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expression in the clam
Cyclina sinensis
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and Shibo Chen1

1Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University,
Lianyungang, China, 2Co- Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu
Institute of Marine Resources Development, Lianyungang, China, 3Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang, China
Ammonia nitrogen plays a crucial part in oxidative stress in aquatic animals. To

elucidate the effect of ammonia nitrogen stress on the superoxide dismutase

(SOD) activity and interferon-induced transmembrane protein 1 (IFITM1)

expression in the clam Cyclina sinensis, clams were exposed to ammonia

nitrogen (8.07 mg/L) for 768 h (32 days) and then challenged with Vibrio

parahaemolyticus. The results showed that the SOD activity in the

hepatopancreas of C. sinensis exposed to ammonia nitrogen first increased

and then decreased with time, returning to the control group’s normal level at

768 h. Following infection with V. parahaemolyticus, the SOD activity in the

hepatopancreas fluctuated over time. The SOD activity in clams infected with

V. parahaemolyticus at 144 h did not return to the control group’s normal level.

The full-length cDNA of CsIFITM1was 2,434 bases in length, including a 2,301-

bp open reading frame (ORF) encoding 714 amino acids, with a putative

molecular weight of 83.86 kDa. CsIFITM1 contains an RNA helicase domain

(DEXHc_RLR, DR) and a Helicase_C (HC) domain. The transcriptional levels of

CsIFITM1 were upregulated by exposure to ammonia nitrogen and were

significantly higher from 6 to 768 h compared to the control (0 h) (p < 0.05).

Following infection with V. parahaemolyticus, the transcript levels of CsIFITM1

in the hepatopancreas were upregulated and were significantly higher from 6

to 144 h, in contrast to those of the control (0 h) (p < 0.05). The present data

provide the first evidence of the SOD activity and CsIFITM1 transcript levels

being able to reflect the effect of ammonia on the clam C. sinensis.
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Introduction
As an unavoidable factor, ammonia nitrogen easily

accumulates in the aquaculture system (Barbieri and Bondioli,

2013; Egnew et al., 2019). The accumulation of total ammonia

nitrogen (TAN) in the water environment can ultimately lead to

severe problems such as oxidative stress (Ge et al., 2022a), gill

hyperplasia (Zuffo et al., 2021), inefficient feed utilization (Silva

et al., 2018), and poor immune response of aquatic animals

(Mangang and Pandey, 2021). As a result, some opportunistic

bacteria such as Vibrio parahaemolyticus may cause serious

vibriosis (Ni et al., 2020). In some cases, it could even lead to

death in aquatic animals (Barbieri et al., 2019). Aquatic animals

suffer from oxidative stress, which causes the accumulation of

reactive oxygen species (ROS) (Ge et al., 2022a), and the

scavenging capacity induces lipid peroxidation (Debbarma

et al., 2021). To protect organisms from such oxidative stress,

antioxidant enzymes are likely to be activated. Therefore, a

change in the antioxidant enzyme activities is one of the

reliable and sensitive tools for the evaluation of oxidation

resistance in aquatic animals (Ni et al., 2020; Debbarma et al.,

2021). Superoxide dismutase (SOD) is one of the key antioxidant

enzymes (Ge et al., 2021). It can reduce oxidative damage by

eliminating ROS and enhancing the antioxidant capacity (Sinha

et al., 2015). Ammonia nitrogen exposure may activate the

antioxidant system and alter the activities of antioxidant

enzymes (Ghelichpour et al., 2019).

Interferon (IFN) is one of the major multifunctional

cytokines that play vital roles in the innate immune response

in aquatic animals (Wan and Chen, 2008; Zhang et al., 2020).

Among the IFN-responsive genes that collectively regulate the

multifunctional effects of IFNs is the interferon-induced

transmembrane (IFITM) protein family (Johnson et al., 2006;

Wan and Chen, 2008). Members of the IFITM family are likely

to be expressed basally in various tissues and cells. They may

play a crucial part in the promotion and maintenance of the

pluripotent state of an organism’s cells (Johnson et al., 2006). All

of the IFITM proteins share a conserved short topology, two

transmembrane (TM) domains, and highly variable amino and

carboxy termini (Zhang et al., 2020). Thus far, in aquatic

animals, IFITM1, IFITM2, IFITM3, and IFITM5 have been

annotated in the fish genome (Johnson et al., 2006). The

IFITM family comprises the known innate immune effectors

involved in the regulation of immunoreaction, such as

endocytosis, immune cell signaling, cell physiology, and

antioxidative damage (Baird et al., 2001; Zhu et al., 2013).

When organisms are under oxidative stress, they may

synthesize some proteins, such as IFNs, interleukins, heat

shock proteins, and the IFITM proteins (Ghelichpour et al.,

2019). In humoral immunity, the transcriptional levels of

members of the IFITM family can reflect the current immune

status of aquatic animals (Johnson et al., 2006).
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As one of the most important economic bivalves, the clam

Cyclina sinensis is widely distributed in the coastal areas of East

Asia, and the clam industry is growing rapidly (Ge et al., 2022b).

The clam grows fast, tastes delicious, and has great market

demand (Ge et al., 2021; Liao et al., 2022). The clam is highly

adaptable to ammonia nitrogen (Ni et al., 2022). However, when

the accumulation of ammonia nitrogen reaches the threshold

level, this can have serious effects on the clam, including oxidative

stress and poor immune response (Ni et al., 2021; Ge et al., 2022a).

Therefore, it is essential to evaluate the effects of ammonia

nitrogen on antioxidant enzymes and immunoreaction (Chai

et al., 2022). Because a change in the SOD activity and IFITM1

expression level can reflect the current immune status of aquatic

animals, we assessed the SOD activity and the IFITM1

transcription response in clams exposed to chronic ammonia

nitrogen and following infection with V. parahaemolyticus. The

present study provides a theoretical basis for the research on the

detoxification mechanisms in marine animals.
Materials and methods

Experimental animal

C. sinensis (2.99 ± 0.45 g each) from Lianyungang

Zhongchuang Aquaculture Company were transported to the

experimental base of Jiangsu Ocean University. To acclimate the

clams to laboratory conditions, they were stored in concrete

tanks (0.8 m × 0.8 m × 0.5 m) with 200 L aerated seawater for 10

days. During the acclimation and the experiment, the seawater

temperature was maintained at 24 ± 0.5°C, with pH at 8.0 ± 0.4,

dissolved oxygen (DO) ≥ 4.9 mg/L, and TAN < 0.09 mg/L (Chen

et al., 2021). Clams were fed twice daily with a mixture of alive

microalgae (Isochrysis zhangjiangensis and Nannochloropsis

oceanica) at a density of 2 × 104 cells/ml.

Six clams were dissected and various tissues collected, which

were then frozen in liquid nitrogen for RNA extraction (Ni

et al., 2022).
Long-term chronic ammonia
nitrogen stress

Seven hundred and twenty selected clams were randomly

stored in six concrete tanks (200 L water) at a density of 120

clams per tank, with three replicates for each treatment.

According to the 96-h median lethal concentration (LC50-96

h) TAN for C. sinensis (Ni et al., 2022), the TAN level in the

experimental group was set at 8.07 mg/L. To achieve the

designed level of TAN, a stock solution of NH4Cl (1.0 g/L)

was used. The control group was natural seawater. The other

management conditions were the same as those used during the

temporary rearing period, and the stress experiment was carried
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out for 768 h. During the test, the seawater was changed twice

daily to maintain the concentration of TAN.

Three individuals in each treatment were randomly selected

at different time points after the clams were exposed to ammonia

nitrogen (0, 3, 6, 12, 24, 48, 96, 192, 384, and 768 h). The

hepatopancreas was collected and then frozen in liquid nitrogen

for the SOD activity analysis and total RNA isolation. The SOD

activity was determined using kits purchased from Nanjing

Jiancheng Bioengineering Institute (Ge et al., 2022a).
Vibrio challenge

To determine the effect of ammonia nitrogen stress on the

disease resistance of the clam, Vibrio challenge tests were further

performed. After the ammonia nitrogen stress experiment, clams in

the experimental group were transferred into the normal seawater

tank with three replicates and challenged with V. parahaemolyticus.

The clams were immersed and infected with V. parahaemolyticus at

a level of 1 × 107 CFU/ml for 1 week (Ni et al., 2020). During the

infection experiment, to achieve the level of V. parahaemolyticus

(1 × 107 CFU/ml), all of the seawater was replaced twice daily. The

control group was natural seawater without the addition of

V. parahaemolyticus.

Three individuals in each treatment were randomly selected

at different time points during the infection experiment (0, 3, 6,

12, 24, 48, 96, 120, and 144 h). The hepatopancreas was collected

and then frozen in liquid nitrogen for the SOD activity analysis

and total RNA isolation.
IFITM1 gene cloning and
sequence analysis

The CDS sequence of the IFITM1 gene was derived from the

clam whole-genome sequencing complementary DNA (cDNA)

library (Wei et al., 2020). To clone the full-length cDNAs, rapid

amplification of cDNA ends PCR (RACE-PCR) was conducted

(Ni et al., 2022). The primers required for IFITM1 gene cloning

are shown in Table 1. The IFITM1 sequence was verified by

DNA sequencing and analyzed using the BLAST program

(Zhang et al., 2020). The NCBI database was used to predict

the ORF of the IFITM1 gene. Sequence homology retrieval and

alignment were also performed. The ExPASy ProtParam

program was utilized to predict the molecular weight and

isoelectric points of the IFITM1 protein. According to a

previous report, multiple sequence alignments were generated

and a phylogenetic tree was constructed (Ni et al., 2022).
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Quantitative real-time PCR analysis

To analyze the transcriptional level of IFITM1 messenger

RNA (mRNA), quantitative real-time PCR (qRT-PCR) was

carried out with the SYBR method (Ge et al., 2022b). The

primers required for qRT-PCR are shown in Table 2. Each

sample was in triplicate. The 2−DDCt method was applied to

calculate the mRNA transcriptional level with b-actin as the

internal control (Ge et al., 2022b).
TABLE 1 Primers used for the cloning of IFITM1 in Cyclina sinensis.

Primer Sequence (5′–3′) Sequence
information

IFITM1-
5GSP

CTTCCGTCTTACGCATACATTCTTC 5′RACE outer
amplification
primer

IFITM1-
5GSP

ACAAGTCTTCCGTCTTACGCATACA 5′RACE outer
amplification
primer

IFITM1-
5NGSP

TCGGCATCATGTCGCTTAATAGTGT 5′RACE inner
amplification
primer

IFITM1-
3GSP

CAACAGGAAGGCAAACGGATAACG 3′RACE outer
amplification
primer

IFITM1-
3GSP

GGCTTCAAATGTTCCTCTTTCACTG 3′RACE outer
amplification
primer

IFITM1-
3NGSP

TTCAAAGACAACAAGGGACAAAGGT 3′RACE inner
amplification
primer

M13F GTTGTAAAACGACGGCCAG Positive clone
verification

M13R CAGGAAACAGCTATGAC Positive clone
verification

UPM-
long

CTAATACGACTCACTATAGGGCAAGCAGT RACE-PCR outer
layer amplification

GGTATCAACGCAGAGT

NUP AAGCAGTGGTAACAACGCAGAGT RACE-PCR inner
layer amplification
RACE, rapid amplification of cDNA ends.
TABLE 2 Specific primers for the quantitative real-time PCR (qRT-
PCR) of IFITM1 from Cyclina sinensis.

Primer Sequence (5′–3′) Sequence
information

IFITM1—upstream AAACGCTCATCTTGTCCTTGG qRT-PCR

IFITM1—downstream GTCTTCTTCCAGTGGCGGTAT qRT-PCR

b-actin—upstream CACCACAACTGCCGAGAG Reference gene

b-actin—downstream CCGATAGTGATGACCTGACC Reference gene
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Statistical analysis

Data were analyzed with one-way ANOVA using SPSS. 18

(Ge et al., 2019). Duncan’s multiple comparison tests were

performed when significant differences were detected in the

ANOVA. Difierences were considered statistically significant

when p < 0.05 (Zhang et al., 2020).
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Results

Activity of SOD in the clam exposed to
long-term ammonia nitrogen

The SOD activity in the hepatopancreas of C. sinensis

exposed to ammonia nitrogen first increased and then
A

B

FIGURE 1

Superoxide dismutase (SOD) activity in the hepatopancreas tissue of Cyclina sinensis under long-term ammonia. (A) SOD activity in C sinensis exposed
to long-term ammonia. (B) SOD activity in C sinensis infected with Vibrio parahaemolyticus. The control group in (A) comprised clams raised in natural
seawater. The control group in (B) included clams raised in natural seawater without the addition of V. parahaemolyticus. The same lowercase letters
indicate non-significant differences between the different stress time points (p > 0.05); otherwise, the difference is significant (p < 0.05).
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decreased with time (Figure 1A). The SOD activity in the

experimental group increased to the maximum value at 96 h.

No significant difference was found at 24 and 48 h (p > 0.05),

whereas the SOD activity was significantly higher than that at

other time points (p < 0.05). At 768 h, the SOD activity returned

to the control group’s normal level. Following infection with V.

parahaemolyticus, the SOD activity fluctuated with time

(Figure 1B). The SOD activity from 3 to 144 h in the clams

infected with V. parahaemolyticus was significantly higher than

that in the control group (p < 0.05).
Identification of CsIFITM1

As shown in Figure 2, the full-length cDNA of CsIFITM1 was

2,434 bases in length, including a 5′ untranslated region (UTR) of

34 bp and a 3′-UTR of 99 bp with a poly(A) sequence. It contained

a 2,301-bp ORF encoding 714 amino acids, with a putative

molecular weight of 83.86 kDa and a theoretical isoelectric point

of 11.18. The CsIFITM1 protein contained putative transmembrane

domains, but did not contain a signal peptide (Figure 3). Multiple

sequence alignment showed that it contained an RNA helicase

domain (DEXHc_RLR, DR) located at amino acid residues 70–265

and a Helicase_C (HC) domain located at amino acid residues 468–

564 (Figure 4). Phylogenetic analysis showed that CsIFITM1

formed a cluster with the IFITM1 of Mercenaria mercenaria,

Crassostrea gigas, Crassostrea virginica, Dreissena polymorpha, and

Mytilus edulis, but not with the IFITM1 of Haliotis rufescens,

Haliotis rubra, and Pomacea canaliculata (Figure 5). Expression

analysis revealed that the CsIFITM1 mRNA was constitutively

expressed in the adductor muscle, mantle, gill, axon foot,

hepatopancreas, and gonad, with higher levels of mRNA detected

in the hepatopancreas and the adductor muscle (Figure 6).
CsIFITM1 transcript levels in the
hepatopancreas of clams exposed to
ammonia nitrogen and Vibrio challenge

The transcript levels of CsIFITM1 in the hepatopancreas of

the clams exposed to ammonia nitrogen were determined at

different time points after exposure using qRT-PCR (Figure 7A).

Exposure to ammonia nitrogen upregulated the transcriptional

levels of CsIFITM1, which reached the peak at 192 h post-

exposure. The expression levels of CsIFITM1 were significantly

higher from 6 to 768 h in clams exposed to ammonia nitrogen

than those of the control (0 h) (p < 0.05).

Following infection with V. parahaemolyticus, the transcript

levels of CsIFITM1 in the hepatopancreas were upregulated

(Figure 7B). The transcriptional levels of CsIFITM1 were

also upregulated by V. parahaemolyticus infection, which

reached the peak at 48 h post-infection. The transcript levels

of CsIFITM1 in clams infected with V. parahaemolyticus from 6
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FIGURE 2

The cDNA of IFITM1 and the deduced amino acid sequence of
Cyclina sinensis. The yellow part indicates the start codon ATG
and the stop codon TAA, the underlined area indicates the open
reading frame (ORF), and the green part indicates the conserved
domain of IFITM1.
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to 144 h were significantly higher, in contrast to those of the

control (0 h) (p < 0.05).
Discussion

The accumulation of ammonia nitrogen in water can

ultimately lead to serious oxidative stress (Barbieri and

Bondioli, 2013). As one of the key antioxidant enzymes, SOD

can reduce oxidative damage (Ge et al., 2021). In the current

study, the SOD activity in the hepatopancreas of C. sinensis

exposed to ammonia nitrogen first increased and then decreased

with time. This may be because aquatic animals have to activate

antioxidant enzymes in order to deal with oxidative stress (Ni

et al., 2022). This result showed that exposure to ammonia

nitrogen could activate the SOD in the clam, and activating SOD

can reduce the oxidative damage induced by ammonia nitrogen

stress. At 768 h, the SOD activity returned to the control group’s

normal level, which is probably due to the toxicity of the low

level of ammonia nitrogen (8.07 mg/L) being low. On the other

hand, the 768-h recovery period may have been adequate to

compensate for the SOD activity in clams exposed to ammonia

nitrogen (Ni et al., 2022). This indicated that the SOD activity in

clams exposed to ammonia nitrogen (8.07 mg/L) for 768h could

return to normal levels. Bacterial infection can cause serious

oxidative stress (Kumar, 2021). In the current study, the SOD

activity from 3 to 144 h in the clams infected with V.

parahaemolyticus was significantly higher than that in the

control. This showed that SOD can be activated in clams
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infected with V. parahaemolyticus. The SOD activity in clams

infected with V. parahaemolyticus for 144 h did not return to

the control group’s normal level. The reason may be that the

bacterial infection may have caused irreparable damage to the

antioxidant system, or it could be due to the 144-h recovery time

being too short for the recovery of the SOD activity (Ge

et al., 2022a).

In the current study, we cloned the IFITM1 gene from the

clam C. sinensis. The full-length cDNA of CsIFITM1 was 2,434

bp in length, including a 2,301-bp ORF encoding 714 amino

acids, with a putative molecular weight of 83.86 kDa. The

CsIFITM1 protein possessed putative transmembrane domains,

which showed that the protein contained the typical structural

features of IFITMs (Wan and Chen, 2008). This indicated that

CsIFITM1 may be a cell surface molecule (Tanaka et al., 2005).

As is well known, members of the IFITM family are expressed in

various cells in mammals (Bailey et al., 2014). In the present

study, the expression analysis showed that, although at a

different level, the CsIFITM1 mRNA was constitutively broadly

expressed in all the selected tissues, indicating that the IFITM1

gene may be widely distributed among tissues and is expressed in

various cells in C. sinensis. This is probably because immune

cells (including leukocytes and lymphocytes) are widely

distributed in various tissues (Desai et al., 2017).

The IFITM1 gene in mammals is induced by IFNs, and the

mRNA transcript level of this gene can increase as much as 100-

fold upon induction by IFNs (Wan and Chen, 2008). In the

present study, the transcript levels of CsIFITM1 were

upregulated by exposure to ammonia nitrogen and were
FIGURE 3

Prediction of the protein model of IFITM1.
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FIGURE 4

Alignment of the IFITM1 amino acids from Cyclina sinensis and other species. All shaded regions represent residues sharing homology. The light
red regions represent homology above 75%, while the dark red regions represent 100% homology. Dots denote amino acid deletion.
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significantly higher from 6 to 768 h in the clams exposed to

ammonia nitrogen compared to the control. This result

indicated that the gene expression of CsIFITM1 could be

induced by ammonia nitrogen stress. This is probably because

ammonia nitrogen exposure can stimulate the CsIFITM1 gene

(Tanaka et al., 2005) or induce IFNs (Zou et al., 2005). Following

infection with V. parahaemolyticus, the transcript levels of
Frontiers in Marine Science 08
CsIFITM1 in hepatopancreas were upregulated, indicating that

the gene expression of CsIFITM1 can be induced by infection

with V. parahaemolyticus, suggesting that the CsIFITM1 gene

may be involved in the immune response of C. sinensis. This

observation is consistent with the reported role of IFITM in the

large yellow croaker (Larimichthys crocea), which can be

stimulated by Vibrio alginolyticus (Zhang et al., 2021).
FIGURE 5

Phylogenetic tree derived from multiple alignment of the IFITM1 amino acids from Cyclina sinensis and other species.
FIGURE 6

Expression of the IFITM1 gene in various tissues of Cyclina sinensis.
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In summary, exposure to ammonia nitrogen can activate the

SOD in the clam, and activating SOD can reduce the oxidative

damage induced by ammonia nitrogen stress. Furthermore,

infection with V. parahaemolyticus may cause irreparable

damage to the antioxidant system. The IFITM1 gene

from C. sinensis was cloned, and the CsIFITM1 mRNA was

broadly expressed in all the tissues selected. The CsIFITM1

protein possessed the typical structural features of members

of the IFITM family. The gene expression of CsIFITM1
Frontiers in Marine Science 09
can be induced by ammonia nitrogen stress and V.

parahaemolyticus infection.
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FIGURE 7

Expression of the IFITM1 gene in the hepatopancreas tissue of Cyclina sinensis. (A) Gene expression in C sinensis exposed to long-term ammonia.
(B) Gene expression in C sinensis infected with Vibrio parahaemolyticus. Different letters in the column indicate significant difference (p < 0.05).
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