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Reconstruction of long-term
sea-level data gaps of tide
gauge records using a neural
network operator

Eun-Joo Lee, Kiduk Kim and Jae-Hun Park*

Department of Ocean Sciences, Inha University, Incheon, South Korea
The coastal sea level is an important factor in understanding and clarifying the

physical processes in coastal seas. However, missing values and outliers of the

sea level that occur for various reasons often disrupt the continuity of its time

series. General-purpose time-series analysis and prediction methods are not

tolerant of missing values, which is why researchers have attempted to fill these

gaps. The disadvantage of conventional time-series reconstruction techniques

is the low accuracy when missed sea-level records are longer than the

timescales of coastal processes. To solve this problem, we used an artificial

neural network, which is a novel tool for creating multivariate and nonlinear

regression equations. The trained neural network weight set was designed to

enable long-term reconstruction of sea level by acting as a one-step prediction

operator. In addition, a data assimilation technique was developed and adapted

to ensure seamless continuity between predicted and observed sea-level

records. The application of our newly developed method to 3-day gaps of

seal level records at 16 tide gauge stations around the Korean peninsula

confirms that it can successfully reconstruct missing values with root-mean-

squared errors of 0.5–1.1 cm on average.

KEYWORDS

data reconstruction, data gap-filling, neural network, long short-term memory
(LSTM), coastal sea level
Introduction

Observing natural phenomena is the cornerstone for understanding their complex

characteristics. Sea-level fluctuations, an ocean phenomenon, represent many physical

ocean processes, such as tides, tsunamis, inverse barometric effects, mean sea-level

changes, and wave set-up (Pugh and Woodworth, 2014). It is also used for data

assimilation of ocean dynamic models and calibration of remote sensing data, and

serves as an important indicator of global warming (Cane et al., 1996; Carton, 2005;
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Bosch et al., 2014; Cooley et al., 2022). In general, to understand

and simulate geophysical fluid dynamic processes, long and

reliable continuous sea-level records are required (Pappas

et al., 2014). However, a common problem with sea-level

observations is the presence of gaps caused by gauge defects or

bad weather conditions. Moreover, these sporadic or continuous

gaps were further amplified after applying data quality control

procedures. These problems hinder the analysis of research and

practical applications of most numerical models and statistical

methods (e.g., spectral analysis, calibration (learning)

algorithms, stochastic modeling, and downscaling) that

malfunction with missing values (Pappas et al., 2014). In

addition, since the state-of-the-art artificial neural network

(ANN) model is trained by matrix calculation, it cannot be

operated in case with gaps in the input data.

To fill in the missing values of the time series, previous

studies have applied various interpolation methods. The

simplest method is to use linear or spline interpolation or to

use the weighted average value of both local and global data

(Pappas et al., 2014). Interpolation using frequency bands and

statistical methods, such as autoregressive moving average

(ARMA) (Turki et al., 2015) and autoregressive integrated

moving average (ARIMA) (Ren et al., 2022) have been applied.

Cyclostationary empirical orthogonal functions (CSEOF) for the

reconstruction of sea level have also been used (Hamlington

et al., 2014; Cheon et al., 2018). In addition, ad hoc

methodologies have been applied to fill these gaps (Shao et al.,

2015). However, these methods have significant drawbacks: they

can only use a single variable and/or have difficulty using both

long- and short-period signals. The weakness of traditional

interpolation methods is that ocean and atmospheric factors

cannot be included in the reproducing procedure at sea level;

hence, their performance cannot be guaranteed when the sea-

level time series have a gap longer than the time scales of

coastal processes.

Because the ANN, the novel technique, is suitable for a

multivariable and nonlinear regression process, various factors

and time series can be treated simultaneously for data gap filling.

Therefore, in recent studies, ANN has drawn considerable

attention as a technique for interpolation and estimation in

many research fields (e.g., Wenzel and Schröter, 2010; Silva et al.,

2018; Lu et al., 2019; Fourrier et al., 2020; Lee et al., 2020;

Contractor and Roughan, 2021). In this study, we developed a

sea-level interpolation technique using an ANN that utilizes sea-

level data from nearby stations and oceanic and atmospheric

data. We applied an LSTM layer (Hochreiter and Schmidhuber,

1997), which has been recently used in natural time-series

research (Kim et al., 2020; Nardelli, 2020; Song et al., 2020;

Zhang et al., 2020; Dogan et al., 2021; Adytia et al., 2022; Ren

et al., 2022), to maximize the use of long-term time series as the

input value.

Matrix computation is the basis of general supervised

learning, and hence, the inability to flexibly cope with long-
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termmissing datahas been a limitationof studies. Furthermore, the

design errors of an ANN result in a simple imitation of the

immediately preceding (or before a specific cycle) value (Huang

and Kuo, 2018; Kim et al., 2020; Dogan et al., 2021). These

mimicked results show a phase that lags behind the observed

values. One solution to this problem is to use an equivalent

backcast network that acts as a time-stepping operator (Wenzel

and Schröter, 2010). Using this concept, in this study, the stored

weight set was operated as a one-step prediction operator, which

solved the continuous gap filling issue for long-term missing data.

Korea, located in the northwest Pacific Ocean, is surrounded

by seas on three land sides, and the properties of sea levels vary

for each coast because they are influenced by various physical

oceanic processes as well as distinctive topological

characteristics. In particular, these properties are determined

by the ratio of astronomical tides to residuals. The Yellow Sea,

located on the west side of Korea, has an average depth of 44 m,

and large tidal fluctuations dominate sea level variations. In the

East Sea, the Korean Strait, which is the entrance of the flow into

the basin, is narrow and shallow; therefore, sufficient tidal energy

cannot be introduced. Consequently, the East Sea is largely

affected by meteorological tides that are mainly caused by

atmospheric pressure (e.g., Park and Watts, 2005). The South

Sea of Korea and the seas around Jeju Island have intermediate

characteristics compared to the previous two seas (KHOA,

2020). In this study, we focus on the reconstruction of

residuals of sea level, typically dominated by meteorological

tides, which are more difficult to predict than astronomical tides.

Using an ANN, we developed a generalized method that can

reconstruct long-term non-tidal sea-level records. Subsequently,

the performance will be assessed by applying it to sea-level

records along the eastern and southern coasts of Korea.
Data and methods

Data collection and preprocessing

Sea-level data and related atmospheric and oceanic data were

collected from the tidal gauge stations of the Korea

Hydrographic and Oceanographic Agency (KHOA) and

automated synoptic observing system (ASOS) stations on land

along the coast and ocean data buoys of the Korea

Meteorological Administration (KMA). Sea-level data were

obtained from 16 observation sites in three areas, as shown in

Figure 1 and Table 1. The three areas were determined based on

sea-level variability and topographic characteristics. The ASOS

and ocean buoy stations adjacent to the selected tidal gauge were

chosen for collecting oceanic and atmospheric weather data. The

data from these stations included barometric pressure, air

temperature, ocean surface temperature, wind speed and

direction, significant wave height, and precipitation. Five years

of data were collected from 2016 to 2020 from all observatories.
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The 1-min sea-level data collected by the KHOA were

preprocessed using the following methods. To leave only

residual components, astronomical tides were removed from

the sea-level data using the TIRA tidal analysis program in the

TASK-2000 package (Murray, 1964; Bell et al., 1999). After

simple quality control using the 3-sigma rule for the residual

and the amount of change in the residual, a 3-h low-pass filter

was applied to remove high-frequency noise remaining in the

data. Thereafter, the data averaged for 1 h were linearly

interpolated to fill in missing values of less than or equal to

3 h. This data processing, which is based on the confirmation of

the signal-to-noise ratio, makes the model more robust. All the

weather data of 30-min intervals were also 3-h low pass filtered

and linearly interpolated for missing values of less than or equal
Frontiers in Marine Science 03
to 3 h. The 30-min interval data were subsampled at hourly

intervals corresponding to the processed sea-level data.

The residual (R) of the sea level from tides was the

reconstruction target in this study, and the target of the ANN

model was the amount of change in the residual (dR) over a unit

time (1 h). This is because harmonic synthesis can reconstruct

regular tidal fluctuations with high accuracy, and the ANN

model can be prohibited from merely imitating rather than

predicting the sea level values. In other words, if the input

variable has target-like variability, the model will easily finish

learning by giving this input a large weight (e.g., the sea level in

the last hour or before one tide cycle). To avoid this situation, an

autocorrelation analysis was performed on the observed sea

level, R, and dR, and dR was selected as the ANN model target

because its autocorrelation function converges most rapidly to

zero over time.
Dataset

Instead of using all the collected data, the dataset for the

ANN model should be chosen for efficient training and running.

This is because the model used observational data, including

missing data. These data gaps in the time series prevent the ANN

from proper learning, such as their impact on traditional time-

series analysis methods. To provide a basis for constructing the

dataset, cross-correlation between the input and target was

performed for each target point. Similar to the mechanism of

numerical ocean models, solved using a finite difference method,

actual oceanic features respond to forcing gradients. Hence,

unlike most oceanographic studies that apply ANN that uses

input variables directly, the gradients of forcing that cause sea-

level fluctuations should also be adopted for inputs. Therefore,

the inputs for correlation analysis include not only weather data

(X) and their moving averages (rX), but also the gradient of

weather data (dX) and the moving average of their gradient

(rdX). The window for calculating the moving average was set to

5 h. In general, rdX, dX, rX and X are highly correlated with the

target data. For the correlation analysis with the sea-level

residual from 16 tidal gauges, a total of 258 weather variables
TABLE 1 Details of the 16 tidal gauges.

Area Code Name Latitude (°N) Longitude (°E) Code Name Latitude (°N) Longitude (°E)

Area A A-01 Sokcho 38.2071 128.5941 A-03 Hupo 36.6776 129.4532

A-02 Donghaehang 37.4947 129.1439 A-04 Ulsan 35.5018 129.3872

Area B B-01 Geomundo 34.0284 127.3089 B-05 Samcheonpo 34.9241 128.0697

B-02 Goheung-Balpo 34.4811 127.3427 B-06 Tongyeong 34.8277 128.4347

B-03 Yeosu 34.7472 127.7656 B-07 Geojedo 34.8015 128.6992

B-04 Gwangyang 34.9037 127.7548 B-08 Busan new port 35.0775 128.7869

Area C C-01 Moseulpo 33.2143 126.2512 C-03 Seongsanpo 33.4747 126.9277

C-02 Jeju 33.5275 126.5432 C-04 Seogwipo 33.2400 126.5616
FIGURE 1

Study area and observatory locations. Navy crosses indicate the
16 tidal gauges at which the developed artificial neural network
model will be applied. Red and orange circles indicate the ASOS
stations located on the land and the ocean buoy, respectively.
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were used, consisting of 8 categories collected from 43

observatories. The cross-correlation results are not shown due

to the large number of results. During the process of

preprocessing the input variables, the consideration of the

various forcings applied to the target variable is important

because it helps design a better performance model. Based on

the analysis results, the input dataset for each target station

consisted of data that were highly correlated with each weather

element. In addition, R, and astronomical components and their

envelopes that imply spring and neap tides were appended to the

processing variables, and the sinusoidal and cosinusoidal of the

date1 were also added.

Unlike general ANN techniques, the test dataset is not used

in this model set, since because the goal of this study is to

reconstruct long-term gaps, and hence our model is trained to

predict the sea-level change in just one step. Instead, it is

reasonable to reconstruct the n- hour pseudo-gaps using a

pre-learned weight set and then verify this time series. The

additional ensemble dataset configurations and test methods are

described below.
1 sin (day-of-year / days of the year ˟ 2 ˟ pi), cos (day-of-year / days of

the year ˟ 2 ˟ pi)

Frontiers in Marine Science 04
Training model and ensemble design

The ANN model was trained to output the sea-level change

dR at the next time step by inputting oceanic and atmospheric

data, and all constructed data had time-series properties. This

study uses LSTM among the recurrent neural network (RNN)

series, which is a method to solve the vanishing gradient

problem of standard RNN. The ANN model in this study

consisted of six layers, including one LSTM layer (Figure 2)

and hyperparameters (Table 2). The feature has a funnel shape

that continuously converges after expanding once past the input

layer. Different for each target observatory, the features of the

input were approximately 100. The nodes, which are scaled

down after expanding in the first fully connected (FC) layer,

compress the extracted features. To prevent overfitting, an early

stop was used, and simultaneously to ensure certain learning

progress, the minimum epoch was set to 500.

In machine learning, the ensemble of models makes the

model performance more robust (Opitz and Maclin, 1999),

which has been demonstrated in its application to LSTM
(Guan and Plötz, 2017). In this study, a bagging ensemble was

implemented to generalize the model as follows: The k-fold

technique, with k=5, was used as the base. After dividing the date

(1–31) of the data by 5, the remainder (0–4) is converted into an
FIGURE 2

Structure of ANN model. FC denotes fully connected.
TABLE 2 Summary of model hyperparameters and their settings.

Hyperparameter Setting Hyperparameter Setting

Time step 18 (hour) Loss function Mean squared error (MSE)

Batch size Full batch Early-stopping Monitor: validation loss,
Minimum delta: 0.001,
Patience: 100

Optimizer Adam

Learning rate 0.0015 (decay: 0.0005)

Activation function Default (FC-layer: linear, LSTM: tanh) Epoch Minimum: 500
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index. Five ensemble members were used as the validation set by

matching each index. In this process, the data in each ensemble

member were divided into an approximately 80% training set

and an approximately 20% validation set. Five independent

models were trained twice with a random initial state, and as a

result, 10 ensemble members were established. The 10 models

that were trained were ensemble-averaged for all possible

combinations (1023 =o
10

i=1
10C

i
), and the combination with the

smallest error during the 72-h data reconstruction was selected

as the final ensemble model (EM) set.
Reconstruction of long-term missing
values and data assimilation

The procedure for reconstructing the long-term sea-level gaps

is as follows (Figure 3). When the input data set (RT−1, R
′
T−1, XT)

passes through the model weight set (W) that has been trained, the

residual difference from the next time (R′t ) is

R0
t = W RT−1,  R

0
T−1,  XT

� �
, (1)

where t=1, 2, 3, … , n , and T :{t−18, t−17, …, t−1, t}.

Therefore, the weight set acts as an operator for the one-step

prediction. Because this operator can be used recursively, it can

respond to long-term missing data using

Rt = Rt−1 + R0
t   (2)
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Theoretically, if there are no missing data in all inputs (X)

except the reconstruction target, the model set can work

indefinitely. In the technique using a general ANN, the

interpolation target time is limited because of the constraint in

which the shape of the target is fixed. However, the proposed

method can be a powerful solution for the long-term gaps.

Because the reconstruction of the missing values is performed

based on the prediction, an unavoidable difference occurs

between the predicted value at the end of the reconstruction

and the observed value at that point. For a reconstructed value to

substitute the observed value, it must be completely connected to

the isolated observation. Therefore, we used a data assimilation

technique to eliminate this difference. The assimilated data Ŷ t

can be expressed as follows:

Ŷ t = ŷ t − wtet
ŷ n − yn

en

� �
,     (3)

where t=1, 2, 3,…, n, n is the continuous missing time+1, ŷ t is

the reconstructed residual time series up to n-times, et is the

statistical error time series (look-up table from the RMSE time

series of each observatory), wt is the time series of the data

assimilation weight, ŷ n, yn are residual predictions and

observations at time n, and en is the statistical error value at time

n. The wt is a linear function from 0 to 1 divided by n. Expanding

this formula has the followingmeanings. (ŷ n − yn)=en refers to the

ratio between the global averaged error and the rebuilt value error at

the n-time step. Thus, et(ŷ n − yn)=en are the values of applied the

former ratio to the global averagedRMSE time series, and the sign is

determined by the error at the endpoint of reconstruction. This

termhas a weakness that the use ofmeanRMSE time series implies

the assumptionof themonotone error increases (or decreases).Due

to this precondition, if the error sign is switched as the

reconstruction elapsed, the data assimilation performance in the

first half of the prediction can be damaged. To compensate for this

flaw, thewt function is applied, which implies thatwe fully trust the

predicted value at the start time of the reconstruction and the

observed value at the end. Intuitive examples of data assimilation

techniques are presented in Section 4.

We confirmed that more than 95% of the long-term gaps in

the reconstructed sea-level data were continuous within 72 h,

and the 72-h reconstruction model was verified using the above

method. The theoretical number of time points for 72-h

reconstruction is 43,848 (5 years ˟ days of year ˟ 24 h), and the

practical number of points due to missing data is approximately

10,000 to 25,000 (different for each target). The ANN model

performance was verified using the root-mean-squared error

(RMSE) and the coefficient of determination (r2), defined

as follows:

RMSE =  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
    1n  o(yi − ŷ i)

2
q

, and

r2 =  o
 ŷ i − �yið Þ2

o yi − �yið Þ2 (4)

FIGURE 3

Flowchart of reconstruction for long-term sea-level gaps.
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The RMSE time-series is used as a time function as a look-up

table for data assimilation.

In summary, the method for the complete reconstruction of the

sea level involves four procedures. First, ten independent models

were trained and validated to predict R′
t (or dR). Second,

reconstruction of sea level was performed for 73 h using the

learned weights that act as one-step prediction operator. At this

time, 10 model sets including the operating process are used as

ensemble members. Third, the test for the 1023 combinations of the

ensemble average, of which the combination with the minimum

error is selected as the EM. Finally, data assimilation was performed

for the EM to produce a smoothly connected time series at the end

point of the reconstruction (Figure 3).
Reconstruction model using fixed shape
ANN and harmonic synthesis

In the previous study for gap-filling using ANN, it is

common that the shape of output is fixed. Therefore, output

shape should be same to missing periods for the reconstruction

of long-term gaps (Contractor and Roughan, 2021; Ren et al.,

2022). In other words, the number of models must be trained for

corresponding to long-term missing periods. Additionally, the

longer the reconstruction period, the lower the model

performance. Our model set has been compared to a typical

fixed shape ANN (F-ANN) model for performance assurance,

and the validation time for the F-ANN is same as our model set,

72h. In addition, harmonic synthesis method is a sufficient tool
Frontiers in Marine Science 06
to reconstruct the regular tidal sea level. Therefore, we assumed a

situation that tidal sea level is rebuilt using the harmonic

synthesis, which is the same as that the sea-level residual is

predicted to be zero for every time. The harmonic synthesis was

also performed for 72-h pseudo missing.
Results

Model validation

A combination of ten independent ANN models was

evaluated for each tidal gauge station, and the ensemble mean

with the lowest error was selected. At least five ensemble

members were used in the combination, and some

observatories used all the members. Figure 4 shows examples

of the EM and data assimilated model (DAM) results for the

reconstruction of 72-h sea-level gaps. They were selected for

weather events caused by pressure jumps and typhoons with

large sea level changes during 2016–2020.

The results of an EM (red solid line) comprising an optimal

combination of ensemble members (dotted lines) with high

variance are shown. Several ensemble members tend to

underestimate or overestimate the sea level, and these

members are excluded from the final ensemble member

combining process. The EM selected from 10 independent

models performed better than the model using a single dataset.

In addition, although the prediction of the EM presented

sufficiently acceptable gap-filling results, the application of the
FIGURE 4

Examples of 72-h model reconstruction during weather events (pressure jumps and typhoons) during 2016–2020. The name of the station is
written in the lower left corner of each sub-plots. Gray lines indicate observed sea levels. Red and blue lines represent predicted sea levels from
EM and DAM, respectively. Dotted lines with different colors represent predicted sea levels from ten independent ensemble members.
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data assimilation technique improved the model results by

producing a seamless continuity between the predicted and

observed values at the end point of the gap. Notable impacts

caused by data assimilation are observed at A-02 and A-03,

where the predicted sea level values from the EM shift 1.1 of

1.2 cm, respectively.

The performance of the reconstruction was validated for the

prediction operator (EM) and the DAM separately. Figure 5

shows the validation results of the reconstructed values,

assuming a maximum of 72 h of data gap. Although there

were some deviations for each tidal gauge, the validation results

showed the same pattern for each target gauge. Both the EM

(black line) and DAM (yellow line) results show that the average

RMSE (solid line) increased and the r2 (dotted line) decreased as

it responded to long-term missing data. This is because the

missing residuals are reconstructed using the forward prediction

method; thus, the longer the prediction period, the greater the

error expansion. Data assimilation was applied to eliminate this

expanded error, which reduced not only the error at the end of

the reconstruction, but also within the reconstruction period.

Hence, a better 72-h reconstruction performance was obtained

when data assimilation was applied.

For convenience, the research areas were grouped into areas

A, B, and C, based on their topographic characteristics. The time

series of RMSE (or r2) showed similar patterns for each area.

First, the tidal gauges in Area A were further from each other
Frontiers in Marine Science 07
than in the other areas, and their distribution was meridional

along the coastline. Because of the geographical features, the

tidal gauges in Area A experienced data deficiency for close

distance observatories, thus performing the worst of the three

areas. However, because the tidal gauges and observatories in

Area B are relatively dense, the oceanic and atmospheric data are

fully dependent on the training process. Therefore, Area B

performed the best on average among the three areas. While

the models performed well, stations B-03 to B-07 did not seem to

have outstanding data assimilation performance, and even in B-

08, the DAM results were worse than those of the EM. However,

in terms of considering the variability of the residual values and

the EM error, this defect is acceptable. The RMSE of these

stations was up to 0.6 cm, which is much less than the average

standard deviation of the residual values for these stations,

13.1 cm. In addition, because the time series of relatively small

errors appears as random walking (white noise), these stations

do not fully benefit from data assimilation techniques, which

provide the maximum advantage for monotone increases (or

decreases) in errors. The B-01 and B-02 stations, unlike the

above neighboring stations, show time series of errors that reveal

increasing (or decreasing) trends. Therefore, these stations have

relatively large errors and are thus highly efficient in terms of

DA. The tidal gauges in Area C were located on an island off the

coast. In this area, residual fluctuations appear to be between

Areas A and B, as do the tendencies of the model’s performance.
FIGURE 5

72-h reconstruction validation time series. RMSE and r2 are represented by solid and dotted lines, respectively. Additionally, the EM and DAM
results are shown in black and orange, respectively. The shading area denotes one standard deviation of the data for the mean RMSE validation
of each time.
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On the 72-h reconstruction for sea-level data gaps, the

minimum RMSE is 0.5 cm for both the EM and the DAM at

B-06, and the maximum RMSE is 1.3 and 1.1 cm for the EM and

the DAM at A-01, respectively (Table 3). These results imply

that the 72-h reconstruction ANNmodel developed in this study

guarantees an error of 1.1 cm or less. In case of comparison with

data variability (standard deviation; STD.), normalized RMSE is

calculated, in which EM and DAM are less than 10%. As

mentioned above, station A-01 shows the worst performance

because close distance weather data are rare, and tidal gauges are

unavailable to the north, unlike other tidal gauge sites. The

importance of the data obtained from nearby weather stations

and tidal gauges can also be confirmed by the average error of
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each area. Area B, which can refer to dense data, has the lowest

mean error and in Area A, and vice versa.

RMSEs of the F-ANN are calculated as 4.6 to 7.9cm, and the

range of NRMSE is 41.3 to 50.8%. This result, which is worse

than EM and DAM, is considered to be due to the number of

output features being 72 for F-ANN, while 1 for the one-step

prediction operator. ANN model is trained by reducing the

mean error of the overall dataset. Thus, the weights of 72 nods

cannot be specialized, so that, a generalized (standardized)

model could be trained. Next, reconstruction of the sea-level

missing by the harmonic synthesis is only predicting regular

tidal components, and is the same as ignoring the sea-level

residuals. The RMSEs of these predictions are calculated as 9.0 to
TABLE 4 Data gap-filling rates at 16 tidal gauge observatories by the ANN model.

Station Number of gaps Gap-filling Rate Station Number of gaps Gap-filling Rate

Before After Before After

A-01 839 54 93.6% B-05 1,262 630 50.1%

A-02 1,905 480 74.8% B-06 386 166 57.0%

A-03 615 171 72.2% B-07 1,551 919 40.7%

A-04 797 316 60.4% B-08 3,058 1,796 41.3%

B-01 861 208 75.8% C-01 653 69 89.4%

B-02 993 288 71.0% C-02 1,025 258 74.8%

B-03 2,121 795 62.5% C-03 1,884 1,268 32.7%

B-04 1,628 735 54.9% C-04 621 366 41.1%
TABLE 3 Performance of ensemble model and data assimilation model at 16 tidal gauge stations. (Unit of standard deviation and RMSE: cm).

Area Station STD. RMSE r2

EM DAM F-ANN HARM EM DAM F-ANN

Area A A-01 13.2 1.3 1.1 6.2 11.5 98.45 98.90 85.01

A-02 12.0 1.0 0.9 5.8 10.5 98.94 99.03 84.98

A-03 16.2 1.1 1.0 7.9 14.8 98.61 98.91 83.18

A-04 14.1 0.9 0.8 7.2 12.7 98.86 99.15 84.56

Mean 13.9 1.1 1.0 6.7 12.4 98.72 99.00 84.43

Area B B-01 11.1 0.9 0.7 5.4 9.4 99.37 99.57 84.63

B-02 14.8 1.2 1.0 6.3 13.2 99.22 99.44 85.80

B-03 12.2 0.6 0.6 5.7 10.8 99.78 99.78 84.95

B-04 13.6 0.6 0.5 6.3 12.3 99.79 99.82 85.76

B-05 14.3 0.6 0.5 6.0 12.5 99.76 99.80 86.17

B-06 14.4 0.5 0.5 5.9 12.8 99.83 99.84 87.75

B-07 12.0 0.6 0.5 5.4 10.1 99.71 99.74 86.88

B-08 14.3 0.5 0.6 6.6 12.8 99.75 99.74 86.30

Mean 13.3 0.7 0.6 6.0 11.7 99.65 99.72 86.03

Area C C-01 10.8 1.0 0.9 4.6 9.3 99.41 99.50 83.65

C-02 15.0 0.9 0.9 6.5 13.4 99.50 99.55 86.00

C-03 12.5 0.7 0.6 5.9 11.1 99.68 99.73 86.34

C-04 10.8 0.9 0.8 5.0 9.0 99.51 99.61 83.75

Mean 12.3 0.9 0.8 5.5 10.7 99.53 99.60 84.94
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14.8cm, which is a similar level to the variabilities of the sea-

level residual.
Application to missing data

Models that have been validated from reconstruction by a

one-step operator for data assimilation can be applied to fill real

sea-level data gaps. In addition, by redeeming the reconstructed

value with the true value, the iterative reconstruction of other

observatories is possible. In other words, it is possible to activate

the time zones that have been deactivated owing to missing input

data (sea level at other stations) through repeated

reconstruction. The reconstruction was repeated seven times

and the results are presented in Table 4. The position with the

highest reconstructability was A-01, where 93.6% of the gaps

were successfully reconstructed. Conversely, C-03 station shows

the lowest reconstructability, with 39% (733 times) of the sea-

level gaps being continuous at the end of the study period.

Among the reconstruction results from the actual gaps, an

example of the longest period for each station is presented in

Figure 6. The longest reconstruction period was 290 h at B-01

station. Despite the long-term reconstruction of more than 12

days, the difference between the observed and predicted values at

the end of gap filling was less than 1 cm. B-03 station shows

another notable result. The sea-level values for the 62-h data gap

were reconstructed in the 3rd iteration interpolation. The
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prediction-observation difference at the endpoint converges,

implying that reconstruction by repetition can yield reasonable

results. In terms of the time variability of the reconstructed

residuals, Area A shows that the variabilities are less than those

in the other areas. Of all the areas, the meteorological tide

constituted most of the residual fluctuation because the least

tidal energy came into Area A. In contrast, in Area B, which has

a complex coastal topography, nonlinear tidal components could

not be removed in the harmonic analysis process. Consequently,

the remaining components cause large residual fluctuations in

this area. The component properties and variability of Area C

were between those of Areas A and B.

In terms of the reconstructability, these differences between

the values tend to be independent for each station rather than

being similar by sea area. The reason and improvement

possibility for this flaw can be considered in two main parts.

Above all, missing of input data should be minimized for

successful reconstruction. Training input data include the sea-

level residual of nearby tidal gauges as well as the weather data.

And hence, if the weather event (or disaster) occurs,

reconstruction is hindered due to the simultaneous missing of

the sea-level values at the adjacent stations. While we considered

mutual missing time in the inputs for curtailing negative effects,

that treatment could not be the complete solution. One way to

alleviate this problem is to compose several input sets, which

have missing time that do not overlap with each other. As the

result, the model set can be expected to get a higher
FIGURE 6

Examples of longest reconstruction of real sea-level data gaps at each tidal gauge station. Cases are excluded when data assimilation cannot be
applied due to the absence of observations at the predicted end point. The gray solid lines represent the observation values, and the red dotted
lines show the EM results produced by using the one-step operator. The red lines indicate that the reconstructed value is adjusted to match the
observed value using data assimilation.
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reconstructability, although the errors may be increased due to

the removal of major features. The second to be considered

factor is that endpoint observation values for data assimilation

are essential.

As a practical example, predictive interpolation was

performed at stations B-03 and B-04 over a longer period, as

shown in Figure 6 (152 and 157 h, respectively). However, there

were no observations to be used for data assimilation at the end

points, which hindered complete gap filling. And it is the same

that the reason for the lowest gap-filling rate at the station C-03.

The sea-level data collected this station contains continuous gaps

for 730 h, which are located at the observed end time and

account for 39% of all the missing times. Even if EM can be

performed, the reconstruction is not completed because data

assimilation cannot be operated. To solve the part of this

problem, we can make a suggestion to combine methods of

backward predictions with our forward predictions, but it also

would not be a complete solution.
Discussion

A data assimilation example at A-01 station shows all the

needs, advantages, and weaknesses of the data assimilation

(Figure 7). First, regardless of whether a linear weight function

(wt) is used, the predicted endpoint value must be continuous

with the observation value at that point to serve as a substitute

for the observation data (without weights means wt=1; constant

function). The June example demonstrates the advantages of

data assimilation using linear weights. When the linear weights

were used (standard DAM), the RMSE reduced to 0.7 cm from

2.4 and 2.2 cm, which are RMSE values for the EM and the DAM

without weights, respectively. Conversely, the December
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example shows the weakness of the DA. This technique has

the precondition implied in Equation (4), in which the error

increases only in one direction. Therefore, when the sign of the

model error is swapped, the damage caused by data assimilation

occurs in the first half of the interpolation and the gain occurs in

the second half. In the case of the predicted model and data

assimilated with/without linear weights, RMSEs were calculated

to be 2.3, 1.5, and 2.1 cm, respectively. Despite some losses, it is

evident that the process of matching end-to-end data is essential.

Hence, data assimilation using linear weights is indispensable.

From these two examples, we can confirm that the propagated

prediction error and additional error due to data assimilation in

this example are mitigated using linear weights.

The target of this study is the sea-level residual (R) excluding

regular tidal elevation, which implies that weather input data

should be the essential element for the success of the ANN

model’s sea-level prediction. However, when coastal seas are

affected by severe weather events, the ANN operator tends to be

deactivated because of an increase in missing data. During the

data sorting described in Section 2.2, we considered not only the

correlation between the data but also the missing rate.

Nonetheless, the existence of missing values in input data is

inevitable. Therefore, we executed a sensitivity test with and

without weather data, and examined the reconstructability and

accuracy to evaluate the performance of the reconstruction

model (Figure 8). Case 0 is the original model set, including

weather data, and Case1 is the model set excluding all

weather data.

The reconstruction rate of Case 1 shows an increase at all

stations compared to Case 0 (Figure 8A). Most importantly, the

gap-filling rate at C-04 increased by 53.8%p (from 41.1% to

94.9%), as almost all the deficiencies were filled. This indicates

that the operator was more efficient in removing missing data
A B

FIGURE 7

Examples of validation time series at A-01 station. (A) optimal data assimilation case (B) case of supplement for the weakness of data
assimilation by using linear weights. The black solid line represents the observation data. Red, orange, and blue colors indicate the EM predicted
values, DAM predicted values using linear weights, and not using, respectively. The solid lines denote the residual values, and the dashed lines
denote the difference between the reconstructed residuals and the observations.
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from weather data. In addition, it was confirmed that the

substitutes, reconstructed sea-level values, were used as inputs

for additional gap filling at nearby tidal gauge stations. In other

words, successful reconstruction at close distance tidal gauges

propagates a favorable function during the iterative gap-filling

procedure. The number of 72-h consecutive reconstruction

datasets for model verification also increased in Case 1

(Figure 8B). Contrary to the previous positive effect, the

reconstruction accuracy was lower in Case 1 than in Case 0

(Figures 8C, D). RMSE increased up to 0.5 cm, and r2 value

decreased to 0.014. These results were obtained by ignoring the

local weather effect when reconstructing the sea-level residual. In

particular, A-01 tidal gauge station, where the performance of

sea-level reconstruction was the worst, had the least ASOS

weather stations and nearby tidal gauges.

The reconstruction model that excluded weather features

showed positive and negative effects in terms of quantity and

quality, respectively. Because both are parts that cannot be

disregarded in research performance, a reasonable balance is

necessary. As mentioned above, we could not completely rule

out the missing data included in the weather data, despite our

efforts to balance this. Therefore, if this study is to be applied to

practical situations, it is essential to merge multiple models using

datasets designed from various perspectives. In other words, for

complete reconstruction, the top priority is to avoid overlapping

missing periods between the datasets.
Conclusion

In this study, a reconstruction tool was developed to ensure

the continuity of sea-level time series using ANN techniques.

The target is the sea-level residual, which excludes regular

astronomical tides from sea-level observations, and the input

data are the residuals and weather elements from nearby
Frontiers in Marine Science 11
stations. The trained weight set was designed to respond

flexibly to long-term missing data by acting as a one-step

prediction operator. This is a good example of overcoming the

limitations of the existing ANN techniques that require a fixed

output shape. The forward predicted residuals should be

connected to the observations at the reconstruction end point

such that it can be truly meaningful as a gap-filled value.

Therefore, we developed and applied a data assimilation

technique to predict values based on the reliability between the

observations and predicted values. As a result, the ANN model

was confirmed to successfully reconstruct the residuals with an

RMSE between 0.5 and 1.1 cm for the 72-h average accuracy at

16 tidal gauge observatories. Finally, the validated DAMwas also

applied to actual missing data situations. The longest gap-filling

period was 290 h, and the maximum rate of gap-filling

was 93.6%.

The strengths and weaknesses of DA, which is an essential

process for a successful ANN model, were analyzed.

Additionally, the contribution of the linear weights used to

relieve defects in data assimilation was examined. Finally,

model sensitivity was analyzed for the presence or absence of

weather features in the input data. As a result, it was confirmed

that more weather factors could improve the qualitative

performance of the model, but could decrease the quantitative

performance owing to the missing values in sea-level records.

Consequently, to obtain the best qualitative and quantitative

performance, we conclude that an appropriate balance is

necessary when weather features are added to the ANN model.

To deal with missing sea-level values, we used an ANN that

can deal with nonlinearity, multiple variables, and multiple

times. Owing to the influence of local topography, sea-level

values show spatiotemporal variability. Nonetheless, based on

our flexible data processing and technique design, we achieved

satisfactory results at all observatories despite using the same

single model structure. Therefore, this technique can be
FIGURE 8

Comparison of reconstructability and accuracy in two cases with (Case 0) and without (Case 1) the atmospheric data for the ANN model input.
(A, B) Reconstructability on real gaps and 72-h model validation. (C, D) RMSE and r2 on model validation. X- and Y-axes in all four scatter plots
represent Case 0 and Case 1, respectively.
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sufficiently applied not only to sea-level records, as in this study,

but also to fill in the frequent data gaps in various oceanic and

atmospheric observations.
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