosate herbicide (Erhunmwunse et al., 2014),

Catlacatla exposed to heavy metals (Bose et al., 2013), Carassius

gibelio exposed to toxic cyanobacteria (Berillis et al., 2014), and

other fish exposed to different contaminants (Das and Mukherjee,

2000; Ayoola, 2008; Ayoola and Ajani, 2008; Pugazhvendan et al.,
Frontiers in Marine Science 10
2009; Lakshmaiah, 2017). The histological changes observed in this

study in the brain of carp fish may be a defense mechanism.

Accumulation of MPs and/or 4-NP in the brain of carp fish may

destroy the brain structures. Edematous alterations were observed

in the brain that are likely causedby abnormalbloodvessel function

and damage to the blood–brain barrier, which can cause edemas to

appear (Scorticati et al., 2004).

Conclusion

This study indicated the exposureof the combinedPE-MPsand

4-NP on some organs (liver, gills, and brain) of juvenile common

carp (C. carpio) showedhistopathological alterations. Thedegree of

thedamagewere as4-NP+PE-MPs>4-NP>PE-MPsand thepost-

exposure improved some of the histopathological changes.

Accordingly, these compounds need to be managed and

controlled to protect aquatic environments and according to the

location of fish species in the food web, developing pollutant

recovery strategies is essential.
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