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Seawater temperatures have increased with global climate change. Coolant

water discharged from coastal nuclear power-generating and coal-powered

plants, coupled with already increasing seawater temperatures, can adversely

affect local fish communities. A sudden drop in temperature caused by the

winter shutdown of power plants can also affect fish health and behavior. To

assess the effects of temperature change on fish populations, we subjected

early life stages of the once commercially important large yellow croaker

(Larimichthys crocea) to various water temperature experiments. Fertilized

eggs showed the highest hatching rate at 23.4°C and the lowest rate of

deformity in hatched larvae at 23.0°C. We determined the incipient lethal

temperature for each life stages using derivation models. Ranges between

the upper and lower incipient lethal temperatures increased during

development from yolk-sac larvae to juveniles, especially in response to cold

shock, indicating that later developmental stages in this species are more

tolerant of temperature fluctuations. However, thermal tolerance is not solely

determined by life stage. Our results suggest that rapid changes in seawater

temperature caused by power plant coolant water discharges may significantly

affect early developmental stages of fish. Critical thermal maximum tests

indicate that the seawater heating rate is significantly negatively correlated

with survival time and affects the critical thermal maximum value of L. crocea.

On the basis of our determination of incipient lethal temperatures, emergency

measures could be taken to avoid adverse economic and ecological impacts

due to changes in seawater temperature caused by coolant water discharges.
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Introduction

Sea surface temperature (SST) is affected by various factors,

and changes in SST can affect recruitment in fish populations

(Almodóvar et al., 2012; Cheung et al., 2013). Marine fishes are

sensitive to temperature change, which affects their energy

distribution (Trancart et al., 2016). Low amplitude in

temperature rising greatly increases fish activity and affects

their feeding behavior (Biro et al., 2010). If a physiologically

optimum temperature is exceeded, then the increased metabolic

rate and decreased energy intake can reduce growth rates (Killen

et al., 2010). At high water temperatures, fish populations

without adequate food sources can experience increased

mortality (Biro et al., 2007; Munday et al., 2008).

Between 1950 and 1980, the large yellow croaker (Larimichthys

crocea, Richardson) was a commercially important marine fish

species in China; however, the fishery collapsed in the 1980s. Even

after implementation of a fishing moratorium, stocks never fully

recovered to satisfy market demands, and the population of L.

crocea remained depressed (Chen and Zhang, 1984; Xu and Liu,

2007; Xu and Chen, 2011; Zhang et al., 2018). Conversely, according

to the Chinese Fishery Statistical Yearbook, L. crocea has become

the dominant species in mariculture, with a 9.46% growth rate in

farming scale and a 14.11% increase in seeding from 2003 to 2020.

Most farming of L. crocea occurs is in Fujian Province. The

inadequacy of offshore farming models and a lack of data on the

temperature tolerance of L. crocea at different life stages can be

problematic for farmers when faced with sudden changes in SST

due to external factors such as coolant water discharges from power

plants (Cai et al., 2020).

Waste heat generated by power plants is generally removed

using water, for which reason many power plants are built along

coasts where coolant water is readily available (Rosen, 2001;

Aminov et al., 2017). Affected by warm water discharged from

these power plants, the offshore seawater temperatures increase.

Discharge of heated coolant water from coastal power plants can

exacerbate the rise in coastal water temperatures already caused

by climate change, resulting in an increase of approximately 5°C

in waters thousands of meters away from the discharge port,

which can affect nearshore benthic, planktonic, and nektonic

organisms (Ma et al., 2016; Lee et al., 2018). In addition, the

temperature drop caused by stopping the discharge of coolant

water can also have adverse effects. Power plants can shut down

for several reasons such as electricity overproduction, material

replacement, or maintenance, resulting in abrupt water

temperature decreases in adjacent receiving waters (Zhao

et al., 2006; Madden et al., 2013; Buhariwalla et al., 2016). For

fish, such sudden cold shocks can increase the number of

mitochondria in cells, increase respiratory and energy

consumption rates, damage the respiratory system, or cause

mortality (Guderley, 2004; Begriche et al., 2006; Kavanagh

et al., 2010).
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To understand the effects of temperature changes on fish

populations, there are well-established methods of separately

determining the incipient lethal temperature (ILT) and critical

thermal maximum (CTMax) for a species (Beitinger et al., 2000;

Golovanov, 2012). The ILT represents the tolerance limit of the

species, which is the temperature at which half of the test

animals die when exposed to a series of higher or lower

temperatures after acclimation to the relevant temperature for

a particular environment (Brett, 1952; Jobling, 1981). In this

study, the upper and lower ILTs (ULIT and LLIT, respectively)

were determined for different life stages of L. crocea to simulate

the effects of temperature shock caused by coolant water

discharges. CTMax represents the thermal resistance of a

species, which is determined by increasing the water

temperature at a constant rate until the fish lose equilibrium

and opercular movement ceases (Otto, 1973; Becker and

Genoway, 1979). CTMax was calculated to simulate the effects

of coolant water discharged at different rates on fish populations.

The hatching rate of eggs exposed to different temperatures was

also determined to simulate the effects of coolant water discharge

(Okamura et al., 2007). We report UILT, LILT, and CTMax

values for different developmental stages of L. crocea and discuss

the differences in temperature tolerance among different life

history stages of this species. In addition, we suggest

management measures that could be taken to avoid adverse

economic and eco log ica l impac ts due to coo lant

water discharges.
Materials and methods

Preparation of test animals and seawater

Experiments were performed with four developmental stages

of L. crocea (fertilized eggs, yolk-sac larvae, larvae, and

juveniles). Test animals were provided by the Ningbo Marine

and Fishery Research Institute, and their body sizes are shown in

Table 1. The fish were kept in natural sand-filtered seawater with

a normal saturation oxygen level, constant temperature (22°C),

constant salinity (25.6‰), and a natural light regime.

Heat-shock seawater was heated using a titanium heating

rod (Armaturenbau, 100–2,000 W) and calibrated using a

precision thermometer (Korea A-MI 211H; range, 0°C–90°C;

sensitivity, 0.1°C). Cold-shock seawater was prepared using a
TABLE 1 Length and weight of Larimichthys crocea at different
developmental stages: yolk-sac larvae (LY), larvae (LL), and
juveniles (LJ).

Stages LY LL LJ

Length (cm) < 1 3.21 ± 0.56 17.02 ± 2.05

Weight (g) 0.23 ± 0.14 56.29 ± 19.55
fro
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cooling incubator (Yi Heng LRH-150; range, 0°C–60°C;

sensitivity, 0.1°C). Aeration and natural light were maintained,

and temperature was measured at regular intervals with a

mercury thermometer.
Fertilized egg hatching experiments

At the beginning of the experiment, healthy fertilized eggs were

transferred directly from 22°C seawater to prepared seawater (15°C,

18°C, 21°C, 24°C, 27°C, 30°C, and 33°C) in 500-ml beakers. One

hundred eggs were placed in each beaker, and each temperature test

was replicated three times. We observed the eggs hatch and hatched

larvae development until all eggs hatched or sank to the bottom.

The hatching rate was calculated by dividing the number of eggs

hatched by the total number of eggs in each beaker, and the

deformity rate was calculated by determining the proportion of

hatched larvae exhibiting spinal deformity, tail curvature, or fin

membrane decay (Figure 1).
Temperature jump experiments

Yolk-sac larvae were removed from the acclimation

environment to the 500-ml beakers, which contained 22°C,

24°C, 26°C, 28°C, 30°C, 32°C, and 34°C seawater for the heat-
Frontiers in Marine Science 03
shock experiments, and 22°C, 19°C, 16°C, 13°C, and 10°C

seawater for the cold-shock experiments. Experimental control

groups maintained at 22°C were used in both heat-shock and

cold-shock experiments to simulate natural ambient seawater

unaffected by coolant water discharges.

Mortality of larvae and juveniles spiked in two sequential

experimental groups (30°C and 32°C) in the heat-shock

experiments, which required adding one intermediate

temperature level at 31°C. Furthermore, in the cold-shock

experiments, some larvae and juveniles exhibited no effects at

10°C, which required adding four lower experimental

temperature levels (8°C, 6°C, 4°C, and 2°C). Consequently, larvae

and juveniles were removed from the acclimation environment and

placed in 5- and 50-L tanks, which contained seawater maintained

at 22°C, 24°C, 26°C, 28°C, 30°C, 31°C, 32°C, and 34°C for the heat-

shock experiments, and seawater maintained at 22°C, 20°C, 18°C,

16°C, 14°C, 12°C, 10°C, 8°C, 6°C, 4°C, and 2°C for the cold-

shock experiments.

A total of 20 yolk-sac larvae, 30 larvae, and 20 juveniles were

exposed to each temperature treatment for 48 h, and

approximately100–300 rotifers (Brachionus plicatilis; Müller)

and fish feed were provided daily as food. This frequency of

feeding prevented starvation stress, as indicated by the food

remaining in the water at the end of the experiment. Each

temperature treatment was replicated three times for each of the

three growth stages.
FIGURE 1

Apparent morphology of normal (A) and deformed (B–D) Larimichthys crocea hatched larvae.
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The behavioral responses of yolk-sac larvae, larvae, and

juveniles were observed continuously over 48 h in each

temperature treatment, and the number of dead individuals in

each experimental group was recorded. Death was defined as the

cessation of opercular movement or the absence of response

to touch.
Critical thermal maximum experiments

We measured the reactions of larvae and juveniles exposed

to different rates of increase in water temperature. The initial

water temperature was 22°C for both larvae and juveniles, and a

heating rod was used to control the rate of temperature increase

(0.5°C, 3°C, 6°C, and 15°C h−1). For each temperature heating

rate exposure, 30 larvae and 20 juveniles were used, and each

exposure was replicated three times. Adequate fish feed was

provided as food. Throughout the experiment, we noted any

larval or juvenile movement disorders, abnormal behaviors, loss

of balance, body turnover, or other reactions and recorded the

experimental seawater temperature at the time any such

observation was made as the CTMax value for that individual.

The abnormal subjects were then removed and placed in

buffered seawater maintained at 22°C until the CTMax values

for all test organisms were observed and recorded.
Statistical analyses

Statistical analyses were performed using SPSS v. 20.0 (IBM

Corp., Armonk, NY, USA) and visualized in Origin 2021

(OriginLab, Northampton, MA, USA). Normality and

homogeneity of data were assessed using Shapiro–Wilk’s and

Levene’s tests. For data with normal distribution and

homogeneity of variance, one-way ANOVA and Duncan tests

were used to evaluate differences for overall and pairwise

comparisons. For data with non-normal distribution or non-

homogeneity of variance, Kruskal–Wallis and Games–Howell

tests were used, respectively. Spearman rank correlation analysis

was performed to identify relationships between two groups of

correlated data.
Results

Fertilized egg temperature tolerance

Hatching and deformity rates for fertilized eggs exposed to

different temperatures over 48 h are shown in Figure 2.

Significant differences in hatching rates were shown among

different treatments (one-way ANOVA, F = 298.598, P <

0.05). The highest hatching rate occurred at 21°C and

decreased significantly with increased temperature. The lowest
Frontiers in Marine Science 04
larval deformity rates occurred at 21°C and 24°C (Kruskal–

Wallis test, P < 0.05), and all larvae hatched at either 15°C or 33°

C were deformed. Spearman rank correlation test results for

hatching and deformity rates are shown in Table 2.
Effects of temperature shock on large
yellow croaker

Changes in the mortality of L. crocea exposed to cold shock are

shown in Figure 3. Mortality rates of yolk-sac larvae increased

significantly as temperature decreased (one-way ANOVA, F =

6.684, P < 0.05) but did not differ significantly at temperatures

>10°C, the point at which 100% mortality occurred.

Larvae were exposed to cold-shock temperatures as low as

6°C, and the mortality rate of larvae in both the 8°C and 6°C

experimental groups was 100% (Kruskal–Wallis test, P < 0.05).
A

B

FIGURE 2

Larimichthys crocea fertilized eggs hatching rate (A) and hatched
larvae deformity rate (B) exposed to different temperatures (mean ±
SD). Labeled means without a common letter differ (P < 0.05).
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To avoid unnecessary impacts to test organisms, larvae were not

exposed to temperatures lower than 6°C. In contrast to the

results of the yolk-sac larvae experiment, larval mortality did not

occur until the temperature dropped to 14°C. The mortality rate

of larvae exposed to temperatures ≤12°C was significantly higher

than the mortality rate of larvae in the 14°C experimental group.

Juveniles were exposed to cold-shock temperatures as low as

2°C, and none exhibited mortality at temperatures ≥10°C.

Changes in the mortality of L. crocea exposed to heat shock

are shown in Figure 4. After the yolk-sac larvae were acclimated

at 22°C, they exhibited a significant increase in mortality in

response to a sudden increase in temperature (Kruskal–Wallis

test, P < 0.05) (Figure 4A). The mortality rate was less than 20%

for yolk-sac larvae in the 24°C and 26°C experimental groups.

All yolk-sac larvae died in the three replicate experimental

groups at 34°C.

Larvae did not exhibit any mortality at temperatures ≤28°C;

however, larval mortality increased significantly at 30°C, 31°C,

and 32°C (Kruskal–Wallis test, P < 0.05). Larval mortality at

34°C reached 100%.

Similar to larvae, juveniles did not exhibit any mortality at

temperatures ≤28°C; however, at higher temperatures, there was

a significant difference in mortality compared to the control

group (Kruskal–Wallis test, P < 0.05).

We systematically described the mortality of yolk-sac larvae,

larvae, and juveniles in different temperature shock experimental

groups and used three calculation models to fit the mortality of
Frontiers in Marine Science 05
fish at different life stages exposed to heat shock or cold shock

after acclimation at 22°C (Cherry et al., 1977; Urquhart and

Koetsier, 2013; Kir, 2020). UILT, LILT, model type, and input

parameters are shown in Table 3.
Thermal resistance of larvae and
juveniles at different heating rates

Larval and juvenile survival at different heating rates is

shown in Figure 5. Average survival time differed significantly

among treatments (Kruskal–Wallis test, P < 0.05); however,

survival times for larvae and juveniles exposed to the same

heating rate were not significantly different (paired sample T-

test, P > 0.05).

CTMax values for larval and juvenile stages at a heating rate

of 0.5°C h−1 were much higher than for other treatments (paired

sample T-test, P < 0.05). There was no significant difference in

CTMax among treatment groups exposed to heating rates

>0.5°C h−1. The trend in CTMax change was similar for larval

and juvenile stages (Figure 6).
Discussion

Responses of fertilized eggs to
temperature fluctuations

Water temperature affects early fish development

(Decuypere and Michels, 2019). Compared with salinity and

dissolved oxygen, temperature is worthy of paying more

attention during the incubation process (Alderdice and

Forrester, 1968; Geist et al., 2011). Lower temperatures can

prolong hatching time, whereas higher temperatures can

accelerate development (Pauly and Pullin, 1988; Teletchea

et al., 2009). We observed this phenomenon in our
TABLE 2 Spearman rank correlation analysis results on hatching and
deformity rates, individual survival time and heating rate.

Correlation coefficient

Deformity rate Heating rate

Hatching rate −0.909 **

Individual survival time −0.973 **
**Correlation is significant at the 0.01 level (two-tailed).
A B C

FIGURE 3

Larimichthys crocea yolk-sac larvae (A), larvae (B), and juvenile (C) mortality rate in cold-shock treatments (mean ± SD). Labeled means without
a common letter differ (P < 0.05). #Control treatment.
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experiments, as well. During culture of L. crocea, Lin et al. (1991)

found that the optimum temperature for fertilized eggs was 18°

C–24°C. Consistent with this finding, we determined (by curve

fitting hatching rate with temperature) that the optimum

hatching temperature for L. crocea was 23.4°C, which is

similar to seawater temperatures where L. crocea spawns (Wu

et al., 2022). Therefore, discharging of heated coolant water

should be avoided during the incubation period if possible. We

found that the lowest rate of deformity in hatched larvae

occurred at 23°C. In culturing L. crocea, a balance must be

maintained between the hatching rate and the quality of the

hatched larvae. High temperatures can accelerate hatching but

can also reduce larval quality due to thermal stress (Ojanguren

et al., 1999; Moran et al., 2007). Fluctuations in temperature are

known to affect fertilized egg hatching time and rate; however,

the impact of such fluctuations on malformation rates in hatched

larvae was previously unknown (Koo and Johnston, 1978;

Kurokawa et al., 2008). In this study, we found a significant

negative correlation between rates of hatching and malformation

(Table 2). We also found that temperatures producing the

highest hatching rate and the highest quality hatched larvae

were similar, indicating that this temperature regime could be

successfully employed in L. crocea culture.
Frontiers in Marine Science 06
Tolerance of different life stages to heat
and cold shock

Overfishing and lack of protection measures have depleted L.

crocea stocks (Liu and De Mitcheson, 2008). The discharge of

coolant water from power plants near L. crocea habitat is known

to adversely affect population recruitment; however, few studies

have investigated the tolerance of different life stages of L. crocea

to temperature change (Wu et al., 2022). Understanding the

causes of ILT and CTMax for different life stages is essential to

restoring wild resources, guiding artificial breeding programs,

and warning of likely impacts due to frequent, abnormal, or

sudden temperature changes (Wernberg et al., 2012).

Among the multiple factors that affect ILT and CTMax, life

stage is considered to be one of the most critical. Some studies

have found that younger fish were more thermotolerant

(Recsetar et al., 2012; Di Santo and Lobel, 2017), whereas

others found that older fish were more tolerant to temperature

changes (Charo-Karisa et al., 2005; Moyano et al., 2017). Some

researchers have questioned the existence of a life stage effect,

noting that the evidence for such an effect was inconclusive and

finding little variation in temperature tolerance among fish of

different stages (Ospina and Mora, 2004; Recsetar et al., 2012).
A B C

FIGURE 4

Larimichthys crocea yolk-sac larvae (A), larvae (B), and juvenile (C) mortality rate in heat-shock treatments (mean ± SD). Labeled means without
a common letter differ (P < 0.05). #Control treatment.
TABLE 3 Pearson’s r and R2 for Larimichthys crocea yolk-sac larvae (LY), larvae (LL), and juveniles (LJ) about upper and lower incipient lethal
temperature (LILT and UILT). Labeled means without a common letter differ (P < 0.05).

Type X = log T Linear Logistic Stages

T R2 P’s r T R2 P’s r T R2

LILT 14.32 0.80 −0.90 14.88 0.79 −0.90 14.11 0.76 LY a

11.58 0.83 −0.92 11.92 0.85 −0.93 12.27 0.95 LL b

6.95 0.88 −0.95 7.31 0.94 −0.97 7.53 0.97 LJ c

UILT 28.70 0.79 0.89 28.96 0.80 0.90 29.19 0.81 LY a

30.98 0.62 0.81 30.99 0.63 0.82 31.24 0.98 LL b

30.60 0.73 0.87 30.58 0.76 0.88 30.97 0.98 LJ b
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Temperature tolerance has been linked to individual differences

in metabolic rate and related to variations in key life history

traits that could affect ecological patterns within animal

populations (Norin et al., 2015). Therefore, a more likely

explanation for changes in temperature tolerance may be

related to individual life stage and bottlenecks during life

stages. Older fish have more mature organs and physiological

systems but require extra energy for activities such as spawning

(Baroudy and Elliott, 1994; Dahlke et al., 2020). This could

explain the increasing temperature range between LILT and
Frontiers in Marine Science 07
UILT with the growth of L. crocea, as well as the lack of change

in UILT between the larval and juvenile stages, a finding

consistent with that of Baroudy and Elliott (1994).
Effect of heating rate on critical
temperature maxima

Discharge of power plant coolant water is necessary for power

production. Larvae and juvenile fish are strongly motile (Pavlov

et al., 2008) and can escape elevated temperatures should they

encounter coolant water (Crozier et al., 2008; Rijnsdorp et al., 2009).

We describe a power function relationship between individual

survival time and heating rate, with a statistically significant

negative correlation (Table 2). The absence of any significant

differences in larval and juvenile survival times suggests that the

escape time for larvae and juveniles was determined more by the

heating rate than the growth stage. Therefore, during the discharge

of coolant water from power plants, the rate of increase in seawater

temperature should be controlled to provide fish in early

developmental stages with sufficient escape time to avoid

suboptimal temperature conditions, thereby aiding wild

population recovery.

When the heating rate exceeds a certain value, CTMax does not

change and is generally greater for larvae than juveniles (Elliott and

Elliott, 1995; Beitinger and Bennett, 2000; Das et al., 2004). Elliott

and Elliott (1995) and Mora and Maya (2006) found that CTMax

varied with heating rate, being greatest at 1°C h−1, with any change

at increased rates being insignificant. We found that CTMax was

highest at a heating rate of 0.5°C h−1 and trended downward at

higher heating rates and, similarly, fluctuate insignificantly

thereafter. Because CTMax does not change significantly at

higher heating rates, rapid thermal shock probably causes

irreversible impacts (Landsman et al., 2011). If CTMax

experiments were performed on a variety of coastal fish species

using different rates of temperature increase, then the results could

be used to develop and implement appropriate treatment methods

and discharge rates to minimize the damage to fish communities

caused by heated coolant water.
Conclusion

In this paper, we described the responses of different life

history stages of L. crocea to temperature change in heat-shock

and cold-shock experiments. Fertilized egg hatching and

malformation rates were negatively correlated, and the

optimum hatching temperature was determined to be 23.4°C.

Application of these findings to the culture of L. crocea could

increase the survival of cultured fish. UILT and LILT values

showed that the tolerance of L. crocea to temperature

fluctuations increased during development from the yolk-sac

larval stage to the juvenile stage. We discussed the impact of
FIGURE 5

Heating rates and survival times of larvae and juveniles
Larimichthys crocea.
FIGURE 6

Larvae and juveniles Larimichthys crocea critical temperature
maxima (CTMax) subjected to different heating rates. Labeled
means without a common letter differ (P < 0.05).
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individual life stage and bottlenecks in the life cycle of L. crocea

on ILT variation. As the thermotolerance mechanism in fish

matures, the difference between the UILT of larvae and juveniles

is less significant than the LILT. The discharge of coolant water

and its interruption should be timed to avoid impacts on early

life stages with poor tolerance to temperature change. We also

found a significant negative correlation between survival time

and heating rate. When coolant water is discharged, the rate of

temperature increase should be monitored. Controlling the

discharge rate of coolant water could provide early life stages

of fishes in coastal waters with more time to react to elevated

temperatures, thus reducing damage to coastal fisheries.
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