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in Hong Kong and Macau, Hong Kong University of Science and Technology, Hong Kong, Hong
Kong SAR, China
Turbulence within the upper ocean mixed layer plays a key role in various

physical, biological, and chemical processes. Between September and

November 2011, a dataset of 570 vertical profiles of the turbulent kinetic

energy (TKE) dissipation rate, as well as conventional hydrological and

meteorological data, were collected in the upper layer of the tropical Indian

Ocean. These data were used to statistically analyze the vertical distribution of

the TKE dissipation rate in the mixed layer. The arithmetic-mean method made

the statistical TKE dissipation rate profile more scattered than the median and

geometric-mean methods. The statistical TKE dissipation rate were

respectively scaled by the surface buoyancy flux and the TKE dissipation rate

at themixed-layer base. It was found that the TKE dissipation rate scaled by that

at the mixed-layer base exhibited better similarity characteristics than that

scaled by the surface buoyancy flux, whether the stability parameter D/|LMO|

was greater or less than 10, indicating that the TKE dissipation rate at the

mixed-layer base is a better characteristic scaling parameter for reflecting the

intrinsic structure of the TKE dissipation rate in the mixed layer, where D and

LMO are respectively the mixed-layer thickness and the Monin-Obukhov length

scale. The parameterization of the TKE dissipation rate at the mixed-layer base

on the shear-driven dissipation rate and the surface buoyancy flux was further

explored. It was found that the TKE dissipation rate at the mixed-layer base

could be well fitted by a linear combination of three terms: the wind-shear-

driven dissipation rate, the surface buoyancy flux, and a simple nonlinear

coupling term of these two .
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1 Introduction

The upper part of the ocean is directly mixed by momentum

and buoyancy fluxes from the atmosphere. This mixing

produces a turbulent and homogeneous layer with a thickness

of tens to hundreds of meters, commonly referred to as the

upper ocean mixed layer (Kantha and Clayson, 2000; Pellichero

et al., 2017). The upper ocean mixed layer acts as a buffer

between the atmosphere and the interior ocean and affects

oceanic dynamic processes at various scales and eventually

global climate change (Macdonald and Wunsch, 1996; Kantha

and Clayson, 2000; Esters et al., 2018; Qiu et al., 2019; Meredith

and Garabato, 2021). For example, turbulence in the mixed layer

generally dominates mass and energy exchange between the

atmosphere and the ocean (Qiu et al., 2016; Evans et al., 2018),

adjusts the spatial distributions of various materials and water

masses in the upper ocean (Esters et al., 2017), and facilitates

absorption of excess heat and carbon dioxide from the

atmosphere (Sabine et al., 2004). The mixed layer is also where

certain water masses form through dynamic processes such as

subduction and deep convection. These processes can further

impact the water mass properties of the deeper ocean and hence

the Meridional Overturning Circulation (Kostov et al., 2014;

Zhang and Wang, 2018).

Turbulence plays an important role in the formation and

evolution of the mixed layer. The associated turbulent structures

are assumed to be controlled by energy input and exchange from

the atmosphere. There are three main types of this external

energy source (Thorpe, 2005). The first is wind stress, which

drives turbulence by vertical mean-current shear based on the

Kelvin-Helmholtz instabilities and transfers the momentum flux

downward in the mixed layer (Callaghan et al., 2014). Based on

the theory of the turbulent boundary layer, it is assumed that the

vertical distribution of the wind-shear-driven dissipation rate

satisfies the classical “law of the wall” (D'Asaro, 2014). The

second source is the surface wave field. The dynamic processes of

the surface wave field, such as wave-breaking and Langmuir

convection, modify the turbulence characteristics of the upper

ocean and convert the energy of the wave field into TKE

(Thorpe, 2005; Wain et al., 2015). It has been reported that

the surface wave field can significantly enhance turbulence only

in the top few meters of the ocean (Gemmrich and Farmer,

2004). In this depth range, however, collected turbulence data in

field observations are often contaminated by the vibration and

wake of the vessel (Oakey and Elliott, 1982; Lombardo and

Gregg, 1989; Brainerd and Gregg, 1993). The third source is

surface buoyancy flux. During nighttime, surface cooling

promotes the transfer of ocean heat to the atmosphere, thus

convective instability leads to turbulent flows in the mixed layer
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(hereafter, the oceanic heat loss is defined as the positive

buoyancy flux). In contract to the surface wave field driving

turbulence within the top few meters, the surface buoyancy flux

can convectively drive turbulence from the sea surface to the

base of the mixed layer. However, during daytime, the ocean is

heated by penetrating solar radiation, and the surface buoyancy

flux acts as a sink for turbulence, which initiates stable

stratification near the surface and thus suppresses turbulence

(Anis and Moum, 1994; Moulin et al., 2018).

The TKE dissipation rate, ϵ, acts as an important sink in the

energy budget of the global ocean. It balances the energy input to

the ocean from external forcing (Wunsch and Ferrari, 2004;

Ferrari and Wunsch, 2009). Regardless of the top few meters,

which are dominated by surface waves, the mixed layer is

thought to be affected mainly by wind-induced current shear

and buoyancy flux, and the vertical distribution of TKE

dissipation rate in the mixed layer has been widely studied and

parameterized by a linear combination of the shear-driven

dissipation rate and surface buoyancy flux (Lombardo and

Gregg, 1989; Tedford et al., 2014; Esters et al., 2017; Esters

et al., 2018). Field observations have indicated that in the mixed

layer the TKE dissipation rate first decreases rapidly beneath the

sea surface, and then remains relatively uniform towards the

mixed-layer base (Shay and Gregg, 1986; Lombardo and Gregg,

1989; Anis and Moum, 1994; Moum and Rippeth, 2009). To

identify the similarity structure of TKE dissipation rate in the

mixed layer, it has usually been rendered dimensionless by

surface buoyancy flux, J0b , and has been found to be

convergentin some ocean regions and in the atmosphere (Shay

and Gregg, 1986; Moum and Rippeth, 2009; D'Asaro, 2014).

These results have significantly expanded the understanding of

turbulence structures in the mixed layer. Nonetheless, the choice

of surface buoyancy flux as the scaling parameter may have some

inherent flaws. For example, during daytime, surface buoyancy

flux is inapplicable because it is negative and suppresses

turbulence in the mixed layer. Moreover, when using only

surface buoyancy flux to make TKE dissipation rate

dimensionless, the contribution of wind-induced current shear

is explicitly omitted, which may fail to produce a true intrinsic

structure of TKE dissipation rate in the mixed layer (Anis and

Moum, 1994; Lozovatsky et al., 2005). These issues motivate the

search for a more appropriate parameter to characterize ϵ in the

mixed layer.

In this paper, we attempt to propose a new characteristic

parameter to reflect the intrinsic similarity structure of the TKE

dissipation rate in the mixed layer. This parameter is available all

day long, and its relationship with wind-induced current shear

and surface buoyancy flux is systematically examined using the

present dataset collected in the tropical Indian Ocean.
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2 Theory and methods

2.1 Shear-driven dissipation rate ϵs

The oceanic surface wind-induced current shear stress t0, as
a function of the wind speed at a reference height and the drag

coefficient, can be expressed (Jones and Toba, 2001) as

t0 = raCDU
2
10 (1)

where ra is the air density, CD is the drag coefficient, and U10

is the wind speed at a height of 10 m above the sea surface.

Typical values of CD are on the order of 10-3 and depend on wind

speed. The calculation of CD is based on version 3.0 of the

Coupled Ocean-Atmosphere Response Experiment (COARE

3.0) bulk algorithm (Fairall et al., 1996; Fairall et al., 2003;

Edson et al., 2013), which can be accessed at ftp://

ftp1.esrl.noaa.gov/BLO/Air-Sea/bulkalg/cor3_0/. The friction

velocity on the sea side, u*, which is a characteristic velocity

reflecting boundary shear effect, is defined as

u* =
ffiffiffiffiffiffiffiffiffiffi
t0=r

p
(2)

where r is the density of seawater.

When only wind stress is applied, based on the flat rigid-wall

approximation of the ocean surface, in the upper boundary layer,

the vertical distribution of the horizontal mean velocity U

satisfies the classical logarithmic law (Esters et al., 2018)

U =
u*
k

ln
z
z0

� �
, (3)

where z0 is the roughness length of the sea surface boundary

layer, z is distance from the sea surface, and k=0.41 is the von

Karman constant. This formula gives the velocity shear as ∂U
∂ z =

u*
k z . Thus, the dissipation rate dominated by wind stress alone

follows the so-called “law of the wall” as

ϵs = u0w0 ∂U
∂ z

=
u3*
k z

, (4)

where u0w0 = u2* reflects the balance between near-surface

Reynolds stress and surface wind stress, and u′ and w′ are the

fluctuating velocities in the horizontal and vertical directions.
2.2 Buoyancy flux J0
b

The oceanic surface buoyancy flux, which is affected by both

heat and mass exchange between the atmosphere and ocean, is

defined (Shay and Gregg, 1986; Thorpe, 2005) as

J0b =
gQp

r0
, (5)
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where g is the gravitational acceleration, r0 is the reference
density of seawater, and Qp is the density flux, which is made up

of contributions from temperature flux FT and freshwater flux FS
as

QP = r(aFT + bFS) (6)

Here, FT = -Qnet/rwCp and FS = (E − P)S=(1 − S
1000 ), where a

and b are the thermal expansion and saline contraction

coefficients respectively. Cp represents the specific heat of

seawater, and E, P, and S represent evaporation, precipitation,

and sea surface salinity respectively. Qnet, the net radiative heat

flux at the ocean surface, is given (Shay and Gregg, 1986) by the

sum of the incoming shortwave radiation (SW), longwave

radiation (LW), sensible heat (SH), and latent heat (LH) as

Qnet = SW + LW + SH + LH (7)

E, P, SW, and LW were measured directly by the onboard

meteorological observation system, and SH and LH were

computed using the general flux algorithm of COARE 3.0

(Fairall et al., 2003), which has been wildly used to estimate

sensible and latent heat in the air-sea interaction community

with accuracy within 5% for wind speed of 0-10 m s-1 and 10%

for wind speed of 10-20 m s-1, guaranteeing a reasonable

evaluation of J0b .
2.3 TKE dissipation rate ϵ

TKE dissipation rate ϵ characterizes the conversion intensity

of turbulent energy into heat through fluid viscous forces. In

isotropic turbulence, ϵ is defined (Wolk et al., 2002) as

ϵ =
15
2
v

∂ u
∂ z

� �2

=
15
2
v
Z ∞

0
j(k)dk, (8)

where v is Molecular viscosity coefficient, and ∂ u
∂ z is the

velocity shear and directly measured by the shear probe

mounted on the microstructure profiler. j(k) is the shear

spectrum in wavenumber (k) space, which were transformed

from the frequency (f) space based on Taylor’s frozen turbulence

hypothesis for each vertical segment.

Considering the observation noise in the high wave number

region, the observed shear spectrum j(k) is fitted with the

theoretical Nasmyth spectrum jN(k) and extrapolated to high

and low wavenumbers for each segment. jN(k) is given (Bluteau

et al., 2016) by

jN (k) =
8:05(k=kv)

1=3

1 + (20:6k=kv)
3:715 , (9)

where kv=(∈/v3)1/4 is Kolmogorov wavenumber. Thus, ϵ is

then obtained by integrating the fitted Nasmyth spectrum over

the full extrapolated wavenumber range (Moum et al., 1995).
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2.4 Determination of the mixed
layer depth

The mixed layer has a relatively homogeneous distribution

of temperature, salinity, and density, resulting from turbulent

mixing driven by the surface forcing. Its thickness, called as the

mixed layer depth (MLD), is a basic scale in the study of the

turbulent energy budget within the mixed layer. The threshold

method, which is based on the changes in temperature and

density or in their gradients, is a simple and extensively

employed method to identify the MLD (Brainerd and Gregg,

1995; de Boyer Montégut et al., 2004). However, this method is

somewhat subjective and not suitable for different regions and

seasons (Brainerd and Gregg, 1995; de Boyer Montégut et al.,

2004; Holte and Talley, 2009). Whereafter, some relatively

objective methods were proposed, such as the curvature

method (Lorbacher et al., 2006), split-merge method

(Thomson and Fine, 2003), maximum angle method (Chu and

Fan, 2011), and relative variance method (Huang et al., 2018).

Huang et al. (2018) compared these objective methods and

found that they have their own advantages in different regions

and environments. In this study, the MLD is determined from

the density profiles with the maximum angle method, which is

based on the maximum angle between two depth vectors of the

profile (de Boyer Montégut et al., 2004; Chu and Fan, 2011).
2.5 ϵ=J0
b in the mixed layer

The input of surface energy makes the upper mixed layer be

approximately vertically uniform layer. However, the energy flux

varies with increasing depth as it transports downwards,

resulting in a variable vertical structure of turbulence in the

mixed layer. Based on the energy budget, the TKE dissipation

rate ϵ is commonly used to represent turbulence in the mixed

layer. Generally, the vertical structure of the nondimensionalized

TKE dissipation rate, ϵ=J0b , versus nondimensionalized depth, z/

D, has been widely investigated in the previous literature, where

z is depth and D is the thickness of the mixed layer. This

normalization method for ϵ basically requires that data be

available at night, i.e., J0b > 0 , which is favorable for convective

mixing in the mixed layer. For example, Shay and Gregg (1986)

performed a statistical analysis of ϵ=J0b using microstructure data

collected in the Bahamas and the Gulf Stream warm core ring.

They found that in the uppermost layer (5–10 m), the TKE

dissipation rate ϵ was exceptionally high. This thin layer with

enhanced ϵ was thought to be generated mainly by wind forcing

and/or surface wave breaking. Below this thin layer, ϵ was nearly
uniform in the mixed layer, with an average ϵ=J0b of 0.61 in the

Bahamas and 0.72 in the Gulf Stream warm core ring. Lombardo

and Gregg (1989) carried out a mixed-layer dynamic experiment

at (34°N, 127°W), located in the outer reaches of the California

Current. They found that the average value of ϵ=J0b in the mixed
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layer was 0.58. Anis and Moum (1994) analyzed a mixed-layer

dataset collected in the Pacific Ocean in 1987. They found that

ϵ=J0b decreased in an almost linear fashion with increasing depth

in the lower half of the mixed layer, with a slight increase at the

base of the mixed layer (i.e., near z/D~1). In a recent study Esters

et al. (2018) statistically analyzed the scaled ϵ in mixed layer and

found ϵ=J0b were scattered (0:1 < ϵ=J0b < 100) in five different

surveyed sea areas. To address this inconsistency of ϵ=J0b and

explore the similarity of ϵ in the mixed layer, in this study we try

to propose a new characteristic parameter, TKE dissipation rate

at the mixed-layer base ϵD, to normalize ϵ.
2.6 Data description

The observational dataset was acquired during an

international field campaign, called the Cooperative Indian

Ocean Experiment on Intraseasonal Variability in the Year

2011 (CINDY2011). This field campaign was part of the

Dynamics of the Madden-Julian Oscillation (DYNAMO)

program. For detailed information on CINDY2011, please

refer to Yoneyama et al. (2013). The present study used only

the on-board data collected by the research vesselMIRAI, which

was stationed at (8°S, 80.5°E) (shown with the star in Figure 1).

This measurement covered two periods, 30 September to 24

October and 30 October to 28 November 2011.

The oceanic surface meteorological data collected onMIRAI

included air and sea surface temperatures, wind speed at 10 m

height, evaporation, precipitation, and solar radiation, and had a

temporal resolution of 10 minutes. The wind profile was

measured by a 915-MHz wind profiler (Yoneyama et al.,

2013). Using the method described in the last section, the time

series of wind stress t0 and buoyancy flux J0b are shown in

Figures 2A, B. It is found that J0b is positive and nearly constant at

night except for the time of sunset and sunrise. During daytime,

the heat gain is dominated by short-wave radiation, and J0b varies

sharply, increasing from zero after sunrise, reaching its

maximum value near noon, and returning to zero again

before sunset.

Conventional hydrographic instruments, including

conductivity-temperature-depth (CTD) and the Lowered

Acoustic Doppler Current Profiler (LADCP), were deployed

down to 500 m every 3 h (Figures 2C–F). These data were

postprocessed into vertical bins of 1 m for the CTD and 2 m for

the LADCP. The base of the mixed layer is marked as the white

curve in Figures 2E–G. It is of the order of magnitude of tens of

meters in depth and shows obvious diurnal variations. This diurnal

variation of MLD is one of the most important features of mixed

layer. During the nighttime, cooling increases density of the surface

water, which sinks and causes rapid turbulent convection, resulting

in the increase of the MLD. While during the daytime, surface

heating causes restratification and suppresses the turbulent

convection, resulting in the decrease of the MLD (Imberger, 1985).
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After each cast of CTD/LADCP, two microstructure profiles

were measured consecutively by a Turbulence Ocean

Microstructure Acquisition Profiler (TurboMAP) for the upper

300 m. To avoid contamination by vessel-generated motion, the

microstructure data for the uppermost 10 m were discarded in

post-processing analysis. Briefly, the observed shear spectra were

fitted with the Nasmyth spectrum for each 2-m vertical segment,

and then ϵ was obtained by integrating the fitted spectrum over

the full extrapolated wavenumber range (Moum et al., 1995) [for

further details of estimating ϵ, refer to Wolk et al. (2002)].

Figure 2G shows the time series of ϵ profiles.

Note, as shown in Figure 2F, that a water-mass intrusion

with low temperature and low salinity occurred in the upper

layer (0–100 m) from DoY (day of year) 315 (11 November

2011, see the dashed line in Figure 2F), which was also described

by Seiki et al. (2013). This lateral dominant process was beyond

the scope of this study, and all the datasets after that day were

excluded. Therefore, a total of 285 CTD/LADCP and 570

microstructure profiles were included in the final analysis. For

consistency, the microstructure data were further averaged

according to the CTD profile time stamps. This complete,

high-resolution dataset for both atmospheric and oceanic

states made it possible to quantitatively analyze the dynamics

of the ocean mixed layer.
3 Results

3.1 ϵ scaled with the surface buoyancy
flux, J0

b

Although the previous studies show that the nondimensionalized

TKE dissipation rate ϵ=J0b does not reflect very good similarity

structure in mixed layer, we still first followed and examined the
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previous literature to study ϵ=J0b in the mixed layer during

nighttime (J0b > 0) for the present dataset. The dataset includes

183 original ϵ profiles overall. Each profile was divided into

vertical bins with size 0.05z/D. In each bin, the median,

geometric-mean, and arithmetic-mean values and their

corresponding 50% confidence intervals (i.e., the first and

third quartiles) were calculated. Figure 3A shows ϵ=J0b versus

z/D using these three statistical averaging methods. The median

and geometric-mean values were found to agree roughly with

each other, but significantly differed from the arithmetic-mean

values. This is because the median and geometric-mean values

represent a typical value of the dataset, and are not shewed by a

small proportion of extremely large ϵ in the mixed layer.

Moreover, the arithmetic-mean values were more scattered

than the other statistical average values. To quantitatively

evaluate which statistic gave the best representation of the

present dataset, a scatter index SI was defined as

SI = std
ϵ

J0b
− smooth

ϵ

J0b
, 5

� �� �
, (10)

where std denotes the standard deviation and smooth

denotes a low-pass filter with a moving average over five data

points. SI was 0.058, 0.046, and 0.28 for the three statistical

averages of median, geometric mean, and arithmetic mean

values respectively. The SI values of the arithmetic mean were

remarkably larger than those of the other averages. Such large

values of SI may have been caused by individual outlier data

points that could not be smoothed by the arithmetic mean

method. For simplicity, median values were mainly used to

represent the statistical average of the dataset.

Figure 3A shows that ϵ=J0b sharply decreased with increasing z/

D from the surface to depth z/D ≈ 0.5. This result is consistent with

those in previous studies (Shay and Gregg, 1986; Lombardo and

Gregg, 1989). Below z/D ≈ 0.5, the median and arithmetic mean
FIGURE 1

Map of the tropical Indian Ocean. The red star shows the fixed site where the dataset used in this study was collected. The contour and vector
indicate the wind field at 10 m height above the sea surface on 30 September 2011 (i.e., the first day of the field campaign), which is from the
ECMWF ERA5 reanalysis wind data at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview.
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values of ϵ=J0b were roughly uniform, with magnitudes of ~10-2 and

0.32, respectively. Shay and Gregg (1986) performed two

experiments on convectively driven mixing and concluded that ϵ

=J0b slightly decreased with increasing z/D by nomore than a factor

of 3 in most of the lower part of the mixed layer, with an average

value of 0.66. The arithmetic mean values of ϵ=J0b in the lower half

of the mixed layer in the present dataset were almost half those in

the datasets of Shay and Gregg (1986), which implies that a larger

fraction of the energy input from atmospheric forcing might have

been dissipated in the upper part of the mixed layer.

Neglecting the influences of swells, surface wave breaking,

and Langmuir cells, a classical length scale, called the Monin-

Obukhov scale, was developed to compare the relative

contributions of surface wind stress and buoyancy flux to

turbulence in the mixed layer, as described (Monin and

Yaglom, 1971; Grachev and Fairall, 1997) by
Frontiers in Marine Science 06
LMO = −
u3*
k J0b

, (11)

where the numerator u3* is proportional to the input of wind

power. LMO is negative in destabilizing conditions (during

nighttime) and positive in stabilizing conditions (during

daytime). |LMO| represents a characteristic scale at which

depth both processes, surface wind stress and buoyancy flux,

have comparable importance in turbulence production. The

mixed-layer depth D is generally greater than |LMO|. Wind

stress dominates turbulence production in the depth range 0<

z « |LMO|, whereas buoyancy flux plays a dominant role in

turbulence production in the range |LMO|<< z D (Lombardo and

Gregg, 1989). Hence, the ratio D/|LMO| can be considered as a

stability parameter to characterize convective instability in the

mixed layer (Shay and Gregg, 1986).
FIGURE 2

Time series of (A) wind stress, (B) surface buoyancy flux, (C) zonal current, (D) meridional current, (E) temperature, (F) salinity, and (G) TKE
dissipation rate at the observation site. The white curves denote the base of the mixed layer. The black dashed line in (F) indicates that the data
after DoY 315 (November 11) were not used due to the intrusion of a low-salinity water mass in the upper layer.
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Figure 3B shows the median profiles of ϵ=J0b versus z/D for all

183 original nighttime profiles (black), of which 95 profiles satisfy

D/|LMO| > 10 (red) and 84 profiles satisfy 1< D/|LMO|< 10 (blue).

The left four profiles satisfy D/|LMO|< 1, which implies that

turbulent mixing was dominated by wind stress, and were

neglected in the present analysis. When D/|LMO| > 10, ϵ=J0b
decreased rapidly until z/D = 0.5 and became roughly uniform

below z/D = 0.5 in the mixed layer. This result confirms the

argument of Lombardo and Gregg (1989), who proposed that

surface buoyancy flux dominates turbulence in the mixed layer
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when D >> |LMO| and leads to a distinguishing feature of uniform ϵ
with depth. When 1< D/|LMO|< 10, wind stress and surface

buoyancy flux jointly dominate turbulence production in the

mixed layer. In such conditions, ϵ=J0b gradually decreases towards

the lower part of the mixed layer. In general, the median all-

nighttime profiles are well represented by the profiles under D
jLMO j >

10, which implies that turbulence in the mixed layer was more likely

dominated by buoyancy-induced convection during the observation

period. Moreover, our data also supports that D/|LMO| ≈ 10 is a

dynamical transition, which will be discussed in Section 5.
A B

DC

FIGURE 3

(A) ϵ=J0b versus z/D in semi-log coordinates using different statistical methods, geometric-mean (G.M.), arithmetic-mean (A.M.), and median

(MED), for all nighttime profiles. (B) Median ϵ=J0b versus z/D for all nighttime profiles (black) and for nighttime profiles with D/|LMO| > 10 (red) and
1< D/|LMO|< 10 (blue). (C) ϵ/ϵD versus z/D in semi-log coordinates using different statistical methods for all profiles. (D) Median ϵ/ϵD versus z/D
for all profiles (black), daytime profiles (green), and nighttime profiles with D/|LMO| > 10 (red) and 1< D/|LMO|< 10 (blue). The error bars, only draw

representatively on one profile, denote the 50% confidence intervals. The vertical dashed lines in (A, B) denote ϵ=J0b=0.58 proposed in
Lombardo and Gregg (1989). The horizontal dashed lines in (A–D) denote z = D.
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3.2 ϵ scaled with the dissipation rate at
the mixed layer base, ϵD

As mentioned above, ϵ in the mixed layer has generally been

scaled by J0b to study its statistical characteristics. However, both

surface wind stress and buoyancy flux might have made

contributions to the turbulence of the mixed layer. Scaling ϵ
by J0b alone may lead to poor exhibition of its characteristic

structure, especially in the case when wind stress dominates

turbulent mixing. This flaw is indicated in Figure 3B, where the

profiles of ϵ=J0b change markedly as D/|LMO| varies (the red and

blue lines). Moreover, during the daytime, the surface buoyancy

flux J0b is negative, and it is usually trapped in the upper part of

the mixed layer (Thompson et al., 2019). This is why ϵ=J0b , to the

authors’ knowledge, has rarely been used in the daytime in past

studies. Hence, a more appropriate parameter is needed to

characterize ϵ in the mixed layer.

Considering that the depth z is usually scaled by the mixed-

layer depth D to study ϵ distributions in the mixed layer (Shay

and Gregg, 1986; Lombardo and Gregg, 1989; Anis and Moum,

1994; Moum and Rippeth, 2009; Belcher et al., 2012), in this

study we chose to use the TKE dissipation rate at depth D (i.e.,

the base of the mixed layer), ϵD, instead of J0b , as a parameter to

scale ϵ. This choice has two main advantages. First, unlike J0b ,

which is one of the driving parameters, ϵD is expected to be a

response parameter reflecting the combined contributions of

surface wind stress, buoyancy flux, waves, and other processes.

Secondly, the structural representation of ϵ is not limited to

nighttime when using ϵD as the scaled parameter.

As in Figures 3A, C shows the three statistical-average

profiles of ϵ/ϵD. Again, as expected, the arithmetic mean

profile significantly deviates from both the median and the

geometric mean profiles, indicating that the median (or

geometric mean) profile might be more appropriate for

revealing the vertical distribution of ϵ in the mixed layer.

Figure 3D show the median profiles of ϵ/ϵD versus z/D for all

285 profiles (black), the 102 daytime profiles (green), and the 179

nighttime profiles, separated into 95 profiles satisfyingD/|LMO| >

10 (red) and 84 profiles satisfying 1< D/|LMO|< 10 (blue). The

four profiles demonstrate a very good similarity within the

measurement scatter range. By contrast, as shown in

Figure 3B, the three profiles of ϵ=J0b show much different

structures when D/|LMO| is within different ranges. Besides,

comparing the error bars in Figures 3B, D shows that ϵ/ϵD is

much less scattered than ϵ=J0b . These results provide evidence

that ϵD is a better candidate to characterize the intrinsic structure

and similarity of ϵ in the mixed layer, regardless whether wind

stress or surface buoyancy flux dominates turbulent mixing.

In addition, Figures 3B, D show a local maximum near the

base of the mixed layer, and when D/|LMO| > 10, i.e., the mixed

layer is convectively driven by surface buoyancy flux, the local

peak is more pronounced than that when 1< D/|LMO|< 10. This
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feature was also observed by Anis and Moum (1994) and was

attributed to enhanced shear levels by entrainment at the base of

the mixed layer.
4 Discussion: Parameterization of ϵD

It is known that the variation of ϵ usually depends on the

strength of atmospheric forcing. Neglecting the influence of

surface waves and assuming that atmospheric forcing can

reach the mixed-layer base, it is expected that ϵD will be

mainly affected by wind stress and surface buoyancy flux.

However, how to quantitatively parameterize their

contributions to ϵD remains unclear. This problem is the main

concern of this subsection.

The parameterization study of ϵD, to the authors’ knowledge,

has not been reported so far. Previous investigations mainly

focused on parameterization of bulk ϵ within the mixed layer

with a linear combination of both the shear-driven dissipation

rate ϵs and the surface buoyancy flux J0b (Lombardo and Gregg,

1989; Tedford et al., 2014; Esters et al., 2017; Esters et al., 2018).

For example, with the field-observation dataset for nighttime

convective cooling of the Mixed Layer Dynamics Experiment in

October 1986 at the site (34°N, 127°W), Lombardo and Gregg

(1989) (hereafter denoted as LG89) suggested that ϵ over the

depth range of 0.25D to 0.8D can be written as

ϵLG89 = 1:53ϵs + 0:50J0b (12)

Esters et al. (2018) (hereafter denoted as Est18) analyzed five

datasets collected from under-ocean conditions and fitted a

linear formula for depths deeper than the Langmuir stability

length as:

ϵEst18 = 0:57(ϵs + J0b ) (13)

with different coefficients from ϵLG89. Assume that the linear

combination for ϵ in the mixed layer can extend to depth D, that

is,

ϵD = Aϵs _D + BJ0b (14)

where A and B are undetermined constants and ϵs_D is ϵs at

the mixed-layer base. When both sides of Eq. (14) are divided by

ϵs_D, the result is:

ϵD
ϵs _D

= A + B
D
LMOj j (15)

Figure 4 shows ϵD
ϵs _D

versus D
jLMO j for all nighttime profiles

(gray squares). We divided all these data points into 14 bins with

equal interval of log10
D

jLMOj, and the median value in each bin

was obtained (black squares). When D/|LMO|< 12, the median

points slowly decreased withD/|LMO| from 1 to 0.1, but whenD/|

LMO| > 12, they rapidly increased to 40. This unique transition at
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D
jLMOj ≈ 12 was also found in Lombardo and Gregg (1989), above

which the turbulence is mainly dominated by the buoyancy flux

and below which the turbulence is dominated by both the wind-

induced current shear and buoyancy flux.

We fitted these bin points (black squares) with Eq. (15),

getting the coefficients A=-0.88 and B=0.032, as shown by the

red line in Figure 4. The determination coefficient of this fitting

is 0.03. It can only well represent the bin points when D
jLMO j > 20

(When D/|LMO|< 20 the fitted line is negative). For comparison,

Eqs. (12) and (13) were also shown with gray line and gray

dashed line, respectively. These two lines could also not describe

the present observation data, especially for the data when D
jLMO j >

30.

The linear combination for ϵD (Eq. (14) or (15)) could not

well fit the present dataset to a certain extent, and much less does

it reflect the transition character at D
jLMO j ≈ 12. Moreover, when

both wind stress and surface buoyancy flux are simultaneously

driving turbulence in the mixed layer, their contributions to ϵ

may be intercoupling, which implies that the linear combination

of ϵs_D and J0b for ϵD may not be an appropriate choice. To

consider nonlinear coupling from wind stress and surface

buoyancy flux, an extra nonlinear term
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵs _DJ

0
b

p
was added to

Eq. (14) to give

ϵD = A0ϵs _D + B0J0b + C0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵs _DJ0b

q
(16)

where A′ , B′ , and C′ are undetermined constants. Referring

to the definition of LMO, Eq. (16) can be equivalently written as:

ϵD
ϵs _D

A0 + B0 D
LMOj j + C0

ffiffiffiffiffiffiffiffiffiffiffiffi
D
LMOj j

s
(17)
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The dataset was fitted using Eq. (17), shown as the red solid

line in Figure 4, with constants A′ = 0.65, B′ = 0.33, and C′ =
-0.26. The determination coefficient is 0.31, much better than

that of the linear fitting (Eq. (15)). Moreover, the fitting of Eq.

(17) can well reflect the transition character of the data points at
D

jLMO j ≈ 12. It is worth noting that the coefficient C′ is negative,
implying an opposite coupling effect of wind-induced current

shear and buoyancy flux on turbulence kinetic energy

dissipation rate. The mechanism behind this requires

further research.

Although Eq. (17) could well fitted the present dataset

collected from CINDY2011 in the tropical Indian Ocean, it is

empirical and whether it can be extended to other sea areas

needs further examination. However, this idea opens a window

for further study of the interaction between the wind-driven

stress and buoyancy fluxes in the mixed layer.
5 Summary

An observational dataset collected from CINDY2011 at the

station (8°S, 80.5°E) in the tropical Indian Ocean was used to

analyze statistically the vertical distribution of the TKE dissipation

rate ϵ in the mixed layer. This dataset contains time series of high-

resolution meteorological data, conventional hydrographic data,

and turbulence microstructure data covering the whole mixed

layer. The profiles of ϵ were statistically averaged using three

methods. The arithmetic-mean method was significantly affected

by individual outlier data and produced a more scattered ϵ profile.

To examine the vertical distribution of ϵ in the mixed layer, ϵ was

respectively scaled by the surface buoyancy flux J0b and the TKE
FIGURE 4
ϵD
ϵs_D

versus D
jLMO j for all nighttime profiles (gray squares). The black squares denote the median values of 14 bins for all nighttime profiles, and

they are fitted with Eqs. (15) and (17) as shown by the black and red solid lines, respectively. The gray line and gray dashed line denote the Eqs.
(12) and (13), respectively.
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dissipation rate at the mixed-layer base ϵD for comparison. When

the parameter ϵD was used, the dissipation rate ϵ showed similar

vertical distributions in the mixed layer under different dynamic

conditions (Figure 3D). This result indicates that ϵ follows a

universal vertical structure within the mixed layer with ϵD as an

intrinsic parameter. The parameterization of ϵD on shear-driven

dissipation rate ϵs_D and the surface buoyancy flux J0b was further

quantitatively explored. The comparison indicated that a linear

combination ϵD
ϵs _D

= 0:65 + 0:33 D
jLMOj − 0:26

ffiffiffiffiffiffiffiffiffi
D

jLMOj
q

could better

describe the variation trend and transition features of ϵD
ϵs _D

(Figure 4), in which the nonlinear term reflected the

intercoupling characteristics between wind stress and buoyancy

flux. The present study could be beneficial to our understanding

of turbulence in the upper ocean boundary layer and might

provide a reference for numerical modeling of the oceanic

mixed layer.
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