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Establishment of methods for
rapid detection of Prymnesium
parvum by recombinase
polymerase amplification
combined with a lateral
flow dipstick

Ningjian Luo1, Hailong Huang1* and Haibo Jiang1,2*

1Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Science, Ningbo
University, Ningbo, China, 2Southern Marine Science and Engineering Guangdong Laboratory
(Zhuhai), Zhuhai, China
Prymnesium parvum is a toxic algal bloom (HAB)-forming species. The toxicity

of this alga is a result of a collection of compounds known as prymnesins.

Prymnesins exert harmful effects upon fish, shellfish, and mollusks, causing

huge economic losses. In the present study, a new method was developed for

the detection of P. parvum. The novel method utilizes isothermal amplification,

known as recombinase polymerase amplification (RPA), in combination with

lateral-flow dipstick (LFD). Herein, a set of primers and probes were designed

for internal transcribed spacer (ITS) sequences, and a specific and sensitive

RPA-LFD rapid detection method was established for P. parvum. Meanwhile,

we verified its feasibility for the detection of environmental samples. It was

demonstrated that the optimal amplification temperature and time for RPA

were 39°C and 15min. RPA/RPA-LFD was experimentally verified to be specific,

demonstrating no cross-reaction with distinct control microalgae, and

furthermore, the total time required for the RPA-LFD experiment was

20 min. Meanwhile, the detection limit for the genomic DNA of P. parvum

was 1.5×10-1 pg/mL, and the detection limit for plasmids was 2.35 pg/mL. In
addition, the results herein revealed that the RPA-LFD assay was 100 times

more sensitive than PCR for detection of P. parvum. In conclusion, we

developed an RPA-LFD that does not require precision instruments, and can

be utilized for rapid on-site detection of P. parvum. In the future, the RPA-LFD

can be considered for practical application for environmental detection of the

toxic algal species.
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Introduction

The haptophyte Prymnesium parvum is a freshwater marine

species that usually exists in brackish and inland high-mineral

waters. It first reported in a Brackish water pond in 1937 (Carter,

1937). As a toxic and harmful alga, the toxin produced by P.

parvum, prymnesins, exhibits potent neurotoxic, ichthyotoxic,

cytotoxic and hemolytic effects (Manning and Claire, 2010b;

Seoane et al., 2016). Prymnesins exert a potent toxic effect on

fish, regularly resulting in the deaths of a large number of fish

and subsequently causing great losses to farmers. Moreover, in

humans toxins can be accumulated in by the consumption of

seafood leading to the dangerous biomagnification of reactive

molecules (Sharifan and Ma, 2017). For phytoplankton, mixed

blooms of the killer alga P. parvum and known harmful

cyanobacteria were one of the major causes of catastrophic

changes in Europe’s protected wetlands. The alga and

cyanobacteria combination caused the phytoplankton to

collapse (Maria et al., 2022). Over the previous two decades,

the harmful algal blooms of P. parvum have been reported

in the North America regions, such as Hawaii, Nebraska, etc.,

causing tens of millions of dollars in economic damage

(Southard et al., 2010; Roelke et al., 2016). In China, algal

blooms resulting from P. parvum occur frequently in

Ningxia, Tianjin, Zhejiang, Shandong, Shanxi and other

provinces. P. parvum has been known to cause the mass

mortality of fish in China since 1963 (Guo et al., 1996). In a

comparison of the toxicity of three kinds of harmful algae

frequently occurring in Sanmen Bay and Xiangshan Bay,

P. parvum exhibited the most toxic effect, causing acute death

within five hours (Yang et al., 2018). Furthermore, P. parvum

was isolated from the Pearl River Estuary in China (Qin et al.,

2020). Therefore, it is necessary to establish a detection method

of P. parvum that is fast and sensitive enough to detect the algae

in advance prior to the outbreak of blooms; the assay must also

meet the requirements of field detection, so as to prevent loss as

much as possible.

At present, the methods used for the detection of microbiota

are mainly divided into two categories; the first are based on the

detection of algae morphology, primarily by microscopic

examination (Töbe et al., 2006); the second are molecular

detection methods based on nucleic acid amplification,

including the polymerase chain reaction (PCR) (Manning and

Claire, 2010a), quantitative PCR (qPCR) (Manning and Claire,

2013; Beyer et al., 2019), molecular probe techniques (Eckford-

Soper and Daugbjerg, 2015) and isothermal amplification

techniques (IAT). Upon the basis of these techniques, the

detection of P. parvum has been broadly established. However,

when considering IAT, loop-mediated isothermal amplification

(LAMP) is the only method used for P. parvum detection (Zhu

et al., 2019). Furthermore, all the existing detection methods

have some limitations. For example, P. parvum is relatively small
Frontiers in Marine Science 02
and fragile and can become distorted during preservation,

making its identification and detection difficult (Galluzzi et al.,

2008). Examination by microscope is highly uncertain and

subjective (Zamor et al., 2012). Only experts skilled in algal

identification are qualified for this task. In addition to

microscopy methods, PCR, qPCR and other non-isothermal

nucleic acid amplification methods possess the advantages of

being fast, sensitive, and specific. Although the above molecular

methods are useful additions to traditional identification tools,

they still need to be performed under laboratory conditions by

professional technicians. Moreover, it is difficult to achieve on-

site detection of environmental samples. Although a loop-

mediated isothermal amplification and lateral flow dipstick

(LAMP-LFD) method may possess promise in solving the

problems associated with detection in the field, primer design

for LAMP technology is complicated (4-6 pairs of primers), and

the reaction requires incubation at 65–67°C for 30–60 min.

These shortcomings have limited the application of the

aforementioned molecular methods for the rapid detection of

P. parvum. Fortunately, in addition to LAMP, several other

isothermal amplification techniques (IAT) have been widely

employed for the detection of harmful algal bloom species,

including quadruplex priming amplification (QPA) (Lomidze

et al., 2018), helicase-dependent amplification (HDA) (Liu et al.,

2020), nucleic acid sequence-based amplification (NASBA) (Nai

et al., 2022), rolling circle amplification (RCA) (Yang et al.,

2022), and recombinase polymerase amplification (RPA) (Cao

et al., 2022).

The RPA method was first developed by Piepenburg in 2006

as an isothermal nucleic acid amplification technique

(Piepenburg et al., 2006). The RPA reaction process can be

completed within 20 minutes at a constant temperature of 37°C

without the requirement for high-temperature denaturation.

Previous studies have demonstrated that RPA has the same or

greater sensitivity and specificity as PCR for the detection of

algae, and it only requires a single pair of primers (Fu et al., 2019;

Zhai et al., 2021; Toldrà et al., 2018). Finally, RPA can be

combined with a variety of endpoint detection techniques for

the rapid and simultaneous detection of multiple samples, these

include agarose gel electrophoresis (Fu et al., 2020), real-time

fluorescence quantitative assays (Wang X.F. et al., 2020), dye

assays (Kang et al., 2020), and lateral flow dipsticks (LFD)

(Ayfan Abdulrahman et al., 2021). LFDs are simple biosensors

that involve building a ternary complex consisting of a

biotinylated RPA product hybridized with a fluorescein

isothiocyanate (FITC) probe and further complexed with a

gold-labeled anti-FITC antibody in non-laboratory

environments (Lin et al., 2022). When the control line and the

test line simultaneously color, a positive result is indicated; a result

than can be detected by the human eye. Indeed, LFD is a convenient

assay for immediate visualization after the rapid amplification of

RPA (Xia et al., 2022). Compared with traditional gel
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electrophoresis detection, LFDs main advantages are that a result

can be observed within 1-2minutes, without the need for precision

instruments such as imagers (Wang L. et al., 2020).

At present, due to the technical advantages exhibited by

RPA-LFD, the technique has been widely used in various testing

fields (Daher et al., 2014; Karakkat et al., 2018; Li et al., 2019;

Yang et al., 2020; Jiang T.T. et al., 2022). However, the use

of RPA-LFD in detecting harmful algae is still in its infancy.

In the present study, we establish a specific and sensitive

RPA-LFD assay for the detection of P. parvum and

investigated its performance in application in the field. The

ultimate purpose of this studywas to explorenovelmethods for the

rapid, low cost, and convenient field detection of harmful algae

blooms species.
Materials and methods

Algae culture

A total of 9 algae species were selected for RPA/RPA-LFD

specificity analysis in the study. Of these, Prymnesium parvum

(NMBjih029), Thalassiosira pseudonana (NMBguh006),

Chaetoceros curvisetus (NMBguh003-10), Skeletonema

costatum (NMBguh0042), Pseudo-nitzschia multiseries

(NMBguh002-1-1), and Isochrysis galbana (NMBjih021-2)

were supplied by the Microalgae Collection of Ningbo

University. Meanwhile, Chaetoceros debilis (MMDL50116),

and Thalassiosira rotula (MMDL50319) were supplied by

Xiamen University, Trichodesmium erythraeum (IMS101) was

supplied by the University of Southern California and

Phaeodactylum tricornutum (CCMP2561) was supplied by

Westlake University. The culture medium used was f/2

medium. All algal strains were cultured in a 100 ml flask, the

light intensity was 15~20 mmol/(m2·s), the light-dark period was

12 h:12 h, and the temperature was 16°C, with shaking 1–2 times

daily, and stationary culture.
DNA extraction, PCR, cloning and
sequencing of target gene

Genomic DNA was obtained from P. parvum cells prepared

by harvesting algal culture during their stationary phase, by

centrifugation at 12000 × g for 2 min, with the Ezup Column

Bacteria Genomic DNA Purification Kit (Sangon Biotech,

Shanghai, China). DNA concentrations were measured using a

Nano-300 micro spectrophotometer (Allsheng, Hangzhou,

China), the concentration was 1.5×104 pg/mL. The genomic

DNA was stored at -20°C.

The ITS of the target sequence was investigated and two PCR

primers were designed; these were named Pr-PCR-F (5’-
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TCTCGCAACGATGAAGAACG-3’) and Pr-PCR-R (5’-

TCGATGGCACAACGACTTG-3 ’). The PCR reaction

procedure was as follows: an initial denaturation at 95°C for

3 min, 30 cycles of 95°C for 15 s, 56°C for 15 s, and 72°C for

1 min, with a final extension at 72°C for 5 min. The PCR

products were purified by Hipure PCR Pure Kits (Magen,

Guangzhou, China). The purified PCR products were linked

using a pMD 18-T Vector (TaKaRa, Dalian, China) to transform

the competent Escherichia coli (DH5a). The positive clones

identified by colony PCR were sent to Zhejiang Youkang

Biotechnology Co., Ltd. for sequencing.
Design of RPA primers and probes

According to the principles of primer probe design in

TwistAmp® DNA Amplification Kits (TwistDX, UK), 5 pairs

of primers were designed for ITS sequencing of P. parvum. The

designed primers underwent further screening experiments to

determine the final optimal primers. To obtain specific RPA

primers, the Clustalw tool in the Biodeit software package

(http://www.mbio.ncsu.edu/BioEdit/bioedit.html) was utilized

in addition to BLAST in the NCBI. The sequences of similar

species involved in multiple alignment analysis included

Isochrysis galbana (JX393298.1), Chrysochromulina ephippum

(KT390082.1) and Pleurochrysis scherffelii (AM936922.1).

Primer Premier 5 (www.PremierBiosoft.com) was used to

design the primers and probes. For the RPA-LFD reaction,

biotin was tagged to the 5’-end of the optimum anti-sense

primer. The 5’-end of the probe was next labeled with a

carboxy fluorescein (FAM), the middle of the probe was

labeled with a tetrahydrofuran (THF) site, and the 3’-end was

labeled with a C3-spacer blocking group. Synthesis of the

primers and probe were performed by Zhejiang Youkang

Biotechnology Co., Ltd. The primer design results are shown

in Table 1.
The RPA reaction and system
optimization

The RPA reactions were conducted using TwistAmp® Basic

kits (TwistDX,UK). RPA reactions were performed in a total

volume of 50 µL, containing 29.5 mL of rehydration buffer, 11.2

mL of nuclease-free water, 2.4 mL of sense primer (10 mM), 2.4 mL
of anti-sense primer (10 mM), and 2 mL of genomic DNA

extracted from P. parvum. The reaction mixture was briefly

vortexed and centrifuged in a 1.5 ml centrifuge tube. Next, the

reaction mixture was transferred to a tube containing lyophilized

enzyme pellets that were supplied in the TwistAmp® Basic kits,

2.5 mL of MgOAc (280 mM) was rapidly added to the pellets

to resuspend. After vortexing and spinning, the solution
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was incubated in a metal bath (Allsheng, Hangzhou, China)

at 39°C for 20 min. According to the recommended process

(Lillis et al., 2016), the reaction tubes were removed after 4 min

and the reaction was continued after vortexing. At the end of the

RPA reaction, the product was purified using Hipure PCR Pure

Kits (Magen, Guangzhou, China) and detected using 2% agarose

gel electrophoresis.

System optimization was performed in two parts: reaction

temperature optimization and reaction time optimization.

Optimization of amplification temperature was performed

using the optimum primers, and a total of 3 temperature

gradients of 35°C, 37°C, and 39°C. Next, the optimal times

were further stratified by setting different amplification times

(10 min, 15 min, and 20 min). Subsequent experiments were all

the optimum primers and reaction set-up.
The RPA-LFD reaction

To confirm the RPA results, the LFD (Milenia biotec,

Germany) was employed to detect the RPA products. RPA

reactions were conducted using the DNA thermostatic rapid

amplification kit (Amplification Future, China). Moreover, RPA

reactions were performed with a total volume of 50 µL,

containing 29.4 mL of buffer A, 11.5 mL of nuclease-free water,

2 mL of sense primer (10 mM), 2 mL of anti-sense primer labeled

with biotin (10 mM), 0.6 mL of LFD probe (10 mM) and 2 mL of

genomic DNA extracted from P. parvum. The subsequent

procedure refers to the RPA reaction, but the RPA products

were not purified using kits: the 8 mL RPA reaction product was

added directly to 92 mL of assay buffer and mixed well in a well of

a microtiter plate. The dipsticks were place in sample application

assay buffer wells and incubated for 1 minutes in an upright
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position and the results could be read by eye after the control line

was fully colored. The result was positive if both the control line

and the detection line were observed. On the contrary, the result

was negative if only the control line is observed.
Specificity and sensitivity analysis

The specificity study was performed using the 10

aforementioned algal species. ddH2O was selected as the template

for the negative control. After extracting the algal genomic DNA

using the method mentioned in the “DNA extraction, PCR, cloning

and sequencing of target genes” section, RPA, RPA-LFD and PCR

amplification were performed. Simultaneously, to ensure the

validity of genomic DNA, PCR amplification was first performed

with universal primers TW81 (5’-GGGATCCGTTTCCGT

AGGTGAACCTGC-3’) and AB28 (5’-GGGATCCATATGCT

TAAGTTCAGCGGGT-3’) (White et al., 1990) before performing

the specificity study.

Both the genomic DNA of P. parvum and the recombinant

plasmids consisting of the ITS sequence of P. parvum were used

to determine sensitivity. Genomic DNA and a recombinant

plasmid containing the P. parvum ITS sequence were diluted

in a ten-fold serial dilution in ddH2O for 8 gradients. The result

was genomic DNA of concentration ranging from 1.5×104 pg/mL
to 1.5×10-3 pg/mL, and recombinant plasmid DNA of

concentration ranging from 2.35×105 pg/mL to 2.35×10-2 pg/

mL. The plasmids were extracted with a PurePlasmid Mini Kit

(CWBIO, Suzhou, China). Sensitivity of PCR, RPA, and RPA-

LFD was detected using the serially diluted genomic DNA, while

the plasmid was used as a template with ddH2O as a blank

control. The primers used were the optimal RPA primers

identified by earlier screening. The sensitivity of RPA-LFD was
TABLE 1 The design of primers and probe for Prymnesium parvum.

Primer Sequence (5’-3’) GC (%) Amplification length (bp)

PR-RPA-1-F CAGTGAATCATCGAACTTTTGAACGCAACTGG 43.8 242

PR-RPA-1-R CAACGACTTGGTAGGCGACCTACTAGCACG 56.7

PR-RPA-2-F CAGCGAAATGCGATACGTAATGCGAATTGC 46.7 114

PR-RPA-2-R GAGGCGCCACTCGAAGAAACATGCTCCCAG 60.0

PR-RPA-3-F CAGTGAATCATCGAACTTTTGAACGCAACTGG 43.8 173

PR-RPA-3-R CTGCCCTCAGGCGACGCTCGAACCTTGATC 63.3

PR-RPA-4-F GAATCATCGAACTTTTGAACGCAACTGG 42.9 228

PR-RPA-4-R GTAGGCGACCTACTAGCACGTCGGCACA 60.7

PR-RPA-5-F CATCGAACTTTTGAACGCAACTGGC 48.0 157

PR-RPA-5-R AGGCGACGCTCGAACCTTGATCTGG 60.0

PR-RPA-P [FAM]GAGCATGTTTCTTCGAGTGGCGCCTCCACCCG[dSpacer]
CTGGGCGTGCGCCTCGC [C3-Spacer]

69.4
Biotin was tagged to the 5'-end of the PR-RPA-4-R. The 5'-end of the PR-RPA-P was labeled with a carboxy fluorescein (FAM), the middle of the probe was labeled with a tetrahydrofuran
(THF) site, and the 3'-end was labeled with a C3-spacer blocking group.
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evaluated by comparing the lower limits of detection for PCR,

RPA, and RPA-LFD.
Practicality study for the RPA-LFD assay

The established RPA-LFD method was applied to both the

spiked samples and the real sample to verify the feasibility of this

study for field application. The natural seawater used for the

simulated water sample experiment was obtained from the South

China Sea on August – September in 2021, and after microscopic

examination it was confirmed that the sample contained no

target algal cells. A number of P. parvum cells were harvested by

centrifugation at 12000 × g for 2 min before the obtained cells

were used to prepare the spiked samples using natural seawater

as diluents. After a ten-fold gradient dilution of the water sample

was generated (1.12×105 cells/ml-1.12×10-2 cells/ml), genomic

DNA was extracted and sensitive detection was performed.
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Finally, the real environmental water samples from Xiangshan

and Sanmen Bay were applied to the practical study. Among

them, Xiangshan water samples represented the red tide period.

The accuracy of the RPA-LFD results was verified using

PCR results.
Results

Primer screening and system
optimization

As revealed by Figure 1, of the five pairs of primers, only PR-

RPA-4-F/R could amplify a clear and bright band. Thus, PR-RPA-

4-F/R was selected as the optimum primer for subsequent RPA

reactions. For the RPA-LFD reactions, biotin was tagged to the

5’-end of the PR-RPA-4-R, named PR-RPA-4-biotion.
A

B C

FIGURE 1

Primer screening and system optimization. (A): Primer screening results for P. parvum. M: DL5000 DNA marker; 1, 3, 5, 7, 9: positive control of primers
1-5; 2, 4, 6, 8, 10: negative control of primers 1-5. (B): Optimization of amplification temperature. 1: 35°C; 2: 37°C; 3: 39°C. (C): Optimization of
amplification time. 1: 10 min; 2: 15 min; 3: 20 min.
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Using the screened optimal primers, the RPA amplification

temperature was initially optimized at a 20 min time-point.

Meanwhile, the temperature was set to a range of 35°C, 37°C,

39°C (Figure 1B). Among the three amplification temperatures,

the amplification band representing the 39°C setting was the

brightest, so 39°C was selected as the optimal temperature for

the RPA amplification system. Time optimization experiments

were next performed at the optimal 39°C temperature. The time

gradient tested was 10 min, 15 min, 20 min (Figure 1C). When the

amplification time was 15 min or 20 min, the LFD bands were

brighter than for 10 min, thus 15 min was selected as the optimal

amplification time from an economical perspective. Subsequent

RPA/RPA-LFD were amplified using the described optimal

temperature and time.
Specificity study

The purpose of this study was to ensure accurate detection of

P. parvum in complex environments. Thus, the primers and

probes designed were required to be highly specific. As shown in

Figure 2, the genomic DNA of the 10 species of algae used for

specificity testing was successfully amplified with the universal

primers (TW28 and AB28) for their ITS sequences; these data

rule out possible interference due to degradation of genomic

DNA of algae. Meanwhile, through interpretation of the results

of PCR and RPA, it was identified that apart from for P. parvum,

the results of the other algae amplification of all other algae

species resulted in negative results in the RPA-LFD are all

negative (Figures 3A, B). In addition, during the RPA-LFD
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detection of P. parvum, the control line and the test line were

colored at the same time, while analysis of the other algae species

resulted in coloring of the control line only (Figure 3C).

Therefore, it was concluded that the primers and probes

designed in this test are highly specific for P. parvum and

could be used for further experimentation.
Sensitivity study

Sensitivity is an important parameter for on-site detection of

harmful algae. The methodological sensitivity and applicability

determine whether the method could be utilized to predict the

occurrence of harmful algal blooms. The detection limit of the

RPA-LFD was first quantified using the genomic DNA of P.

parvum (1.5×104 pg/mL-1.5×10-3 pg/mL) in comparison to PCR

and RPA (Figure 4). The results indicated that the detection limit

of RPA-LFD (1.5×10-1 pg/mL) with genomic DNA was 1000

times higher than that of RPA alone (1.5×102 pg/mL) and 100

times that of PCR (1.5×101 pg/mL).
Similarly, sensitivity tests were performed using

recombinant plasmid (2.35×105 pg/mL-2.35×10-2 pg/mL). After
performing conventional PCR, RPA or RPA-LFD amplification,

the results obtained were illustrated in Figure 5. The detection

limit for PCR was 2.35×100 pg/mL, while the detection limit for

RPA was 2.35×101 pg/mL, and the detection limit for RPA-LFD

was 2.35×100 pg/mL. The plasmid detection sensitivity of RPA-

LFD was therefore same as that of PCR, with both techniques

being 10 times more sensitive than RPA. Compared to the

sensitivity for genomic DNA detection, the sensitivity of RPA
FIGURE 2

Universal primers for amplification of ITS sequences. M: DL5000 DNA marker; NC: negative control; 1: Prymnesium parvum; 2: Thalassiosira
pseudonana; 3: Chaetoceros debilis; 4: Phaeodactylum tricornutum; 5: Pseudo-nitzschia multiseries; 6: Trichodesmium; 7: Skeletonema
costatum; 8: Thalassiosira rotula; 9: Chaetoceros curvisetus; 10: Isochrysis galbana.
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for plasmid DNA was significantly improved. Overall, the results

were suggested that the sensitivity of RPA-LFD is higher than

that of conventional PCR.
Practicality experiments on RPA-LFD

To verify the feasibility of the RPA-LFD assay for on-site

environmental detection of P. parvum, practical experiments

were conducted using spiked samples (Figure 6) and real

samples (Figure 7). The results revealed that using the primers

and probes optimized in this study, PCR, RPA and RPA-LFD

successfully detected P. parvum in spiked samples effectively
Frontiers in Marine Science 07
applied during on-site detection. In addition, RPA-LFD was

more sensitive than PCR and RPA, with a detection limit of

1.12×10-1 cells/ml. However, in the experiment with real

environment water samples, both PCR and RPA-LFD test

results were negative, which demonstrated that the

environmental water sample currently did contain of P.

parvum cells.
Discussion

As a toxic haptophyte alga, Prymnesium parvum has caused

cases of algal bloom outbreaks globally, causing huge economic
A

B

C

FIGURE 3

Specificity validation. (A): PCR; (B): RPA; (C): RPA-LFD. M: DL5000 DNA marker; NC: negative control; 1: P. parvum; 2: T. pseudonana; 3: C.
debilis; 4: P. tricornutum; 5: P. multiseries; 6: Trichodesmium; 7: S. costatum; 8: T. rotula; 9: C. curvisetus; 10: Isochrysis galbana.
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losses. Therefore, it has attracted increasing levels of attention

from researchers. However, most of the current research on P.

parvum is focused on toxins and growth factors (Larsen and

Bryant, 1998; McCoy Gary et al., 2014; Liu et al., 2022). To date,

many tools have been developed for the detection of P. parvum;

microscopic detection and PCR are still widely utilized, however,

these methods are generally time-consuming and laborious. To

the best of our knowledge, RPA-LFD-based approaches have not

yet been established for monitoring aquatic environments for

P. parvum.
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In the present study, an RPA-LFD detection method

targeted to the ITS sequence of P. parvum was established.

The detection limit of the RPA-LFD for the genomic DNA of

the algae was 1.5×10-1 pg/mL, and the detection limit for

plasmids was 2.35×100 pg/mL, not inferior to conventional

PCR. In addition, the RPA-LFD assay took approximately

20 min in its entirety, substantially faster than the 1.5 hours

taken for conventional PCR. Moreover, in comparison with

other isothermal amplification methods for detecting P.

parvum, RPA-LFD method possesses the significant advantage
A

B

C

FIGURE 4

Comparison of sensitivities of PCR (A), RPA (B) and RPA-LFD (C) with gDNA. M: DL5000 DNA marker; NC: negative control; 1-8: gDNA
concentration ranges from 1.5×104 pg/mL-1.5×10-3 pg/mL.
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of high sensitivity. For example, Zhu et al. (2019) demonstrated

that the limit of detection was 3×101 pg/mL when LAMP-LFD

was used to detect P. parvum. The detection limit of the RPA-

LFD utilized in the present study (1.5×10-1 pg/mL) was 200 times

higher than that of the that previously recorded for LAMP-LFD.

Therefore, the RPA-LFD may be useful in rapid and sensitive

detection of P. parvum in the laboratory or in the field while

maintaining high specificity. As a caveat, in our study, the results

of sensitivity of RPA-AGE were much lower than that of RPA-

LFD and PCR, which was inconsistent with findings from other

studies. The reason for this phenomenon may be related to the
Frontiers in Marine Science 09
method of product purification used in RPA. In this study, we

used a PCR product purification kit, while others have used

phenol-chloroform mixtures for purification; the latter may have

resulted in a loss of RPA product. This result in fact reflected the

advantages of RPA-LFD, because the technique does not require

purification of RPA products.

Unfortunately, RPA reactions produce more non-specific

amplifications relative to PCR, a difficult phenomenon to avoid

(Kim et al., 2017). Therefore, it is necessary to screen primers to

minimize the interference of non-specific amplification for

subsequent experiments. RPA is an emerging method, and
A

B

C

FIGURE 5

Comparison of sensitivities of PCR (A), RPA (B) and RPA-LFD (C) with plasmid. M: DL5000 DNA marker; NC: negative control; 1-8: plasmid
concentration ranges from 2.35×105 pg/mL-2.35×10-2 pg/mL.
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many researchers have conducted studies regarding the

optimization of this method, including buffered conditions,

specificity enhancement, stirred conditions, and additional

methods of detection such as RPA combined with LFD

(Moody et al., 2016; Luo et al., 2019; Tomar et al., 2022). It is

worth noting that combination of RPA with the latest CRISPR

technology has been applied to various bioassay fields

(Patchsung et al., 2020; Meng et al., 2021; Jiang H.J. et al.,

2022; Zhao et al., 2022). For example, an RPA-CRISPR/Cas13a

detection system named Sherlock has been developed
Frontiers in Marine Science 10
(Gootenberg et al., 2017). The combination of CRISPR and

RPA resulted in high specificity and sensitivity of detection of

RPA assays. At present, however, there are still few applications

employed for the detection of harmful algal blooms species, and

there is a huge potential for development (Durán-Vinet et al.,

2021). In the future, it would be of great benefit to design RPA-

CRISPR-LFD method for the rapid on-site detection of harmful

algal bloom species.

To verify that the application of the RPA-LFD is reliable and

stable for the analysis of field samples, mock environment
A

B

C

FIGURE 6

Comparison of sensitivities of PCR (A), RPA (B) and RPA-LFD (C) with gDNA of spiked sample. M: DL2000 DNA marker; NC: negative control; 1-
8: P. parvum cell concentration ranges from 1.12×105 cells/ml-1.12×10-2 cells/ml.
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sample groups were established by spiking P. parvum into

natural seawater in the absence of target algal cells. In the

present study, we initially spiked samples to verify the

feasibility of the method in the detection of field samples, and

then tested using a real sample. However, the final experimental

results demonstrated no presence of P. parvum in the real

samples used in this study. The most likely reason for this

result was that the environmental water sample contained no P.

parvum. Therefore, additional field samples isolated during

different seasons should be used for testing, perhaps during

periods of algal bloom.
Conclusion

This study established a rapid, highly specific and sensitive

RPA-LFD method for detection of Prymnesium parvum. The

method exhibits advantageous simple operation, short detection

time and visual detection results. RPA-LFD requires just 20 min

for the experimental process, substantially less than for PCR.

Furthermore, this method can be employed in field for detection

of P. parvum, and compared with traditional PCR, its sensitivity

is substantially improved. These advantages mean this novel

method can be used for early detection of P. parvum and

prevention of algal bloom. Meanwhile, the RPA-LFD

established in this study may also be utilized in largescale field

screening for P. parvum.
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