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Thallium (Tl) is a metal of high toxicity, and the problem of Tl pollution is being

faced globally. However, environmental data on Tl are still scarce and its

biogeochemical behaviors remain mostly unclear. Studies have revealed the

potential transport of other heavy metal by microplastics (MPs), but there is no

report on the interactions between Tl and MPs yet. Therefore, we studied the

adsorption of Tl by the three most commonly detected MPs, i.e., polyethylene

(PE), polystyrene (PS), and polypropylene (PP) in fresh and seawater. We

considered the effects of particle size, pH and competitive cations on

adsorption capacity. The results showed PS has the highest adsorption

capacity for Tl which was mainly through surface complexation. PS showed

the lowest crystallinity and had the most oxygen-containing functional groups

among the studied MPs. The adsorption of Tl on PE and PP was dominated by

physical adsorption. The adsorptions exhibited significant salinity and pH

dependence. Dominant cations in seawater competed with Tl ions for

adsorption sites on MPs. With the increase in pH, the deprotonation of the

carboxyl functional groups on MPs was enhanced, which increased the

effective adsorption sites and promoted the adsorption of Tl. However,

the adsorption capacity of the studied MPs for Tl was much lower than the

corresponding capacity of natural minerals (clay, iron and manganese oxides)

previously reported. Therefore, MPs may not be the main factors affecting the

environmental behavior of Tl. This study provides valuable information for the

study of thallium’s environmental behavior and ecological risk assessment.

KEYWORDS

thallium, microplastics, adsorption kinetics, adsorption isotherm, fresh
water, seawater
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Introduction

Thallium (Tl) is a trace metal element widely distributed in

natural environments. The average abundance of Tl in the

continental crust is ~0.49 mg/kg, in soil and offshore sediment

are 0.22-0.55 mg/kg, and the concentration in unpolluted water

is not higher than 20 ng/L (Peter and Viraraghavan, 2005; Belzile

and Chen, 2017). Although with low environmental abundance,

Tl is a very toxic heavy metal. Tl has two valence states,

monovalent and trivalent. In the biotoxicity experiment of

unicellular algae (Chlorella sp.) in freshwater environment, Tl

(I) and Tl(III) showed no significant difference in the inhibition

rate of the growth rate of Chlorella (p=0.05) between the 2×10-13

mol/L Tl3+ solution and 1×10-8 mol/L Tl+ solution, indicating

that Tl(III) was much more toxic than Tl(I). Under the same

experimental conditions, the inhibition rate of 8.7×10-9 mol/L

Cd2+ solution was comparable to the toxicity of Tl mentioned

above (Ralph and Twiss, 2002). Thus, considering the

concentration, the order of toxicity was as follows: Tl(III) >

Cd(II) > Tl(I). Which was also the same as the results of the large

flea toxicity test (Borgmann et al . , 1998). Tl(I) is

thermodynamically more stable than Tl (III), so Tl(I) is much

more abundant than Tl (III) in nature (Lan and Lin, 2005).

Because Tl+ ions and K+ ions have similar ion radii and high

affinity for sulfur ligands, they are easy to be absorbed,

transmitted and accumulated by the organisms (Peter and

Viraraghavan, 2005; Liu et al., 2021; Yang et al., 2022; Yao

et al., 2022).

Thallium has both lithophilic and sulphurophilic properties

and is widely present in silicate and sulfide minerals (Liu et al.,

2018; Yao et al., 2022). Tl is often enriched in sulfide deposits as

an associated mineral of lead, zinc, copper and other metals (Li

et al., 2019). In general, only the presence of sulfide melts is the

main host for Tl (Kiseeva and Wood, 2013). Compared with

other sulfide minerals, the content of Tl in pyrite is relatively

high. The enrichment of thallium in pyrite may be due to a

number of factors, including low-temperature epithermal

metallic origin (Liu et al., 2016). The main sources of Tl

produced by human activities include the smelting of Tl-

containing ores, slag weathering and leaching, discharge of

industrial wastewater, and coal combustion (Song et al., 2022).

Tl pollution incidents caused by mining, ore smelting or

corporate sewage have occurred all over the world (Liu et al.,

2017; Ghezzi et al., 2019; D’Orazio et al., 2020; Horn et al., 2020;

Wang et al., 2020). In Tl polluted areas, the concentration of Tl

can be as high as hundreds of ppm (Liu et al., 2019). In the past,

Tl was used for the production of pesticides. In recent years,

approximately 70% of Tl production is used in electronic devices

(Willner et al., 2021).

After entering the environment, Tl interacts with other

substances, thereby affecting the biogeochemical behavior of

Tl. The adsorption mechanisms of Tl by common minerals

(e.g., clay minerals, iron oxides, manganese oxides, etc.) in soils
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and natural waters have been mostly reported (Zhuang et al.,

2021). Manganese oxides are the strongest natural mineral

oxidants in the environments (Peacock and Moon, 2012; Wu

et al., 2019; Yan et al., 2021). Many studies on soils and

sediments have found very high correlations between Tl and

Mn in the reducible mineral fraction (Cruz-Hernández et al.,

2019). Tl(I) can be oxidized to Tl (III) by hexagonal birnessite to

form Tl2O3, followed by the formation of Tl-rich amorphous

manganese oxide (Wick et al., 2019). Iron (hydrated) oxides

such as goethite and iron hydride have strong Tl adsorption

capacity. Tl in sediments tends to correlate significantly with Fe

content because Tl can be adsorbed to iron mineral surfaces

through surface complexation (Lin et al., 2020). Because the

radius of Tl+ ion and K+ ion is similar, the affinity of Tl+ is

between Cs+ and Rb+, so Tl can also strongly bind to illite (Wick

et al., 2018).

Microplastics (MPs) pollution, which is exacerbated by

massive plastic production and improper disposal, has now

become a globally recognized new type of environmental

problem (Cao et al., 2021; Wang et al., 2021; Song et al.,

2022). MPs have the characteristics of large specific surface

area, high porosity, amorphous structure which hydrophobic

surface, so they can adsorb a series of pollutants (such as heavy

metals, organic matter and antibiotic resistance genes) with

different physicochemical properties and affect the behavior of

these pollutants (Liu et al., 2020; Cao et al., 2021; Kutralam-

Muniasamy et al., 2021; Liu et al., 2021). The combined toxicity

of the co-pollutants is often higher than that of a single pollutant

(Song et al., 2022). Ag nanoparticles can hetero-aggregate with

PS through electrostatic interactions with O–containing groups

(C–O, C–OH and C=O), thus co-precipitate from water phase

(Zhang et al., 2021). The interaction between Pb/Cu and PE was

physisorption, and they can attach through weak bonds and easy

to release into the aquatic ecosystem (Purwiyanto et al., 2020).

The interactions between MPs and heavy metals are affected by

characteristics of the MPs (particle size, specific surface area,

functional groups, aging, concentrations, additives) and external

factors (pH, salinity, temperature and redox status (Gao et al.,

2021; Li et al., 2022; Liu et al., 2022; Song et al., 2022).

At present, there is no research on the role of MPs as carriers

of Tl in the environments, and the adsorption capacity of MPs

for Tl is still not clear, which limits the cognition on the

environmental behavior of Tl. The types of plastics affect

their- abundances in the environment, PP is usually found in

high concentrations in water bodies, while PE is relatively high

in sediments. Both PP and PE are the most commonly detected

MPs in the environments (Nkwachukwu et al., 2013; Koutnik

et al., 2021; Xi B. et al., 2022; Xi X. et al., 2022). Moreover, in the

current marine ecosystem, PS also has become one of the most

common MPs pollutants (Wagner et al., 2014). The purpose of

this paper is to study the adsorption mechanism of Tl by three

most commonly detected MPs in the environment, i.e.,

polyethylene (PE), polystyrene (PS), and polypropylene (PP).
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The influence of particle size of MPs, the pH and salinity of

water (competitive ions) on the adsorption effect was further

studied. The results of this research can help to improve the

understanding of the mechanism of Tl’s migration and

transformation in aquatic environments, and also provide

theoretical support for the ecological risk assessment and

pollution control of Tl.
Materials and methods

Materials preparation
and characterization

Three species of MPs were used in the present study, i.e., PE,

PS and PP. They were obtained from Zhonglian plasticization

Co., Ltd (China). The mean particle sizes of PE, PS are 25 mm,

150 mm and 550 mm, and the mean particle sizes of PP are 13

mm, 150 mm and 550 mm. Thallium nitrate (TlNO3) standard

solution was purchased from Sinopharm Chemical Reagent Co.,

Ltd (China). All other chemical reagents were of analytical or

higher grade when available. Seawater was collected from

Aoshan Bay, the Yellow Sea in China, and was filtered through

0.22 mm polycarbonate filter membranes (Whatman, diameter

47 mm).

MPs were put into 250 ml glass beakers, a certain amount of

ethanol (75%) was added with magnetic stirring at 200 rpm/min

for 48 h, then 1% HNO3 solution was added for another 24 h.

Finally, Milli-Q water (18.2MW cm-1) was used to wash the MPs

several times. Shape and surface morphology of MPs were

observed by Scanning Electron Microscopy (SEM, FEI Quanta

250FEG). Additionally, attenuated total reflectance-Fourier

transform infrared spectra (ATR-FTIR) was used to analyze

the functional groups on the surface of MPs. The resolution is 4

cm-1 and the scan range is from 600 to 4,000 cm-1 (Chen et al.,

2021). Data were analysed with OMIC software.
Batch experiment

Adsorption kinetics (25 ± 2°C). PE (25 mm, 550 mm), PS (25

mm, 550 mm) and PP (13 mm, 550 mm) were used in adsorption

kinetics experiment. The concentrations of the TlNO3 used were

1.0 mg/L (namely low initial Tl(I)) and 20 mg/L (namely high

initial Tl(I)), respectively, and the pH was adjust to ~8.00 ± 0.10

with 1 mol/L NaOH or HNO3. Add ~0.050 ± 0.0005 g MPs to

250 ml TlNO3 solution and react for 48 h (magnetic stirring at

200 rpm/min). At the time points of 0.5, 1.0, 2.0, 3.0, 4.0, 6.0, 8.0,

10, 12, 24, 36 and 48 h, the reaction solutions were kept still for 5

min, and then 2.5 mL supernatants were filtered through 0.22

µm polyethersulfone filters to remove MPs in the experiment.
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The filtered supernatants were brought to a volume of 15 mL

with 1% HNO3 (v/v). Three parallel samples (n = 3) were set for

all experiments.

Adsorption isotherm (25 ± 2°C). Experiments were

performed in sets of triplicates for 7 days:
1. Particle size group. PE (25 mm, 150 mm and 550 mm), PS

(25 mm, 150 mm and 550 mm) and PP (13 mm, 150 mm
and 550 mm). The pH was adjusted to 8.00 ± 0.10.

2. pH group. PE (150 mm), PS (150 mm) and PP (150 mm).

Three different pH values were set for each particle size,

namely 4.00 ± 0.10, 6.00 ± 0.10 and 8.00 ± 0.10.

3. Seawater group. One set was the original collected and

filtered seawater with the salinity of 32‰. The other set

was seawater with the salinity of 15‰ after dilution with

Milli-Q water. The MPs used were PE (150 mm), PS (150

mm) and PP (150 mm), and the pH was adjusted to 8.00

± 0.10. The final concentration of microplastics in all

reactions was ~0.2 g/L. Tl(I) concentrations were 0, 0.05,

0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10, 20, and 50 mg/L. After the

end of each experiment, the final pH values were

measured. More details are provided in the Supporting

Material.
Three kinetic models were used to fit the sorption kinetics

data, namely, Pseudo-first-order kinetic model (PFO), Pseudo-

second-order kinetic model (PSO) and The Weber and Morris

model (TWM) (Weber and Boell, 1962; Bhagwat et al., 2021;

Tang et al., 2021b). The adsorption isotherms were fitted using

Freundlich and Langmuir models (Dong et al., 2020; Purwiyanto

et al., 2020; Yu et al., 2021). Details of the models are given in

Table S2. The surface concentrations of C, O, Tl were measured

by X-ray photoelectron spectroscopy (XPS, E Thermo Fisher

ESCALAB XI+), and the experimental peaks were fitted with the

Avantage software. An inductively coupled plasma mass

spectrometer (ICP-MS, Agilent Technologies-G8421A 7800)

was used to determine the concentrations of Tl, K, Na, Ca,

Mg, Sr. Origin software (2021 version) was used for mapping

and data processing.
Results and discussion

Adsorption kinetics

Kinetic studies were conducted in order to evaluate the

adsorption rate and mechanism between MPs (PE, PS and PP)

and Tl. The adsorption kinetics were fitted using PFO, PSO and

TWM kinetic model as previously described. The parameters of

each model are summarized in Table S4.

Different types and particle sizes of MPs and different

initial Tl concentrations led to large differences in the final
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quasi-equilibrium time (Figure 1). With the low initial Tl

concentration (1.0 mg/L), the adsorption between PS (550

mm) and Tl(I) reached quasi-equilibrium after 24 h, while the

adsorption between PS (25 mm) and Tl(I) used 10 h. The time

to reach quasi equilibrium was nearly 12 h for PS (25 mm)

group and PE (550 mm). With the high initial Tl concentration

(20 mg/L), The time to reach quasi equilibrium for PS (25 mm)

group was 24 h, and for PS (550 mm) group was 12 h. The time

to reach quasi equilibrium for PE (25 mm) group and PE (550

mm) were basically 12 h. At the low initial Tl(I) concentration,

the smaller the particle size of PS, the shorter the equilibration

time required to reach equilibrium, indicating that MPs with

small crystal and particle size improved kinetics of Tl(I)

sorption. The time required for the two particle sizes of PE

to reach quasi-equilibrium was the same, indicating that

particle size was not a key factor in controlling the rate of

adsorption between PE and Tl(I). At high initial Tl(I)

concentration, the equilibrium time for PS (25 mm) group

was longer than that of PE (550 mm) group. One probable

reason was that the aggregation of PS led to the reduction of the

number of adsorption sites, and the smaller the particle size,
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the more obvious the aggregation phenomenon was (Huang

et al., 2021; Kim et al., 2022). The morphology of PP is smooth

and fibrous, the functional groups on the surface are mainly

-CH2, whereas the highly active functional groups (-C=O-, -C-

O-, -OH and -COOH, etc.) are few, thus adsorption capacity

is poor. In addition, the density of PP is lower than that of

water. During the experiment, PP floated above the solution

and had less contact with Tl (I) ions in the solution, resulting in

poor adsorption effect. The final experimental results did not

conform to the three kinetic models selected. Therefore,

only the maximum adsorption capacity of Tl(I) by PP is

shown in Figure 1. In PP (13 mm) and PP (550 mm)

group, the maximum adsorption capacity was mainly

controlled by the initial concentration of Tl(I) and the

particle size of PP.

The adsorption kinetic data of PE and Tl(I) were better fitted

by PFO model (show in Table S4), PFO model indicates that the

reaction rate was linearly related to the concentration of

reactants, and it was speculated that the adsorption of Tl(I) by

PE was mainly a physisorption process (Bhagwat et al., 2021).

Physical adsorption mainly relies on electrostatic action and van
A B

DC

FIGURE 1

Adsorption kinetics. (A) PS + low initial Tl(I); (B) PS + high initial Tl(I); (C) PE + low and high initial Tl(I); (D) PP + low and high initial Tl(I). PFO
means Pseudo-first-order kinetic model; PSO means Pseudo-second-order kinetic model. Adsorption results of Tl by PP did not fit into any of
the kinetic models.
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derWaals force to adsorb heavy metal ions. The PE adsorbed Tl+

in solution to the surface through electrostatic interaction, and

the adsorption equilibrium will be gradually reached as the

adsorption sites of the surface layer are occupied (Chen et al.,

2021). The fitting results of the adsorption kinetics of the PS

group showed that the PSOmodel fitted better at low initial Tl(I)

concentration, and the distance to the data points was closer

than that of the PFO model, which indicated that chemical

adsorption might be the main mechanism for adsorption

between PS and Tl(I) (Ho and McKay, 2000; Santos et al.,

2021). The chemical mechanism may involve electron sharing

and exchanging, complexation, coordination and/or chelation

between Tl(I) and MPs (Martinez-Jimenez et al., 2021). Based on

the theory proposed by Weber and Morris (Weber and Boell,

1962), the Weber and Morris Model was used to identify the

intra-particle diffusion mechanism (Figure S1). The fitted curve

did not pass through the origin, which indicated that internal

diffusion was not the main factor affecting adsorption between

PS and Tl(I). According to the fitting results of the three models,

it was indicated that the key mechanism of PS adsorption of Tl(I)

was chemical bonding. We used ATR-FTIR and XPS to further

elucidate the adsorption mechanisms.
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Adsorption isotherms

Langmuir and Freundlich models were used to fit the

sorption isotherm data (Figure 2), and the full model

summaries are presented in Tables S5-S8. Both Langmuir and

Freundlich models fitted sorption data of “particle size group”

and “pH group” of PS well. However, the Freundlich model

fitted better than the Langmuir model (Table S5), which

indicated that the adsorption of PS to Tl(I) was mainly

nonlinear adsorption. The uneven distribution of adsorption

sites can cause nonlinear adsorption, which might be explained

by specific adsorbate-adsorbent interactions; nonlinear

adsorption also occurred when pore filling is involved in the

adsorption process (Zhang et al., 2018; Dong et al., 2020). Using

both Langmuir and Freundlich models indicated this process

could be roughly divided into three stages. During Stage I, a

mono-molecular Tl layer was formed on PS and there was no

interaction between the adsorbed Tl molecules. The adsorption

rate was fast. When the surface monolayer was full, it entered the

second stage (Freundlich, 1962; Tang et al., 2021b). During Stage

II, with the increasing of Tl(I) concentration, Tl(I) diffused into

the cracks and voids on the PS surface, and the adsorption rate
A B

DC

FIGURE 2

Adsorption isotherms of Tl(I) on microspheres. (A) PS with different pH; (B) PS with different particle sizes; (C) MPs in seawater (salinity of 32‰);
(D) MPs in seawater (salinity of 15‰).
frontiersin.org

https://doi.org/10.3389/fmars.2022.1033164
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2022.1033164
became slow, which formed a multilayer adsorption (Davranche

et al., 2019). During Stage III, most of the adsorption sites on PS

were occupied, while the concentration of Tl(I) continued to

increase but could not continue to be adsorbed by PS. Therefore,

the adsorption curve at this stage showed a stable trend (Hüffer

et al., 2018a; Wu et al., 2019).

In the “particle size group” of PE, when the particle size was

550 mm, the Langmuir model had a higher fitting degree, which

was better than the Freundlich model; when the particle size was

150 mm, the Langmuir and Freundlich models had similar fitting

degrees and were both weaker than 550 mm; At 25 mm, both

models fit poorly (Shown in Table S4). It showed that when the

particle size of PE was large, the adsorption of Tl(I) may be

mainly linear adsorption, and the adsorbed Tl+ was distributed

in a monolayer on the surface of PE. The smaller the particle size

is, the worse the fitting degree of the two models is. It may be that

the smaller the particle size of PE, the easier it was to float on the

surface of the solution, resulting in unstable adsorption. In the

“pH group” of PE, when pH=4, the fitting degree of Langmuir

and Freundlich models were both higher. When pH=6, the

fitting degree of Freundlich model was higher than that of

Langmuir model. When pH=8, the fitting degree of the two

models was similar. (Table S4). Under the conditions of pH=6

and pH=8, by comparing ATR-FTIR and XPS results of the

pristine MPs and the MPs after adsorption experiment, it was

found that the characteristic peaks of the three MPs fractions

vibrated or elongated, the O/C ratio increased. This

phenomenon was more obvious especially when pH=6.

Usually, the vibration or elongation of characteristic peaks

indicate surface changes of MPs (such as the appearance of

wrinkles or cracks), thus aging and cracking may have occurred

at lower pH conditions (Mo et al., 2021; Xu et al., 2021; Song

et al., 2022). Under acidic conditions, the adsorption of Tl(I) by

PE was mainly nonlinear adsorption, which means that at low

pH, the concentration of H+ was higher, which accelerated the

aging and rupture of PE (Koutnik et al., 2021). After Tl+ was

adsorbed on the surface of PE, it began to be absorbed on the

active sites inside the cracks. When the pH reached weak

alkaline, the aging degree was weakened, and the adsorption

was mainly linear adsorption.

In the “particle size group” of PP, the Langmuir model fitted

better when the particle size was 13 mm, while the fitting effect of

both models was poor when the particle size was 150 mm and

550 mm (Shown in Table S7). The reason may be that the smaller

the particle size of PP, the larger the specific surface area, thus

the adsorption performance better. In the “pH group” of PP,

both models fitted well at pH=4 and pH=6, while both models

fitted poorly at pH=8 (Table S7). It showed that the high

concentration of H+ in the solution promoted the adsorption

of PP to Tl(I).

In the “seawater group”, when the seawater salinity was

15‰, the Freundlich model fitted better for the three MPs; when

the seawater salinity was 32‰, the fitting results of the two
Frontiers in Marine Science 06
models were not good (Table S8). When the seawater salinity

was 32‰, there were many kinds of ions coexisting in the

system, and the concentration of the coexisting ions was much

higher than that of Tl(I), resulting in poor adsorption

performance for Tl(I).

In addition, some groups in the experiment did not reach the

adsorption equilibrium state in the prepared concentration

range of 0-50 mg/L for 7 days (Figure S2). According to the

analysis of the experimental data, a higher concentration of Tl(I)

solution might be required to reach the equilibrium state,

whereas when the concentration was too high, it would far

exceed the concentration of Tl(I) in the actual environment,

which had no practical significance. Therefore, the highest

concentration of Tl(I) was set to 50 mg/L. Another very

important reason was that the three MPs selected in the

experiment may not form tight complexes with Tl(I) due to

their own density, void structure and internal dopants, and the

interaction was weak, thus MPs adsorbed Tl(I) ions were easily

re-desorbed. In addition, some MPs floated above the solution

during the experiment, resulting in the lack of regularity in the

final adsorption data.
Morphologies and surface functional
groups of MPs

Pristine PS (25 mm), PE (25 mm), and PP (13 mm) and after

adsorption of Tl(I) in kinetic experiments were characterized by

SEM (Figure 3). Pristine PE were in spherical shape and with

smooth surface. Pristine PS exhibited an irregular block

structure. Pristine PP were fibrous. After adsorption kinetic

experiments, the surface morphology of three MPs showed

slightly rough, but the changes were small. This phenomenon

may be that when the magnetic stirrer stirred, the friction

between MPs particles caused physical wear (Wang et al.,

2020). In addition, Chen et al. studied the adsorption of heavy

metals by PS, the results showed that oxygen-containing

functional groups played a dominant role in the adsorption

process of heavy metals (Chen et al., 2021). The O atoms on the

surface of MPs can donate a pair of lone electrons for metal ion

to bond with the surface. The O element participates in the

complexation to vibrate the long carbon chain, thus causing

wrinkles or cracks on the surface of MPs. Therefore, it is

speculated that the changes of PS surface may be caused by

the involvement of O element in complexation.

Figure 4 shows the comparison of the surface functional

groups on the surface of MPs (0.01 M NaCl, particle size 150

mm) after adsorption of Tl(I) ions and the functional groups on

the original MPs surface in the kinetic experiment. For PE,

deformation vibration and bending of carbon-long chain were

observed at 670 cm-1 and 1468 cm-1, respectively; CH2

symmetric stretch occurred at 2850 cm-1 and 2919 cm-1

(Wang et al., 2020). For PP, deformation vibration of C-H
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bonds was observed at 2921 cm-1 and 1468-719 cm-1, C-H bonds

stretch occurred at 2850-2960 cm-1 (Imel et al., 2015). Most of

the functional groups of PE and PP showed vibration or bending

deformation, which might be mainly caused by the cracks

generated on the surface of MPs (Matouš ek et al., 2016; Wang

et al., 2018) Several key absorption peaks obtained for PE and PP

in this study agreed well with a previous study (Wang et al.,

2018). After the adsorption of Tl(I), the composition of the

functional group did not change obviously, which also indicated

that the mechanism in the adsorption of Tl(I) by PE and PP

might predominant be the physical adsorption governed by

monolayer coverage (Yu et al., 2020).

The infrared characteristic absorption peaks for typical

functional groups of pristine PS were as follows: aromatic C-H

bonds at 755 cm-1, C-H bonds of carbon backbone at 1026 cm-1,

phenyl ring at 1598 cm-1, CH2 stretching at 2920 cm
-1, 2850 cm-1

and 1450 cm-1, C-H aromatic stretching at 3027 cm-1, and four

C=O bonds at 1742~1942 cm-1 (Chen et al., 2020). After the

adsorption of Tl(I), the corresponding C-H bonds at 1450 cm-1,

2850 cm-1 and 2920 cm-1 were significantly elongated. It

indicated that the adsorption mechanism of PS to Tl(I) is

complexation (Zhou et al., 2022). The involvement of O

element in the complexation weakened the intermolecular

interaction in PS, which led to local plasticization of the PS
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surface and accelerated the formation of cracks (Hüffer et al.,

2018b; Dong et al., 2020; Bhagwat et al., 2021).
Surface element compositions of MPs

C and O were the main elements on the surface of MPs (>

80% of the total elements) (XPS spectral analysis results are

shown in Table 1). Generally, O/C ratio has a significant effect

on the adsorption performance of MPs to heavy metals. The

higher the O/C ratio, the more oxygen-containing functional

groups on the surface of MPs, and the better the adsorption

performance (Chen et al., 2021). In pristine PE (550 mm), PS

(550mm) and PP (550 mm), the O/C ratio were 0.03, 0.164 and

0.015, respectively. The O/C ratio of pristine PS was higher than

that of PE and PP, indicating that pristine PS had higher

contents of surface oxygen-containing functional groups. PS

also exhibited a higher adsorption capacity in the “particle size

group” and “pH group” in the adsorption isotherm experiments

(Figure S3). After the adsorption, the O/C ratios of the three

MPs with the particle size of 25 mm all increased to varying

degrees (Table 1), among which the O/C ratio in PE increased

the most, indicating that PE had the greatest degree of aging
FIGURE 3

Scanning electron microscopy (SEM) images. Before adsorption (A) PE, (B) PS and (C) PP; after adsorption (D) PE, (E) PS and (F) PP.
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(Matouš ek et al., 2016; Wang et al., 2018; Chen et al., 2021).

Among the three MPs with the particle size of 550 mm, the O/C

ratio in PE increased, and the O/C ratio in PP was almost

unchanged. In addition, the O/C ratio of PS was much lower,

which might be because O element participated in the

complexation, resulting in the reduction of the O/C ratio. In

natural seawater (pH=~8.1) and terrestrial freshwater (pH=~6-

7), the zeta potential of PS is usually negative, also indicating that
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PS has a strong adsorption potential for Tl(I) (Tang

et al., 2021a).

There were also Si and F elements on the surface of the MPs

(Figure S4), which might be due to the addition of plasticizers,

additives and fillers in the plastic production process (Chen

et al., 2021). Cations such as Si may compete with Tl(I) element

for adsorption sites on the surface of MPs, thus affecting the

adsorption of Tl(I) by MPs (Tang et al., 2021b).
A B

C

FIGURE 4

FTIR spectra of adsorption kinetics of Tl(I) on microspheres (0.01 M NaCl, 150 mm). (A) PE (150 mm), (B) PS (150 mm), (C) PP (150 mm). (“a” means
after adsorption, “b” means before adsorption).
TABLE 1 Atomic percentages (%) for the elements on the particle surfaces before and after Tl adsorption in the kinetic adsorption a.

Particle type Size (mm) Tl concentration (mg/L) C 1s O 1s F 1s Si 2p O/C

PE Pristine 550 0 49.3 1.5 0 0 0.030

25 0 42.1 0.3 0 0 0.007

after adsorption 550 1 37.3 10.4 1.3 8.9 0.279

25 20 21.9 7.7 0 7.3 0.352

PS Pristine 550 0 29.3 4.81 0.4 0 0.164

25 0 41.9 3.5 0 0 0.084

after adsorption 550 1 44.4 0.8 7.4 0.2 0.018

25 20 41.9 7.0 0 4.1 0.167

PP Pristine 550 0 40.0 0.6 1.3 0 0.015

13 0 39.8 4.1 0 0 0.103

after adsorption 550 1 44.3 0.7 7.3 0.2 0.016

13 20 42.4 8.2 0 0 0.193
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aPE, polyethylene; PS, polystyrene and PP, polypropylene.
in.org

https://doi.org/10.3389/fmars.2022.1033164
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2022.1033164
Effect of initial pH on the adsorption

Most common polymers in the environments (such as PE,

PS and PP) have low pH values of isoelectric point (IEP) (Liu

et al., 2022). The IEP of PP is about 4, PE is 6.5, and PS is 4.3

which means that the surfaces of MPs are negatively charged at

the pH value of the natural water environment (Matouš ek et al.,
2016; Lin et al., 2021). The adsorption of Tl(I) by the three MPs

in the “pH group” showed strong pH-dependency (Figure 2)

(Dong et al., 2020; Wang et al., 2020; Zou et al., 2020). The

adsorption capacity of MPs to Tl(I) at pH=4 was lower than at

pH=6 (Figure S3). At the same pH, the adsorption capacity of PS

to Tl(I) was higher than that of PE and PP (Figure S3A). The

adsorption capacity of MPs to Tl(I) at pH=4 was lower than at

pH=6 (Figure S3). The main reason for this phenomenon is that

when the pH of the solution is low, H+ competes with Tl(I) for

effective adsorption sites on MPs (Liu et al., 2012), thereby

reducing the adsorption of Tl(I) by MPs (Wang et al., 2021;

Wang et al., 2021). When the pH of the solution was low, H+

competed with Tl(I) for the effective adsorption sites on MPs

(Liu et al., 2012), thus reducing the adsorption capacity of MPs

to Tl(I) (Wang et al., 2021). At pH=8, the surface functional

groups of PE (550 mm) and PP (550 mm) did not significantly

change (Figure S5). However, the surface functional groups of PS

(550 mm) changed, that is, hydroxyl groups were generated at

3356 cm-1, and carbonyl groups were generated at 1642 cm-1

(Figure S5C). With the increase of pH, the deprotonation of the

carboxyl functional groups on the PS surface was enhanced, and

new active functional groups were formed, which increased the

effective adsorption sites on the PS surface and promoted the

adsorption of Tl(I) (Tang et al., 2021b).
Influence of water salinity
on the adsorption

Studies have shown that the increase of salinity reduce the

adsorption of metal ions by MPs, such as the competitive

adsorption between Na and trace metals (e.g., Pb, Cd, Zn and

Cu) (Q. Turner et al., 2020; Zhou et al., 2020; Fu et al., 2021; Qi

et al., 2021; Tang et al., 2021b). In the seawater (salinity 32‰),

the main cations included K+ (37.4 mg/L), Na+ (760.0 mg/L),

Ca2+ (43.8 mg/L), Mg2+ (98.3 mg/L) and Sr2+ (0.75 mg/L). The

total concentration of cations in seawater (salinity 32‰) was not

only higher than that of seawater (salinity 15‰), but was also

much higher than the highest concentration of Tl (50mg/L) in all

the adsorption groups (In the seawater (salinity 15‰), the main

cations included K+ (19.4 mg/L), Na+ (396.6 mg/L), Ca2+ (22.7

mg/L), Mg2+ (50.3 mg/L) and Sr2+ (0.34 mg/L)). Compared

within seawater (salinity 15‰), the adsorption capacity of the

three MPs on Tl(I) was lower in seawater (salinity 15‰) (Figure

S2). The adsorption sites of MPs to Tl(I) include inner
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coordination sites and outer obligate adsorption sites. When

the concentration of coexisting cations is high, they will not only

form competitive adsorption with Tl(I), but may also undergo

complexation reactions on the surface of MPs, resulting in a

decrease in the number of inner coordination sites and outer

obligate adsorption sites (Dong et al., 2020). Moreover, the large

amount of Cl- ions in seawater may promote the formation of

Tl-Cl- complexes, leading to a decrease in the activity of Tl(I)

(Wang et al., 2019). In seawater systems with different salinity,

the thickness of the double electron layer is different, which may

affect the adsorption of Tl(I) on the surface and the diffusion

inside MPs (Singh et al., 2019). In addition, compressing the

double electron layer also promotes the aggregation of MPs, and

further affects the adsorption capacity of MPs for Tl(I) (Wu

et al., 2019; Binda et al., 2021).
Influence of self-characters of MPs on
the adsorption

The common MPs in water environments include PE, PS,

PP, polyethylene terephthalate (PET), polyvinyl chloride (PVC)

and polylactic acid (PA). Different types of MPs have different

adsorption affinities for heavy metals, which are often related to

the specific surface area, polarity, crystallinity, and functional

groups of MPs (Song et al., 2022). In this study, the specific

surface area of MPs with the same particle size was PS > PP > PE,

while the crystallinity was PE > PP > PS. MPs content crystalline

regions and amorphous regions. Crystalline regions affects the

adsorption of heavy metals by MPs (Fu et al., 2021). The increase

in the crystallinity of MPs will lead to a decrease in the

adsorption capacity and adsorption rate of heavy metals (Sun

et al., 2022). Since the crystallinity is PE > PP > PS, the

adsorption capacity of PS is the largest. Although particle size

had a certain effect on the quasi-equilibrium time of Tl(I)

adsorption on MPs, the effect of surface functional groups was

more significant (Figure 4). Surface functional groups of pristine

PE, PS and PP were mainly C-H, H-C-H, C-O bonds (> 80%)

(Tables S9-S14), whereas the highly reactive functional groups

were relatively minimal. In addition, the O/C ratios of the

original MPs were low (Table 1), ranging from 0.01 to 0.36,

which were much lower than that of natural minerals (the lowest

O/C ratio is 0.45) (Chen et al., 2021). Therefore, MPs show poor

adsorption capacity for metals compared to natural minerals

(Chen et al., 2022).

The density of MPs also affects their distribution in water,

which indirectly affects the adsorption of Tl by MPs. In our

study, the density of PS was greater than that of water, while the

densities of PE and PP were lower than that of water, thus PE

and PP were more inclined to float on the water surface and had

relatively less contact with Tl(I) (Wu et al., 2019), making the

final adsorption lower than that of PS (Figure S3).
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Influence of self-characters of
Tl on the adsorption

In the current research on the adsorption of heavy metals by

MPs, the metals mainly involved are chromium (Cr), cadmium

(Cd), copper (Cu), lead (Pb), arsenic (As), nickel (Ni), cobalt

(Co) and manganese (Mn) (Davranche et al., 2019; Li et al., 2021;

Santos et al., 2021; Tang et al., 2021b; Torres et al., 2021; Fred-

Ahmadu et al., 2022; Liu et al., 2022; Ren et al., 2022). Most of

these metals are transition elements of the fourth period, which

have unfilled d orbitals, and have only 1 or 2 electrons in the

outermost shell, thus exhibiting abundant valence electron

configurations (Lu et al., 2012). Pb (II) is more active than Cu

(II); the former has higher ion exchange capacity and partition

coefficient, and is easier to form an outer spherical complex with

the adsorption center on the surface of MPs (Jiang et al., 2022;

Liu et al., 2022). The adsorption mechanism between Cd (II) and

MPs is mainly the interaction between oxygen-containing

functional groups (C-O and C=O) and cation-p interaction

(Aghilinasrollahabadi et al., 2021). In this study, the main

adsorption mechanism of Tl(I) by PS was the polar interaction

of benzene ring structure and the interaction of cation-p bond,

while the adsorption of Tl(I) by PE and PP were mainly through

van derWaals force which is relatively weak (Holmes et al., 2014;

Zhou et al., 2020; Gao et al., 2021). Tl has lithophilic and

thiophilic properties, but shows weak interactions with most

organic pollutants, and seldom forms strong complexes. In most

cases, Tl(I) is only loosely bound to organic polymers such as

humic and fulvic acids at exchange sites (Liu et al., 2011).

Besides, due to the electronic configuration characteristics of

Tl ([Xe]4f145d106s2), there are two bonding electrons in the 6s

orbital of Tl(I), which can resist the formation of covalent bonds

(Jacobson et al., 2005; Song et al., 2022), so Tl(I) usually only

participates in exchange adsorption.
Conclusions

In this study, pristine PE were in spherical shape and with a

smooth surface, pristine PS exhibited an irregular block

structure and pristine PP were fibrous. After the adsorption

experiment, they all showed different degrees of aging. PS

showed the lowest crystallinity and had most oxygen-

containing functional groups among the studied MPs, thus

PS had the highest adsorption capacity for Tl(I), whereas the

main adsorption mechanism of Tl(I) on PE and PP was

physical adsorption. At the low initial Tl(I) concentration,

crystallinity and particle size were important factors affecting

adsorption of the three MPs. The aggregation phenomenon of

PE was more visible at high initial Tl(I) concentrations. With

the increase of pH, the deprotonation of the carboxyl
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functional groups on the PS surface was enhanced, which

promoted the adsorption of Tl(I). The increase of salinity

reduced the adsorption of Tl(I) by MPs because the

coexisting cations undergo complexation reactions on the

surface of MPs, leading to a decrease in the number of

adsorption sites.

Generally, this study found that the adsorptions between Tl

(I) and the three major MPs (PE, PP, PS) in fresh and sea water

were weak, so it seems difficult for Tl(I) and MPs to form strong

complexes. Therefore, these types of MPs are less likely to affect

the transport of Tl in the actual environment or to produce

combined toxic effects on organisms with Tl. However, studies

on the potential transport mechanism of Tl by MPs in natural

environments are still extremely limited. We suggest to carry out

more field experiments in the future research, focusing on the

species, content, surface morphology, functional groups of MPs

in the real nature environments, and also consider the

competitive adsorption of Tl between MPs and natural

minerals (such as manganese oxide, iron oxide and

clay minerals).
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