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Technology , Qingdao University, Qingdao, China, 4School of Computer Science and Information
Technology, The University of Nottingham, Nottingham, United Kingdom
Oceans at a depth ranging from ~100 to ~1000-m (defined as the intermediate

water here), though poorly understood compared to the sea surface, is a critical

layer of the Earth system where many important oceanographic processes take

place. Advances in ocean observation and computer technology have allowed

ocean science to enter the era of big data (to be precise, big data for the surface

layer, small data for the bottom layer, and the intermediate layer sits in between)

and greatly promoted our understanding of near-surface ocean phenomena.

During the past few decades, however, the intermediate ocean is also

undergoing profound changes because of global warming, the research and

prediction of which are of intensive concern. Due to the lack of three-

dimensional ocean theories and field observations, how to remotely sense the

intermediate ocean from space becomes a very attractive but challenging

scientific issue. With the rapid development of the next generation of

information technology, artificial intelligence (AI) has built a new bridge from

data science to marine science (called Deep Blue AI, DBAI), which acts as a

powerful weapon to extend the paradigm of modern oceanography in the era of

the metaverse. This review first introduces the basic prior knowledge of water

movement in the ~100 m ocean and vertical stratification within the ~1000-m

depths as well as the data resources provided by satellite remote sensing, field

observation, and model reanalysis for DBAI. Then, three universal DBAI

methodologies, namely, associative statistical, physically informed, and

mathematically driven neural networks, are elucidated in the context of

intermediate ocean remote sensing. Finally, the unique advantages and

potentials of DBAI in data mining and knowledge discovery are demonstrated in

a top-down way of “surface-to-interior” via several typical examples in physical

and biological oceanography.
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1 Introduction

Since the advent of ocean remote sensing technology, the

understanding of surface or near-surface ocean phenomena has

been improving. Nevertheless, the phenomena mined from satellite

remote sensing data are only the tip of the iceberg because that ocean

is a huge body of water that is thousands of deep, the maximum depth

of which can reach 10,000 meters. Consequently, the comprehensive

recognition of the deep blue ocean from the outside to the inside has

always been a challenging scientific issue.

The hectometer-scale ocean contains abundant dynamic and

ecological processes from turbulence to circulation, from waves to

tides, and from oxygen minimum zones to subsurface chlorophyll

maximum (SCM), whereas the kilometer-scale ocean is relatively

“calm” and significant stratification acts as a barrier to the exchange of

matter and energy between the upper and lower waters. However,

slight changes in the thermohaline and circulation structures of the

kilometer-scale ocean are reminders of climate change on the decadal

scale. Before the turn of this century, increasingly mature

oceanographic theories and the continuous accumulation of field

and remote sensing data have been building the foundation of

modern ocean science with the cognition of near-surface ocean

phenomena and laws.

Compared with the near-surface layer, the intermediate ocean at

the depth of ~100 to ~1000 meters is facing difficulties, such as the

lack of corresponding theories and insufficient three-dimensional

observation, which are the main factors restricting the further

development of marine science (Meng and Yan, 2022). In the 21st

century, the in situ observation and model reanalysis technologies

represented by the Array for Real-time Geostrophic Oceanography

(Argo) have developed rapidly, providing unprecedented high-quality

data sources for intermediate ocean research.

Meanwhile, prevalent AI technology gradually developed a new

branch, termed DBAI, with a unique data-driven advantage of

knowledge discovery. DBAI provides the opportunity to accelerate

the recognition process of the intermediate ocean, making up for the

deficiency of the existing oceanographic theoretical system. In recent

years, DBAI technology, in collaboration with basic ocean theory and

ocean big data (Li et al., 2020), has made preliminary achievements in

internal wave (IW) inversion, stratification spatio-temporal variation

and prediction, eddy identification and trajectory prediction, El Nino
Frontiers in Marine Science 02
and Southern Oscillation prediction and other ocean scientific issues

Ham et al. (2019); Zhang et al. (2022). Nevertheless, it is undeniable

that AI-aided remote sensing of the intermediate ocean is still in its

infancy, and the challenges lie in the unclear physical mechanism,

insufficient profile data, and the low generalization DBAI. The gap

between remote sensing data and knowledge can be filled with the

construction of DBAIwith strong knowledge discovery and physical

interpretability, thus promoting major discoveries and theoretical

innovations in intermediate marine science.
1.1 Water motion in ~100-m ocean

As a large-scale geophysical fluid system, the ocean is forced by

celestial bodies, atmosphere, earth rotation, and the system itself, so

that the upper water movement covers a very broad three-

dimensional space-time scale. Generally speaking, the larger the

spatial scale of water movement is, the longer the period is, and the

deeper the ocean water layer is affected. As illustrated in Figure 1A.

Ocean motions can be broadly divided into turbulence, wave, and

flow. On the small scale (millimeter magnitude) and high-frequency

motion spectrum, the velocity (magnitude and direction) of any

particle in seawater varies in a disordered manner, which is

collectively referred to as turbulence. Turbulence mainly occurs at

the surface of the ocean and plays an important role in the multiscale

energy cascade of fluids. Its maintenance depends on the external

energy supply (wave breaking is the most typical source) and follows

fluid dynamics equations (such as Navier–Stokes equations).

The oceanic wave phenomena mainly include waves, tides, IWs,

large-scale Rossby waves, and Kelvin waves. The effective wave height

and tidal water level change are usually within 10 meters, whereas the

surge can reach tens of meters in extreme weather, and the offshore

tidal power can even reach the bottom. In addition, the tides have the

horizontal scale of a kilometer and are potentially coupled with large-

scale Rossby and Kelvin waves (sea surface height anomalies of 10 cm

and vertical scales of thousands of meters). Ocean current is defined

as a large-scale, relatively stable flow of seawater driven by wind stress

and density differences. The core depth of ocean circulation is usually

several hundred meters, and the deep compensation undercurrent can

reach the depth of kilometers. It is crucial in the composition of the

global ocean environment and climate regulation.
A B

FIGURE 1

Water motion and vertical stratification of the intermediate ocean. (A) The time scale, spatial scale and depth of various types of motions.
(B) Vertical stratification.
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1.2 Vertical stratification of the
~1000-m ocean

In addition to the flow and fluctuation in the horizontal direction,

the ocean also has typical stratification characteristics in the vertical

direction. According to the range of air–sea interaction and the

vertical gradient of thermohaline parameters, the ocean water can

be divided into the air–sea interface, mixed layer, thermocline, and

deep layer from top to bottom (Sprintall and Cronin, 2009) as

illustrated in Figure 1B.

Among them, the air–sea interface is related to the momentum,

heat, and gas exchange rate between the ocean and the atmosphere,

which has become the key problem of climate change and its

prediction. Turbulent mixing caused by dynamic effects (wind,

wave, current, etc.) and convective mixing caused by thermal effects

(evaporation, cooling, densification, etc.) at the air–sea interface

makes the upper ocean form a water layer with nearly uniform

temperature, salinity, and density field, that is, the mixed layer,

which contributes to the heat balance, water cycle, and carbon cycle

of the earth system. Meanwhile, climate and large-scale atmospheric

circulation changes have direct and important effects. At the lower

boundary of the mixing layer, the water layer with rapid changes in

temperature, salinity, and density is called the marine thermocline,

which is divided into the seasonal and main thermocline. The

existence of the thermocline hinders the exchange of heat, oxygen,

carbon, and nutrients between the upper and lower water bodies, and

its interannual and interdecadal changes are reflected in the climate

system and the Marine ecosystem. Below the thermocline is uniform

deep water with basically stable temperature, salinity, and

density characteristics.

From the perspective of time scale, the air–sea interaction at the

interface takes place at any time, the mixed layer and the seasonal

thermocline have synoptic and seasonal scales, and the main

thermocline and deep water change slowly on decadal and climatic

scales. From the perspective of spatial scale, the mixed layer is usually

fewer than 100 meters in the low latitude sea area and can be as deep

as the main thermocline in the middle latitude. The main thermocline

is about 300 m in the low latitude and 700~800 m in the middle

latitude. At the high latitude, the mixed layer and the main

thermocline gradually rise until the stratification of subpolar water

disappears. In general, the air–sea interface and mixing layer are the

most active areas of ocean mixing, which are directly affected by the

weather system. The stratification structure and thermohaline

distribution of the thermohaline circulation are controlled by the

seawater subsidence and have climatic-scale characteristics.

Therefore, the distribution of temperature, salinity, and density

fields in the vertical direction in the low-latitude sea area reflects

the radial spatial distribution characteristics of the ocean surface to a

certain extent (Trujillo and Thurman, 2011).
1.3 DBAI-aided remote sensing of the
intermediate ocean

As an interdisciplinary science based on observation and

experiment, marine science, which is characterized by data-

intensive and technology integration and linked by water bodies,
Frontiers in Marine Science 03
has experienced a development process from theoretical traction to

technology-driven and then to data-driven. Specifically, the model-

driven method is to achieve theoretical analytical solutions by

modeling problems, just as Western medicine treats patients based

on the diagnosis. Data-driven methods search for the approximate

optimal solutions by fitting the model to the data, just like “look, hear,

question, and feel the pulse” in traditional Chinese medicine, which is

guided by traditional Chinese philosophy to carry out “characteristic

engineering” with dialectical unity. Western medicine takes Western

philosophy as a “mathematical model” to solve the main

contradiction quickly and efficiently. “AI for science” is listed as an

important trend, indicating that “AI can become a new production

tool for scientists and promote the new paradigm change in scientific

research” (Appenzeller, 2021). As a cutting-edge technology in the

integration of marine and data science, DBAI has the function of

“model + data” driving and complementing each other in the way of

“integration of traditional Chinese and Western medicine.”

This review paper puts forward the viewpoint of philosophy and

scientific conception of DBAI for the first time as shown in Figure 2.

Although satellite ocean remote sensing is the main approach to

observing surface and subsurface ocean phenomena from the

“external” perspective, it cannot directly perceive the “internal”

process of the intermediate ocean. Benefiting from the in situ

observation represented by Argo buoys, the vertical profiles

compensate for the existing deficiencies of satellite ocean remote

sensing with high accuracy. However, it cannot achieve extensive

coverage at the same time. Therefore, it is crucial to combine the

remote sensing data with the in situ data; DBAI technology is highly

promising for playing such a role.

The remainder of this review paper proceeds as follows. Section 2

describes the ocean observations regarding the satellite remote

sensing in the ~100-m ocean and in situ observations in the ~1000-

m ocean. In section 3, the DBAI methodology is introduced in detail
FIGURE 2

Philosophy and scientific conception of DBAI, model-driven and data-
driven methods supplement each other, just as Western and Chinese
medicine complement each other.
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and contains associative statistical, physically informed, and

mathematically driven neural networks. Section 4 demonstrates the

knowledge discovery with DBAI. Finally, some remarks conclude in

Section 5.
2 Observations

Observations are highly significant in oceanographic progress,

and DBAI is increasingly being considered as a tool to exchange ocean

knowledge and observational data for the intermediate ocean as well

as bring together model- and data-driven methods, facilitating

conventional tasks better and faster. The observations of the

intermediate ocean can be divided into satellite remote sensing in

the ~100-m ocean and in situ observations in the ~1000-m ocean.
2.1 Satellite remote sensing in the
~100-m ocean

Oceanic remote sensing, as one of the key technologies to

promote the development of marine science, has acquired ocean

color, dynamics, and environmental parameters with its

comprehensive advantages of all-weather, quasi-real-time, large

range, high precision, and long-time sequence over the past 50

years. It has fundamentally enhanced our profound understanding

of near-surface ocean phenomena and processes such as ocean

primary productivity, sea level change, air–sea flux, and ocean

circulation and improved the traditional paradigm of global ocean

observation and scientific research.

However, current satellite ocean remote sensing is essentially a

two-dimensional sea surface remote sensing. As an active optical

remote sensing method, light detection and ranging (LiDAR) has the

combined technical advantages of all-day range resolution and large

penetration depth (more than three times that of passive remote

sensing). Moreover, LiDAR can achieve remote sensing at night, in

polar regions, and even in cloudy conditions. At present, it is the only

known detection method that is expected to realize underwater three-

dimensional remote sensing and is also the international frontier in

the field of ocean optics and ocean water color remote sensing

(Hostetler et al., 2018). Furthermore, LiDAR is widely applied in

marine bio-optics, shallow sea topography, fish detection, polar

ecology, and upper ocean dynamic processes (IWs, mixed layers,

turbulence, foam, etc.). In other words, a new interdisciplinary

technology field that is marine LiDAR detection technology has

been gradually constructed (Churnside, 2013).

Although the spaceborne marine LiDAR is still in the blank stage,

the successfully launched spaceborne atmospheric LiDAR (CALIOP)

and terrestrial LiDAR (ICESat-2) have shown good advantages and

potential in the preliminary application of ecological oceanography

(Behrenfeld et al., 2013; Behrenfeld et al., 2017; Behrenfeld et al., 2019;

Lu et al., 2020). With the successive planning and implementation of

the NASA PACE mission (Werdell et al., 2019), ESA MESCAL

mission (Chepfer et al., 2018), and Guanlan mission (Chen et al.,

2019) of China Ocean National Laboratory Qingdao, Spaceborne

marine LiDAR with multiband (blue-green wavelength), meter-level

resolution and multisystem (hyperspectral, fluorescence, polarization,
Frontiers in Marine Science 04
etc.) observation capability will become a reality. The concept design

of observation at ~100 m depth can be seen in Figure 3. Further

combined with passive ocean color remote sensing and in situ

biogeochemical buoys (Biogeochemical Argo, BGC-ARGO) and

other observation means, it is expected to achieve the three-

dimensional detection and high-precision inversion of bio-optical

and physical parameters in four-dimensional space time within the

~100-m depth of the global ocean for the first time (Chen et al.,

2021b). For a more intuitive understanding of the abovementioned

spaceborne sensor, the characteristics of these satellite sensors are

collected and summarized in Table 1 (Amani et al., 2021; Amani et al.,

2022a; Amani et al., 2022b; Amani et al., 2022c).
2.2 In situ observations in the
~1000-m ocean

The ~1000-m ocean is usually studied with the help of in situ

observations and reanalysis data. Before the 21st century, in situ

profile observation typically comprised ship-based and mooring buoy

array but was challenged in terms of the low coverage rate of

spatiotemporal data, large deviation, and high observation cost. In

the 1990s, with the intensification of global climate change and the

prominent role of the ocean, the systematic absence of global ocean

profile observation data posed great challenges to climate change

research (Johnson et al., 2022).

In this context, the Argo program, which aims at the real-time

acquisition of global ocean thermohaline data at in the upper 2000 m,

was implemented. Up to now, it has provided more than 95% of

global thermohaline profile data (Riser et al., 2016), bringing

profound changes to intermediate marine scientific research. In the
FIGURE 3

Concept design of the integration of active and passive remote
sensing and field joint observation at ~100-m depth.
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early 21st century, mobile observation and sensor technologies were

further developed (Morel and Berthon, 1989). Physical, biological,

and chemical sensors with miniature and low power consumption

were successfully developed, and BGC-Argo buoys proceeded,

providing a broader data basis for exploring the coupling of ocean

physics and biogeochemistry. Around 2012, the United States, France,

and other countries successively joined the Deep-sea Argo (Deep-

Argo) program, planning to build a deep-sea Argo observation

network measuring depths up to 6000 m to promote the Argo

program to enter the era of all-sea, all-depth, and multidisciplinary

ocean observation. Figure 4 illustrates the Labrador Sea temperature

profile based on Argo measurement.

Additionally, with the rapid development of ocean observation

technology and the significant improvement of computer

performance, the development and application of high

spatiotemporal resolution, full-sea depth, numerical simulation

products based on the earth fluid dynamics theory and the

assimilation of multisource observation data have significantly

improved the accuracy of model prediction results. Ocean model

and climate state observation data products, such as the hybrid

coordinate ocean model (HYCOM), global ocean circulation model

data set, and world ocean atlas (WOA) global Ocean grid climate state

data set, have emerged. Including temperature, salinity, flow field,

chlorophyll, inorganic salt, and other multilayer parameter
Frontiers in Marine Science 05
information related to marine thermal, marine dynamics and

biogeochemistry, and other fields, provides another foundational

data source for intermediate and even deep ocean scientific

research. In recent years, in situ imagery acquired by underwater

imagers has been major ancillary data in marine research. However,

different from the remote sensing images, the complicated situations

of the marine environment highlight the uneven distribution of data

quality in in situ images (Jian et al., 2021). In situ images enhanced,

denoised, or saliently extracted by specific algorithms provide a

reliable data source for full ocean-depth scientific research (Jian

et al., 2018; Jian et al., 2019).
3 DBAI methodology

DBAI methodology mines the essence of phenomena and reveals

the laws behind them, starting from the data dimension and taking

scientific calculation as the core. As the key component, the neural

network (Cozman, 2021) develops from shallow to deep (Lecun et al.,

1998; Ronneberger et al., 2015) and has undergone three stages:

associative statistical, physically informed, and mathematically

driven. The associative statistical neural networks can extract the

information of data space, mine the explicit laws contained in the

data, and realize basic knowledge discovery. Physically informed
TABLE 1 The characteristics of described spaceborne satellite and mission.

Satellite/Sensor Temporal Resolution Spatial Resolution Wavelength(nm) Time Period

CALIOP 98.5 minutes 333 m 532, 1064 2006-ongoing

ICESat-2 91 days 0.7 m 1064 2018-ongoing

PACE 1-2 days (OCI) 1 km 340-890 (5steps);
940, 1038, 1250,

1378, 1615, 2130, 2260

Plan

2 days (HARP-2) 3 km 440, 550, 670, 870

-30 days (SPEXone) 2.5 km 385-770(2-4 steps)

Guanlan 8.45 days 500 m 486, 532 Plan

5.61 days
FIGURE 4

Labrador Sea temperature profile obtained from in situ Argo observations.
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neural networks (PINNs) (Wright et al., 2022) embed disciplined

prior knowledge or theory into the network, extract potential

knowledge rules from data, improve operation efficiency, and

prevent “low-level fallacy.” By building a bridge between the

traceable mathematical model and scientific knowledge, the

mathematically driven neural networks give full play to the

excellent performance of the deep neural network in chaotic or

extremely complex mass data and achieve valuable knowledge,

accelerating scientific discovery and enabling interpretable results.

The overall architecture of DBAI is illustrated in Figure 5. The data

obtained by satellite remote sensing and in situ observations allow for

surface-to-interior profiling of ocean phenomena. AI technology

bridges the semantic gap between the two data sources, efficiently

coupling remote sensing data, which has the external advantage, with

in situ data, which has an internal character. This coupled paradigm

makes DBAI technology, which incorporates mathematically driven,

physically informed, and associative statistical, a new engine for

knowledge discovery in marine science.
3.1 Associative statistical neural network

The basic method or function of the DBAI methodology is to

perform correlation statistics in the data ocean, achieving initial and

explicit information mining and knowledge discovery. Data is the fuel

of the AI method; the construction methods of the neural network

vary with different data features. For example, the image data and

rasterized products in remote sensing are general data types, which

can be obtained with special equipment. With the development of

computer vision (Simonyan and Zisserman, 2015; Huang et al., 2017;

Chen et al., 2018), neural networks can mine the local features of

objects in these data. Thus, most of the explorative DBAI research is

based on Euclidean data to construct convolutional neural networks

(He et al., 2017) and then achieves the correlation statistics of data
Frontiers in Marine Science 06
information. In terms of DBAI architecture, the basic building blocks

are convolution neural network, recurrent neural network and its

extended network, such as the LSTM unit, as shown in Figure 6. The

convolution neural network, which is depicted in Figure 6A, provides

a new mathematics tool for researching grid data (Goodfellow et al.,

2014; He et al., 2016). Furthermore, with continuous iterative

updating, the recurrent neural networks, the structures of which are

shown in Figure 6B, C, can explore the timeseries features and context

information from long-time series data.

As for sensory data, the sea surface temperature, sea surface

height, and sea level anomaly (SLA) have time series features that can

extract the parameters of the feature for change of temperature and

height with time lapse adopting the recurrent neural networks. Then,

the model summarizes the overall pattern of the data to predict the

future trend. Therefore, associative statistical neural networks are

becoming one of the basic methodologies for researchers to detect and

predict oceanic phenomena and grasp their patterns. Table 2 displays

some research for constructing the neural network based on

Euclidean data in marine science from 2018 to now. The

application direction and publication time illustrate that DBAI is

the environment of mass innovation that can continue to develop.

As previously identified, the data is the beginning of the

associative statistical neural networks, which are based on the

classification of the data and characteristics of the task to design the

network structure. However, in scientific research, it is key to

incorporate physical theory into neural networks to enable even

higher accuracy.
3.2 Physically informed neural network

To exploit the efficiency of the neural network, the PINN is

proposed by Raissi et al. (2019). PINNs follow the specific objective

laws of physics described by nonlinear differential equations, which is
FIGURE 5

Overall architecture of DBAI. The core of DBAI is the associative statistical, physically informed, mathematically driven neural networks.
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a deep learning method that can solve scientific problems (Nakajima

et al., 2021). PINNs are a pioneering technology that provides PDE

with a new numerical solver. According to the guide method, it can be

divided into observation, induction, and learning bias (Karniadakis

et al., 2021), which is shown in Figure 7.

The observation bias is designed for the data input stage because

the data can reflect the underlying physics. For example, with the

universal gravitation F = GMm
r2 , Burges function ∂u

∂ t + u ∂ u
∂ x = v ∂2 u

∂ x2 , and

Hamiton systems ∂H
∂ p = ∂ p

∂ t ,
∂H
∂ q = − ∂ q

∂ t , neural networks can learn the

physical structure, functions, vector fields, etc., from these physical

principles, achieving being physically informed.

Furthermore, in the model-learning process, we expect that some

specific features can be prioritized. Thus, the induction bias is

introduced in the neural network, which utilizes the universal rules

in the physical world to constrain the model. Normally, in the

construction process of the network, the induction bias is designed

for a neural operator that makes the computational process follow the

physical law, for example, the translational and spatial invariance in

CNNs and graph embedding computation in graph neural networks.

The learning bias is different from the above guided method; it

focuses on the backward neural network. In other words, a dedicated

loss function is designed for the model to calculate the error. Suppose

that a problem satisfies a constraint, and the output of the network
Frontiers in Marine Science 07
can transform into a mapping of solutions. For instance, the

hamiltonian system (Greydanus et al., 2019) description formula

transforms into a form of residuals, such as (1).

∂H
∂ p

−
∂ p
∂ t

= 0,
∂H
∂ q

+
∂ q
∂ t

= 0 (1)

In this function, p denotes coordinate and q is momentum.

According to the residual function, the loss function can be

designed as Equation (2).

L =
∂H
∂ p

−
∂ p
∂ t

����
����
2
+
∂H
∂ q

+
∂ q
∂ t

����
����
2

(2)

The learning bias prompts the trained neural network to conform to

the theory that is expressed by differential or partial differential

equations. That improves the confidence and prediction accuracy of

neural networks significantly. Table 3 enumerates part of the research

that PINNs applies in marine science and lists the bias method.

Although some researchers have attempted to predict the real

ocean current field based on the isotropic properties of Navier–Stokes

equations, physical information is still limited to observational

traction using model data or inductive traction using existing

network structures. On the contrary, neural networks are
TABLE 2 Partially associative statistical neural networks for mid-level ocean remote sensing.

Network Network Structure Correlation Research

CNNs ENSO prediction (Ham et al., 2019),

Eddy heat flux prediction (George et al., 2021),

Associative statistical neural networks Arctic sea ice seasonality prediction (Andersson et al., 2021),

Ocean IW amplitude search Zhang et al. (2022),

Global mesoscale eddy identification (Chen et al., 2021c)

RNNs Sea surface temperature prediction (Xie et al., 2020),

Sea level forecast (Accarino et al., 2021),

Subsurface temperature field prediction (Su et al., 2021)
A

B C

FIGURE 6

Associative statistical neural network schematic; the basic building blocks include (A) convolutional neural network, (B) recurrent neural network feedforward
process, and (C) LSTM structure.
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significantly integrated with domain knowledge in basic science,

which adopted learning bias to improve the applicability of the

model to physical data (Cranmer et al., 2020; Xiong et al., 2021).

The observation, induction, and learning bias can be embedded as

physically informed methods for different stages of neural networks,

which can organically integrate domain knowledge and neural

networks. Compared with the traditional numerical differential

equations, the PINNs have excellent robustness in handling noise

entrainment within the data. In addition to this, theoretical

foundations, such as quasigeostrophic, Rossby wave, Ekman drift,

and eddy theory, transform into the learning bias that is an important

guarantee for advancing scientific knowledge discovery. In summary,

the potential of neural networks in marine science has not yet been

fully exploited. In the future, the structure of the neural network

should be based on the basic theory of marine science and further

advance toward the “AI for ocean science.”
3.3 Mathematically driven neural network

As a data-driven method, neural networks can be regarded as a

“black box,” lacking mathematical interpretability, which is the

foundation of building bridges from data to knowledge. It is

difficult to fully transform the neural network from a black box to a

“white one.”However, neural networks can be improved based on the

mathematical inference that makes partial network interpretability
Frontiers in Marine Science 08
that is named mathematically driven neural networks. For example,

the input and output of a neuron is a linear process that formulates as

Equation (3).

L = o
d+1

i0=0
(a0i1i0xi0 ) (3)

where a, x, d denote weight, input, and network width, respectively.

Theoretically, the depth and width of a neural network can reach

infinite dimensions and can be mathematically represented as an

infinitely wide function space, constituting a mathematical “Barak

space” (Wojtowytsch, 2020) as in Equation (4).

F∞ : = o
∞

iL=1
aLiLs o

∞

iL−1

aLiLiL−1s o
iL−2

Ls o
∞

i1=1
a1i2i1s o

d+1

i0=0
a0i1i0xi0
� � ! ! ! ! !( )

(4)

where alij = 0 for all but finitely many i, j, l. L is the layer number of a

neural network, iL is the neuron of every layer, and s denotes the

activation function. Furthermore, according to the geometrical point,

high-dimensional data of the same category in nature is concentrated

near some low-dimensional manifold. Therefore, the input of neural

networks to the output can be understood as a mapping of differential

geometric manifolds (Lei, 2020).

Based on the PINNs, the mathematically driven neural networks

provide neural networks with a mathematical explanation. However,

its theory, architecture, and application research are in the
TABLE 3 Partial PINNs for marine science.

Network Bias Method Correlation Research

Physically informed Ocean subsurface temperature prediction (Meng et al., 2021),

neural networks Observation bias Ocean turbulence prediction (Wang et al., 2021)

Seasonal Arctic sea ice projections (Andersson et al., 2021),

Induction bias Identification of global abnormal mesoscale eddies (Liu et al., 2021),

Global mesoscale eddy identification (Huang et al., 2022)
FIGURE 7

Prior knowledge-embedding mechanism for PINNs.
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preliminary exploration stage. The mathematical theory not only

bestowed the interpretability of networks, but also optimized

computational efficiency and memory usage. Meanwhile, the

properties of neural networks are exploited and compensate for the

poor generalization ability of theoretical models to real data. In

marine science, hydromechanics is the basic theory of how to

introduce it into neural networks, constructing a novel marine

physics or mathematical neural network structure as a frontier

direction of future development. Moreover, it is able to exploit the

excellent performance of deep neural networks in highly complex

systems, accelerating knowledge discovery in marine science in

massive data.

4 From DBAI to knowledge discovery

The surface data of the ocean obtained by satellite remote sensing

is abundant, whereas the profile data of the intermediate ocean is

relatively sparse. At present, the critical task of DBAI is to establish

the intrinsic connection between surface phenomena and

intermediate processes, especially the physical and ecological

processes below the surface. With impressive results, the data-

driven DBAI methodology has recently made a preliminary

exploration of “surface to interior” in ocean science. However,

ocean knowledge discovery methods mainly focus on associative

statistical neural networks and begin to explode to the PINNs, the

research of mathematically driven neural networks is still in

exploration. In this review paper, highly challenging typical

applications are selected from four aspects of marine morphology,

kinematics, dynamics, and ecology to demonstrate intermediate

ocean research supported by DBAI as shown in Figure 8.
4.1 3-D identification and trajectory
prediction of oceanic eddy

Oceanic mesoscale eddies, which follow the quasi-geostrophic

potential vorticity conservation equation, are rotating movements of

seawater on scales smaller than Rossby waves. Oceanic mesoscale

eddies are the “weather” of the ocean with horizontal scales ranging

from several to hundreds of kilometers, vertical scales ranging from

tens to thousands of meters, and temporal scales from days to years.

Ocean eddies, with their massive quantity, broad distribution, strong

entrainment, and high energy, are becoming the ideal proxy for the
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substance cycling, energy cascade, and multi-sphere coupling in

ocean research.

According to their rotation direction, oceanic eddies can be

divided into cyclonic eddies (CE) and anticyclonic eddies (AE). The

dynamic process of the water body inside the eddy is mapped to the

sea surface, resulting in an undulating change in sea surface height of

about 1~100 cm, which causes the topological relationship of the sea

surface around the eddy to present a relatively stable closed structure.

This phenomenon makes the formation of the local maximum (or

minimum) value of sea surface height in the center of the AE (CE),

which is the fundamental criteria of the application to detect ocean

eddies with remote sensing technology (Pegliasco et al., 2022) as

shown in Figure 9.

By combining the eddy signal acquired by satellite altimeter with

in situ observations data such as Argo, the “surface-to-interior”

vertical structure and internal dynamic process of the oceanic eddy

are gradually being understood (Chaigneau et al., 2011; Zhang et al.,

2014). However, the horizontal observation resolution and vertical

profile detection capability of existing satellite altimeters are still

inadequate. Hence, realizing high-resolution 3-D remote sensing

observation of eddies is one of marine science ’s urgent

requirements for the new ocean satellite technology.
4.1.1 Independent eddy identification with
Argo profiles

Eddy identification is critical in advancing theoretical knowledge

and scientific research on ocean eddies. The current mainstream

method of eddy identification is the closed contours method, which is

limited by the sampling capacity of the satellite altimeter, resulting in

approximately 90% of oceanic eddies being missed (Amores et al.,

2018). In addition, this method has limitations for submesoscale

eddies with the characteristics of having smaller scale, weaker

intensity, and deeper below the sea surface.

To solve the above problem, an idea of ocean eddy identification

based on 3-D structure is proposed by using profiling Argo (Chen

et al., 2021a). The surface features of oceanic eddies are correlated and

modeled with their vertical structures to construct an Argo floats-

based algorithm for independent eddy identification. The altimeter-

identified eddies are further aligned with Argo profiles to build a

multisource eddy data set. The associative statistical neural network

incorporating the observation and induction bias is designed to

extract abstract features of the eddy vertical structure, thus realizing

high-precision eddy identification from a 3-D perspective (Chen et al.,
FIGURE 8

Typical applications in physical and biological oceanography with a top-down way of “surface to interior.”
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2021c; Huang et al., 2022) as illustrated in Figure 10A Compared with

the traditional mathematical statistics methods, the AI eddy

identification algorithm based on Argo 3-D structure not only

improves the computational efficiency by more than 10 times, but

also achieves 98% accuracy of eddy identification.

The eddy vertical identification algorithm can identify about 36%

of the missed eddies. This method can prompt additional

consideration of the eddy identification accuracy from satellite

altimeter. Figure 10B shows the comparison results of eddy

identification using altimeter SLA and the Argo vertical profiles,

respectively. The experimental results show that more than 50% of

the eddies missed by the altimeter are distributed in the equatorial

region with a low satellite sampling rate, weak geostrophic, and strong

non-geostrophic. In contrast, the Argo vertical eddy identification

algorithm has a unique advantage in non-geostrophic dominated

submesoscale eddy identification, which is highly complementary to

the altimeter eddy identification method. In addition, the Argo

vertical signal of eddies captured by the AI eddy identification

algorithm is comparable to or even stronger than the altimeter

method. The AI technology demonstrates the feasibility and

credibility of eddy identification with 3-D ocean profiles while

innovating identification methods and improving identification

efficiency. This is essential for promoting the development of eddy

identification methods and studying ocean eddies’ kinematics

and dynamics.
4.1.2 Eddies trajectory prediction with PINN
Eddy motion is primarily prevalent in complex ocean

environments (current, wind, and topographic) and is controlled by

various physical mechanisms, including potential vorticity and

baroclinic instability (Chen et al., 2022a). Naturally, the accuracy of

eddy trajectory prediction can be fundamentally improved with the

physical constraint of prior knowledge. The eddy trajectory prediction

network compliant with physical constraint is proposed as shown in

Figure 11A The theoretical approximate phase speed of the first

baroclinic mode Rossby waves (Cp) is embedded as the theoretical

velocity of the vortex into the machine learning model for trajectory
Frontiers in Marine Science 10
prediction, thus enabling accurate prediction of the eddy trajectory

for the next 10 days.

Cp = −b � R2
d (5)

where b = 2Wcos qR-1 is the Rossby parameter, w = 7.29×105 is an

Earth rotation rate, and R = 6371.39 km is the radius of Earth. Rd is

the Rossby radius of deformation, which is calculated (Chelton et al.,

1998) by Equation (6):

Rd =
1

f qð Þj jp
Z 0

−H
N zð Þdz(q > 5∘) (6)

where f = 2Wq is the Coriolis parameter, N(z)=(−(g/r)×∂r(z)/∂z)1/2 is
the buoyancy frequency, r is the potential density, and g is the

acceleration due to gravity. The midterm prediction results for more

than two million single-track eddies worldwide show that the

accuracy of eddy trajectory prediction is improved by about 24%

with the embedding of the physical mechanism, and the prediction

error is significantly lower than other prediction algorithms (Li et al.,

2019; Wang et al., 2022). Figure 11B illustrates the true and predicted

trajectories of two typical long-lived eddies. The results visually

demonstrate the high consistency between the predicted trajectories

and the true trajectories, reflecting the significant advantages of the

PINN for eddy trajectory prediction.
4.2 Vertical reconstruction of Ekman drift

The wind is the dominant driving mechanism of ocean

circulation. When the wind with constant speed abidingly acts on

the vast sea expanse, a steady seawater movement is generated, called

drift. Ekman has constructed a precise theoretical drift solution,

namely, the Ekman drift theory. Specifically, the drift is the result

of the balance between the frictional force generated by the plumb

turbulence and the Coriolis force. The latitudinal velocity component

(u) and the meridional velocity component (v) of the drift are affected

by the depth of seawater (z), and their quantified expressions are

shown in Equations (7) and (8).
FIGURE 9

Oceanic detection and identification from the altimeter. (A) The fundamental criteria of the application to detect an ocean eddy, and (B) detection of
eddies and identification results.
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u =
tyffiffiffi
2

p
aAz

exp  (az) cos  45∘ + az, (7)

v =
tyffiffiffi
2

p
aAz

exp  (az) sin  45∘ + az (8)

Ekman found that the surface current direction is approximately

45° to the right (left) of the wind direction in the Northern (Southern)

hemisphere with ideal assumptions. Due to the viscosity of seawater,

the flow vector deflects with depth and forms an Ekman spiral as

shown in Figure 12A. The simple assessment of global wind-driven

drift can be calculated using satellite scatterometer data on sea surface

wind fields as illustrated in Figure 12B. However, in the natural ocean,

the turbulent viscosity coefficient Az varies with depth, and the

latitudinal wind stress tx effect exists simultaneously, coupled with

the fact that the wind-driven drift decays faster with depth than the

theoretical prediction. These reasons cause the actual profile of wind-

generated drift to be different from the theoretical Ekman spiral curve,

and its shape is closely related to the sea state of the local ocean. In

addition, due to the lack of observational information on the seawater

turbulent viscosity coefficient, the two-parameter regression model is

used as the mainstream method to reconstruct the wind current field
Frontiers in Marine Science 11
(Lagerloef et al., 1999). The core algorithm of this model is to evaluate

wind current using the observations of the in situ drifting buoy in the

field without the ground-transfer current component. However, the

limitation is that the model accuracy is affected by empiricism or

climatological parameters. AI technology, as a data-driven method,

can effectively avoid the empiricism of the model and have some

stability to the climatological parameters in the reconstruction

process. Therefore, with the introduction of the DBAI

methodology, the accurate quantification of wind-driven current

fields is expected to expand novel ideas and methods.
4.3 Forecast of IWs

IWs are fluctuations that oscillate at the surface of two different

media within the ocean. Two necessary conditions for generating IWs

are seawater stratification and a disturbance source. The wavelength

of IWs generally ranges from hundreds of meters to tens of

kilometers, period ranges from minutes to hours, and amplitude

ranges from several meters to tens of meters. IWs mainly occur in the

pycnocline and are most active at 50–800 m of the ocean. In addition,

the undulating propagation of IWs and its “dead water effect” affect
A

B

FIGURE 10

(A) The associative statistical neural network for eddy identification with Argo profiles calibrated by the altimeter. (B) Comparison of eddy identification
results between altimeter and Argo. Independent eddy identification with Argo profiles via associative statistical neural network. (10a) The architecture of
convolutional neural network with extreme gradient boosting (CNN-XGBoost). (10b) Identification results. (a) Vertical profiles of eddies identified by
altimeter (short dashed line) and only Argo (solid and long dashed lines), respectively, (b) Global geographical distribution of identified eddies by
altimeter, and (c) global geographical distribution of independently identified eddies by Argo profiles.
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local ocean productivity and ocean sound field and even cause great

security risks to submarine navigation and ocean engineering.

The synthetic aperture radar (SAR) has become one of the

essential remote-sensing tools for monitoring ocean IWs with its

observation advantages of large range, all day, all weather, and high

resolution. The quantitative expression of the modulation of SAR

images by IWs can be derived based on the Korteweg–de Vries (KdV)

Equation (9) (Zheng et al., 2001).

d0jIW = Q
Ch0cos

2j
hmdDv

� �
tghwd

x − Vtð Þ
D

� 	
sec h2wd
� � x − Vtð Þ

D

� 	
(9)

where d0|IW is the backscattering coefficient of the IWs on the SAR

image; Q can be treated approximately as a constant, usually

determined by the SAR sensor frequency, the angle of incidence,

and the dielectric constant of the IWs. C is the linear phase speed; j is

the wave direction; hmd is the thickness of the mixing layer; D is the

characteristic half width of the IWs; v is the mean value of angular

frequency of ocean surface waves; g, hwd, x, V, t represent the

acceleration due to gravity, seawater depth, spatial position,

propagation speed, and propagation time of the IWs, respectively.

sec(g)is secant function. Equation (9) is also known as the analytical

expression of the oceanic IWs presented on the SAR image.

Therefore, the spatial position, wavelength, wave direction, and

other horizontal parameter information of the IWs can be directly
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obtained from SAR images. The transient wave speed, depth,

amplitude, and other vertical parameters of IWs can then be

further inverted, together with the simultaneously measured CTD

and historical data to depict the spatial and temporal characteristics of

IWs properly as shown in Figure 13.

In recent years, DBAI has been applied successfully to the

inversion and prediction of oceanic IWs from satellite images. An

associative statistical neural network structure is proposed to address

the randomness issue with IWs propagation (Zhang et al., 2021). This

network mines the correlation between multiple information of IWs

and determines the propagation position of IWs by predicting the

propagation speed and direction. Comparisons with the conventional

physical model (KdV equation) results show that the neural network

can achieve better performance and robustness as shown in Figure 14.

This research also further reveals the effect of complicated seafloor

topography on IW propagation. Another scholar used the IW

amplitudes simulated by physical oceanographic equipment as

auxiliary data. The information between the auxiliary data and the

spectral characteristics of remote sensing satellite images (MODIS) is

correlated and migrated by observational neural networks to invert

the IWs amplitudes (Zhang et al., 2022).

The application of DBAI technology in oceanic IWs is still in the

exploration stage. These methods mainly learn the deep features of

IWs through a large amount of remote sensing data rather than
A

B

FIGURE 11

(A) The physically informed neural network for eddy trajectory prediction. (B) Long-lived eddies trajectory prediction.Eddy trajectory prediction via
associative neural network. (A) The architecture of the eddy trajectory prediction network compliant with physical constraints. (B) Results of long-lived
eddies trajectory prediction. (a) AE trajectory prediction, (b) CE trajectory prediction.
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constructing an exclusive structure of PINNs on the mechanism of

IWs generation. Nevertheless, the feasibility of applying DBAI

technology to oceanic IWs is confirmed, providing a novel idea for

studying oceanic IWs.
4.4 Prediction of subsurface chlorophyll
maxima

Biomass distribution is as important in the subsurface ocean as

stratification structural features, whereas most of the water color

remote sensing satellites can only directly acquire the chlorophyll

concentration [Chla]sur from the sea surface. To invert chlorophyll

vertical distribution from the sea surface chlorophyll concentration

[Chla]sur based on a large number of in situ observations, the models

of chlorophyll concentration content and its vertical distribution were

constructed for different stratified water bodies and trophic levels,

integrated over the euphotic layer (Uitz et al., 2006). The detailed

calculations of the different models are shown in Equations (10) and

(11).

ChlaZeu
= A · ½Chla�Bsur (10)

C zð Þ = c0 − c1 · z + c2 · exp − ½ z − c3ð Þ=c4�2 (11)

where ChlaZeu
represents the chlorophyll a content integrated over the

euphotic zone, ς is the normalized value of the actual depth relative to the

depth of the euphotic layer Zeu, i.e., ς = z/Zeu, C(ς) denotes the normalized

value of chlorophyll a concentration [Chla(ς)] at depth ς relative to the

average chlorophyll concentration ½Chla�Zeu within the euphotic layer, i.e.,
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C(ς) = ½Chla(ς)�=½Chla�Zeu, among them, ½Chla�Zeu = Z−1
eu · ChlaZeu.

Furthermore, the parameters A, B and c0~c4 in (10) and (11) can be

obtained by fitting the field data of different stratified water bodies and

trophic levels (Uitz et al., 2006). It can be seen that chlorophyll a vertical

distribution of well-mixed waters ( Zm
Zeu

> 1, Zm is the depth of mixed layer)

is relatively uniform. In contrast, for stratified water bodies ( Zm
Zeu

< 1),

SCM is generally present in the vertical profile. On the one hand, SCM

plays a crucial role in ocean nutrient cycling, energy flow, and

biogeochemical cycling, and on the other hand, the chlorophyll vertical

distribution, especially the inversion of SCM, is important for accurate

estimation of ocean primary productivity. However, the SCM features

have been explored only at the regional scale due to the lack of 3-D

observation data. With the implementation of the BGC-Argo program, it

has become possible to analyze SCM on a global scale while revealing that

the seasonal dynamics of SCM have an evident regional character

(Cornec et al., 2021).

With the accumulation of biogeochemical 3-D observation data

and the development of computer technology, there is an increasing

amount of research related to applying neural networks to chlorophyll

vertical structure inversion. The associative statistical neural network

was developed as shown in Figure 15A and successfully inverted the

vertical structure of SCM in the North Pacific region using sea surface

parameters observed by satellite remote sensing (Chen et al., 2022b).

The application of AI technology to the inversion and prediction of

marine SCM can take full advantage of long-term and high-coverage

satellite data to obtain the global oceanic SCM data set indirectly, the

results are illustrated in Figure 15B. It is crucial for advancing marine

ecology and related multidisciplinary research because it provides

data for exploring the vertical ecological structure of the ocean.
FIGURE 12

Ekman spiral. (A) Simulation model of Ekman spiral, (B) Global sea surface wind speed distribution.
FIGURE 13

Oceanic IWs. (A) IWs mechanism for modulated SAR images, (B) IWs on SAR images (Magalhães et al., 2021).
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5 Conclusions and discussion

From the theoretical development of marine science, the progress of

basic theory, observation technology, and computing ability have been

drawing and responding to each other, pushing forward the leaps of this

interdisciplinary science one after another. Before the middle of the last

century, the development of marine science mainly benefited from

advances in theory. Based on the limited field observation data, Ekman

drift theory, Rossby planetary wave theory, westward strengthening

theory of ocean circulation, wind-induced ocean circulation theory,

and so on were developed successively, laying the theoretical

foundation of modern physical oceanography.

From the perspective of marine science development in the 1970s,

the emergence of satellite ocean remote sensing for scientific research

provides unprecedented high spatial and temporal coverage data. With
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remote sensing data, it is the first time to realize the clear appearance of

ocean circulation, qualify the global average sea level rise, estimate the

global marine primary productivity, etc. Subsequently, the rapid

development of computer technology has brought about a significant

improvement in computing power, and model systems with high

resolution have begun to shine in the cutting-edge applications of

operational weather forecasting and climate change prediction. At the

end of the 20th century, to jointly cope with the severe challenges brought

by global changes, oceanographers devoted themselves to studying the

processes occurring in the intermediate and deep sea, filling in the gaps of

the existing theoretical system and no longer satisfied with the

understanding of the ocean surface and phenomena at large space–

time scale.

In this context, the in situ observation technology provides profile

data to implement research from surface ocean phenomena to
A

B

FIGURE 14

(A) The associative statistical neural network for IWs forecasting. (B) Forecast results of the IWs. Interval wave forecasting from satellite images. (A) The
architecture of IWs forecasting neural network. (B) Forecast of IW propagations in the Andaman Sea after two semidiurnal tidal cycles. (A) shows the
results of the associative statistical neural network, and (B) shows the results of the KdV equation (Zhang et al., 2021).
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intermediate ocean dynamic and ecological processes. Naturally, how

to reveal the intermediate ocean law from the mass fusion data has

become a major challenge. “AI for science” has spawned a new

paradigm of scientific research, and AI has also become a strategic

technology for new scientific research. The development of AI

technology requires not only a breakthrough in computational

theory but also a full integration of interdisciplinary knowledge.

The ultimate goal of AI is to train machines to be brain-like,

bridging the knowledge between the human brain and the machine.

Moreover, the natural combination of AI technology and

oceanography (DBAI method) provides an excellent way to solve

the current development dilemma of oceanography. The two have

built a new bridge between data science and knowledge discovery, and

initially showed unique advantages and great potential in

intermediate ocean remote sensing applications from the outside to

the inside.

DBAI is poised to achieve “surface-to-interior” knowledge of

the middle ocean remote sensing and its processes, covering for the

inadequacy of the existing theoretical system. However, the

intermediate ocean remote sensing technology supported by AI is

still facing two major challenges, one is the ocean data bottleneck the

other is the generalization of DBAI methodology. Therefore, we

believe that future trends in DBAI will focus on the following

two points.

(1) Promote the construction of ocean big data. To fill the current

gaps in some ocean parameters and underwater 3-D remote sensing,

the development of a new generation of ocean science satellites (e.g.,

SWOT, Guanlan) is expected to enhance the comprehensive

capabilities of satellites in horizontal space, vertical profile, spatial

and temporal resolution, and integrated remote sensing. The
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cornerstone of DBAI is marine big data. With access to massive

remote sensing data, the biggest obstacle to the development of DBAI

is how to provide reliable ground truth to express information about

marine objects. If we want to break through this obstacle, relying on

one person or team is unrealistic. Therefore, we should actively

participate in ocean big data construction plans, implement

extensive international cooperation, and promote the construction

of standard marine big data sets.

(2) Strengthening DBAI technology innovation. Most DBAI

technologies for ocean science come from the computer-vision

community. These techniques aim to enable computers to obtain

meaningful pattern information from images, videos, and other visual

inputs, often focusing on spatial patterns. These models can be used

to construct oceanographic AI models with physical interpretability

by combining oceanographic mechanism constraints with remote

sensing data-driven to achieve theoretical and technological

innovations in DBAI.

With the gradual enrichment of ocean big data sets and the

continuous improvement of DBAI technology, DBAI will be widely

applied in various marine subdivisions to realize automatic or

semiautomatic scientific discovery. We envisage that the new

scientific research paradigm of “AI for ocean science” will gradually

uncover the mystery of intermediate and even deep oceans, ushering

in a new phase in the future of ocean science.
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