
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Hong Song,
Zhejiang University, China

REVIEWED BY

Amjad Ali Amjad,
Peking University, China
Peiyi Zhu,
Changshu Institute of Technology,
China

*CORRESPONDENCE

Jialin Tang
01068@bitzh.edu.cn

SPECIALTY SECTION

This article was submitted to
Ocean Observation,
a section of the journal
Frontiers in Marine Science

RECEIVED 30 August 2022
ACCEPTED 28 October 2022

PUBLISHED 29 November 2022

CITATION

Chen J, Tang J, Lin S, Liang W, Su B,
Yan J, Zhou D, Wang L, Lai Y and
Yang B (2022) RMP-Net: A structural
reparameterization and subpixel
super-resolution-based marine scene
segmentation network.
Front. Mar. Sci. 9:1032287.
doi: 10.3389/fmars.2022.1032287

COPYRIGHT

© 2022 Chen, Tang, Lin, Liang, Su, Yan,
Zhou, Wang, Lai and Yang. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 29 November 2022

DOI 10.3389/fmars.2022.1032287
RMP-Net: A structural
reparameterization and subpixel
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scene segmentation network

Jiongjiang Chen1, Jialin Tang1*, Shounan Lin1, Wanxin Liang1,
Binghua Su1, Jinghui Yan1, Dujuan Zhou1,2, Lili Wang1,
Yunting Lai1 and Benxi Yang1
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Ocean exploration has always been an important strategic direction for the

joint efforts of all mankind. Many countries in the world today are developing

their own underwater autonomous explorers to better explore the seabed.

Vision, as the core technology of autonomous underwater explorers, has a

great impact on the efficiency of exploration. Different from traditional tasks,

the lack of ambient light on the seabed makes the visual system more

demanding. In addition, the complex terrain on the seabed and various

creatures with different shapes and colors also make exploration tasks more

difficult. In order to effectively solve the above problems, we combined the

traditional models to modify the structure and proposed an algorithm for the

super-resolution fusion of enhanced extraction features to perform semantic

segmentation of seabed scenes. By using a structurally reparameterized

backbone network to better extract target features in complex environments,

and using subpixel super-resolution to combine multiscale feature semantic

information, we can achieve superior ocean scene segmentation performance.

In this study, multiclass segmentation and two-class segmentation tests were

performed on the public datasets SUIM and DeepFish, respectively. The test

results show that the mIoU and mPA indicators of our proposed method on

SUIM reach 84.52% and 92.33%mPA, respectively. The mIoU and mPA on

DeepFish reach 95.26% and 97.38%, respectively, and the proposed model

achieves SOTA compared with state-of-the-art methods. The proposed model

and code are exposed via Github
1.

KEYWORDS

submarine exploration, underwater scene, RMP-Net, structural re-parameterization,
multiscale fusion
1 https://github.com/QingWind6/RMP-Net.
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1 Introduction

As we all know, the area of the ocean is about 360 million

square kilometers, accounting for about 71% of the total surface

area of the earth, but the degree of human exploration and

development of the ocean is less than 5%. However, the ocean is

an important source of food, energy, and minerals in the world,

such as rich marine life, oil, natural gas, coal, and various rare metal

resources. In addition, about 40% of the world’s population live in

coastal areas, and three quarters of the world’s largest cities are

located in coastal areas (Rayner et al., 2019).

In the process of using autonomous underwater explorers to

explore the seabed, the detection and perception accuracy of the

vision system is relatively high. For example, for challenging

problems such as insufficient ambient light, related research

studies have used convolutional neural networks to detect and

identify marine organisms (Li et al., 2020; Xu et al., 2021; Zhang

et al., 2021; Kraft et al., 2022). However, using target detection to

achieve target object positioning is still not accurate enough. In

order to effectively solve the above problems, we take semantic

segmentation as an important research direction and use

semantic segmentation to perform pixel-level segmentation of

target objects so that pixel-level segmentation can be achieved.

We then locate the target object.

Most of the previous studies are dealing with single-class or

less-classification tasks, i.e., segmentation only of the foreground

and the background (Saleh et al., 2020; Zhang et al., 2021). For

example, Zhang et al. (2021) proposed a dual-pool aggregated

attention network called DPANet, through which the pool-

aggregated location attention module and the pool-aggregated

channel attention module process the feature maps to perform

pixel-level segmentation of marine organisms. The above research

performs semantic segmentation offish; that is, only the fish and the

ocean background need to be segmented. For the multi-objective

semantic segmentation task of the ocean, Islam et al. (2020)

proposed a fully convolutional encoder–decoder model called

SUIM-Net, which has two versions. One is to combine the

residual structure and skip connection. The residual skip block

(RSB) is formed, which can solve the problem of gradient explosion

and gradient disappearance in relatively deep network training (He

et al., 2015a). This improves the performance of the model by

adding RSB connections to the decoder. The other version is to use

the VGG convolutional neural network as the backbone network of

SUIM-Net (Simonyan and Zisserman, 2014), which has the

advantage of improving the segmentation performance of the

network. Finally, the authors of this study chose SUIM-Net

(VGG) as their final model, which shows that segmentation

performance is still the key research direction of ocean image

segmentation. In addition, the authors of this study published a

large dataset they produced for the semantic segmentation of

underwater images (Islam et al., 2020).
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The above-mentioned previous studies used more traditional

and classical neural networks, and most of them were binary

classification tasks, that is, background and target objects.

However, in an actual marine exploration environment, various

creatures will appear, and using only a few classification tasks

cannot meet practical engineering needs. In order to effectively

improve the operational efficiency of autonomous underwater

explorers, we propose a novel structure-reparameterization and

subpixel convolutional super-resolution network (RMP-Net),

which uses a structure-reparameterized backbone feature

extraction network. It enables the network to have better feature

extraction performance and certain real-time performance (Ding

et al., 2021), and the subpixel convolution super-resolution

module can better help the performance of the backbone

network to better migrate to downstream tasks in feature

recovery (Shi et al., 2016; Bousmalis et al., 2016). In the process

of feature fusion, more pieces of contour and shallow semantic

information of the target object are retained, so that the network

model can realize the multitarget semantic segmentation task of

the marine environment. In this study, we use the SUIM dataset

(Islam et al., 2020) and the DeepFish dataset (Saleh et al., 2020) for

experimental testing to better evaluate the comprehensive

performance of the model through these two challenging datasets.

The contributions of this study can be summarized

as follows:
1. This study proposes RMP-Net for the multiclassification

semantic segmentation of marine scenes to meet the

needs of autonomous underwater explorers for

multitarget recognition and segmentation in seabed

operations. It is expected to improve the performance

of underwater operations’ efficiency.

2. RMP-Net uses subpixel convolution to perform

semantic information super-resolution recovery and

fusion of the features learned by the backbone

feature extraction network, which can efficiently

fuse the multiscale feature layers obtained by the

backbone network to further enhance the model’s

ability to operate under the sea. This shows the

accuracy of the multiclass object segmentation in

the environment.

3. RMP-Net is evaluated using both SUIM and DeepFish

datasets and outperforms state-of-the-art methods. At

the same time, the RMP-Net proposed in this study and

the entire framework source code can be downloaded

from Github.
The rest of the paper is organized as follows. We discuss the

method proposed in this study in Section 2, present the

experimental results in Section 3, discuss the results in Section

4, and summarize the results in Section 5.
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2 Materials and methods

2.1 Structural reparameterization

Early convolutional neural networks achieved better results

by stacking convolutional layers continuously, such as VGG and

AlexNet (Krizhevsky et al., 2012; Simonyan and Zisserman,

2014). In recent years, in order to improve network

performance, researchers have also developed many complex

structures, such as introducing multibranch structures and using

different convolution methods (Szegedy et al., 2014). Although

these schemes can improve model performance, they will also

bring other problems such as increasing memory consumption

and affecting model inference speed (Zhang et al., 2017);
Frontiers in Marine Science 03
therefore, VGG and ResNet are still widely used today

(Simonyan and Zisserman, 2014; He et al., 2015a).

In order to effectively improve the accuracy of the plain

structure of VGG, RepVGG is proposed (Ding et al., 2021).

RepVGG introduces a multibranch structure based on VGG,

which can greatly improve the model performance during

training. In addition, RepVGG uses multibranch fusion

technology to merge the convolution kernels BN in the

multibranch structure during inference, which greatly

improves the speed of the model in the inference phase.

Figure 1 shows a RepVGG Block structure, which uses a

multibranch structure during training and a single-way structure

during the inference phase above. Assuming that F(X) represents

a 3x3 convolution and G(X) represents a 1x1 convolution, then
BA

FIGURE 1

RepVGG Block structure, using a multibranch structure during training and a single-way structure during the inference phase.
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the calculation made in a block can be expressed as Equation 1:

Out = F(X) + G(X) + X (1)

In the process of structural reparameterization, we will fuse

the convolutional and pooling layers, where it is assumed that W

is the convolutional kernel weight, i is the ordinal number of the

convolutional kernel, m denotes the mean of the BN layer, and

the variance of the BN layer is denoted by s; gi and bi denote the
scale factor and the offset factor of the BN layer, respectively; and

W’ and b’ denote the convolutional weight and bias after fusion,

respectively. Then the weight of the ith convolutional kernel

after fusion can be expressed as follows:

W
0
i,:,:,:,: =

gi
si

Wi,:,:,; (2)

The weight of the ith BN layer after fusion can then be

expressed as Equation 3:

b
0
i = −

migi
si

+ bi (3)

Figure 2 shows RepVGG, which performs the process of

structural reparameterization, i.e., multibranch structural fusion

above. For the 1x1 convolutional branch in the structure, we can

first replace it with a 3x3 convolutional kernel and then move the

values in the 1x1 convolutional kernel to the center of the 3x3

convolutional kernel, and fill the rest with zeros. For the identity

branch, we can also equivalently convert it to a 3x3 convolution

kernel, which gives us three 3x3 convolution kernels.

Finally, we only need to fuse and merge multiple

convolutional kernels, i.e., to ßuck BN. Assuming that the

weights of all branches are W, the input and output matrices

are M, and the bias is B, we can represent the fused 3x3

convolution as Equation 4:

bn(M*W, m,s , g , b):,i,:,: = (M*W
0):,i,:,: + b

0
i (4)

We use RepVGG as the U-Net backbone feature extraction

network, and the output of the five stages is effectively used as

multiscale fusion features, which can increase the model’s ability

to extract features at different scales while reducing the number

of computational parameters in model inference, and can

effectively extract features and fuse them to improve model

segmentation accuracy.
2.2 Subpixel convolution

In the process of camera imaging, the resulting image is

actually discretized; where two adjacent pixels are connected

macroscopically, in reality, there are countless tiny things

between them microscopically. These are called subpixels.

Subpixels actually exist, but due to the physical limitations of
Frontiers in Marine Science 04
the acquisition device’s sensor, the data can only be represented

by approximation. To maximize the use of information in the

image itself to improve super-resolution, Shi et al. (2016)

proposed subpixel convolution.

Figure 3 shows a high-resolution image obtained by

upsampling a low-resolution image using subpixel convolution.

By super-resolution, upsampling a high-dimensional low-

resolution feature map to obtain a low-dimensional high-

resolution image can effectively recover the detailed information

in the feature map. The principle of subpixel convolution is to

learn the convolution of the corresponding number of channels in

the penultimate layer of the model, (r2, c), where c is the number

of channels in the final output, and r is the upsampling multiplier

to be performed. For example, if a 9-channel 3x3 feature map is

upsampled by a factor of 3, the final size is a single-channel 9x9

feature map. The above pixel alignment operation can be

described by the following principle:

PS(T)x,y,c = T½x=r�,½y=r�, c · r ·   mod   (y, r) + c ·   mod   (x, r) (5)

From the above equation, we can see that in subpixel

convolution, consecutive c channels are taken from the

number of channels of the feature map as a whole, and then

the final multichannel upsampled map is obtained by

rearranging the pixels. For a feature vector of size HxW

channel number r2, we can upsample it with subpixel

convolution, assuming that H’ is the output feature vector

length, W’ is the output feature vector width, and r’ is the

output feature vector channel number. Then the final output

scale can be expressed by the following equation:

H0 = rH, W 0 = rW , r0 = 1 (6)

We connect the subpixel convolution to the decoder in U-

Net, pass the fused features at each scale to the subpixel

convolution for super-resolution upsampling, set different

subpixel convolution upsampling multipliers for each layer

(Sun et al., 2020), and upsample the output of each layer into

a feature vector of size 256x256. The advantage of this is that the

edge information in the deep semantic information of low

resolution and high dimension can be recovered and preserved

as much as possible, whereas the consistent scale makes it

convenient to fuse and sum the feature vectors.
2.3 Structure of RMP-Net model

The RMP-Net network is based on the improved U-Net model

(Ronneberger et al., 2015) [19], and B2 is selected as the backbone

feature extraction network after comparing the structure of multiple

versions of RepVGG. The five stages of RepVGG-B2 have

[1,4,6,14,1] layers and [64,128,256,512] widths, and the scaling

hyperparameters are 2.5 and 5, respectively. Figure 4 shows the
frontiersin.org
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overall structure of the RMP-Net network, where the backbone

RepVGG is composed using a RepVGG block and uses subpixel

convolution to upsample multiscale effective features for

semantic information recovery below. The RMP-Net is mainly

composed of four parts: input, backbone, multiscale fusion, and

output prediction.
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The first part of the data input is actually a pre-processing

operation of the data, which contains the enhancement of the

dataset, such as the rotation, cropping, and enlargement

operations corresponding to the original image and labels, and

the 1.5 times expansion of the dataset, which can effectively

improve the robustness and accuracy of the model through data
FIGURE 2

RepVGG performs the process of structural reparameterization, i.e., multibranch structural fusion.
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enhancement (Cubuk et al., 2018). Here we will unify the input

images to a size of 512x512.

The backbone network uses the RepVGG network, which

mainly consists of multiple stages with different numbers of

RepVGG blocks, and the RepVGG blocks are composed of

VGGs with multibranch structure; the multibranch structure is

used to obtain high performance during training (Szegedy et al.,

2014), and the inference stage is turned into a single-way

structure by the multibranch fusion algorithm to speed up the

model inference. This allows the model to have high

performance and faster inference speed at the same time. We

will select five stages of RepVGG as the effective multiscale

feature vectors for the subsequent enhanced feature fusion

operation, which are [64,256,256], [160,128,128], [320,64,64],

[640,32,32], and [2560,16,16] in order of scale, which can be

referred in Table 1.
Frontiers in Marine Science 06
In the multiscale fusion part, the feature vectors extracted

from the backbone network at different scales are first super-

resolved by subpixel convolutional scale normalization, where

we will process the five feature vectors output from the backbone

network and upsample them by subpixel convolutional scale

unification so that we can get five feature vectors with scales of

[10,256,256], [8,256,256], [16,256,256], [32,256,256], and

[64,256,256]. After summing the above feature vectors, we can

obtain a feature vector map with the scale [130,256,256], which

is the final fused feature vector map we need. Table 2 shows the

scale of different layers.

The final prediction part classifies the output of the model by

performing a Softmax operation on the predicted values of each

pixel to obtain the multicategorization probability of the model for

each pixel. The maximum probability value is obtained by argmax

to determine the class of the pixel. After classifying a pixel, it is
FIGURE 3

The high-resolution image is obtained by upsampling the low-resolution image using subpixel convolution. By super-resolution, upsampling a
high-dimensional low-resolution feature map to obtain a low-dimensional high-resolution image can effectively recover the detailed
information in the feature map.
A

FIGURE 4

The overall structure of the RMP-Net network; the backbone RepVGG is composed using a RepVGG Block and uses subpixel convolution to
upsample multiscale effective features for semantic information recovery.
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simply assigned a different color and mapped to the location of the

corresponding pixel to complete the segmentation.
2.4 Loss function

The loss function used in the training model in this paper is

cross-entropy loss (Rubinstein and Kroese, 2004; Ma et al.,

2021), which is used when classifying pixel points using

Softmax. It can be used to measure the difference between two

probability distributions, and thus the difference between the

distribution learned by the model and the true distribution.

When using cross-entropy loss for multiclassification tasks, the

mathematical relation can be expressed by the following

equation:

L =
1
Noi

Li = −
1
Noi o

M

c=1
yic log  ðpic) (7)

where M denotes the number of categories, and yic denotes the

symbolic function (if the true category of sample i is equal to c,

take 1; otherwise, take 0). pic then denotes the prediction

probability that sample i belongs to category c. Different tasks

may require the use of different loss functions, and the loss

function will, to some extent, affect the final effect of the model

after training. When using the cross-entropy loss function, the

learning speed will be faster when the model is poor and slower

when the model is good (Gonzalez and Miikkulainen, 2019).

Because the semantic segmentation we study this time is a

multiclassification task, here we directly use cross-entropy loss as

the loss function of the neural network to optimize the model.
Frontiers in Marine Science 07
2.5 Model training

The computer hardware and software environment for

model training and the main performance indicators are

shown as follows:

(1) CPU: Intel Xeon Silver 4110; (2) memory: 128G DDR4;

(3) graphics card: 4 x Nvidia GeForce Titan Xp; (4) operating

system: Ubuntu 18.04; (5) development environment: Python

3.8; PyTorch 1.11.0.

The network model training in this paper uses ImageNet-

based pretraining weights as the initial parameters of the

backbone network RepVGG for migration learning training

(Deng et al., 2009). The parts other than the backbone

network will be initialized with Kaiming to accelerate the

model convergence speed (He et al. (2015b)). The whole

training process will be divided into two parts: freeze trunk

training and unfreeze trunk training. Between them, 0–50 is for

freezing training, and 50–100 is for thawing training. The initial

learning rate for frozen training is set to 5e-3, and the batch size

is set to 16. The initial learning rate for unfreezing training is set

to 5e-5, and the batch size is set to 8. The training optimizer used

is the Adam optimizer (Kingma and Ba, 2014), and its

parameters and learning rate are optimized by the StepLR

adjuster; the step size is 1, and the gamma is 0.96. The

training parameters are referred to in Table 3. Freeze training

only loads the weights of the backbone network because the

preweights used are obtained by training the ImageNet dataset.

Such a classification network already has very good feature

extraction capabilities, so the weights of the backbone network

remain unchanged during the training process (Pan and Yang,

2010). Only the weight parameters of the decoder part are

changed. Unfreezing training releases the weight of the entire

network, so the weight parameters of the entire network will

change during the training process, but the parameters of the

backbone network are generally only fine-tuned and will not

change too much.

Transfer learning can transfer the ability of the network used

for one task to another task, which greatly improves the speed

and effect of model training and enables the network to have

relatively good results in different tasks and therefore in

preweighting. The loading of is essential for 99% of

model training.
3 Results

3.1 Results on SUIM

3.1.1 Qualitative analysis
The SUIM dataset focuses on the segmentation of ocean

scenes [11]. It includes a total of 1,525 training images and 110

verification images. The entire dataset contains a total of eight
TABLE 1 The scale of different effective feature layers of the
backbone.

Name of Layer Shape Channels

Feat-Layer 1 256 x 256 64

Feat-Layer 2 128 x 128 160

Feat-Layer 3 64 x 64 160

Feat-Layer 4 32 x 32 640

Feat-Layer 5 16 x 16 2560
TABLE 2 Model hyperparameters at different training stages.

Name of Layer Shape Channels

Sup-pixel-Up 1 256 x 256 10

Sup-pixel-Up 2 256 x 256 8

Sup-pixel-Up 3 256 x 256 16

Sup-pixel-Up 4 256 x 256 32

Sup-pixel-Up 5 256 x 256 64

Combined-Layer 256 x 256 130
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categories of target objects. The codes corresponding to the

specific categories are shown in Table 4.

In Figure 5, the visualization results of the comparison test of

each model network on the SUIM dataset are shown. We use

images of each category from the test set as the test input of the

model to more intuitively compare the multiclass segmentation

performance of the model.

It can be seen from the segmentation comparison diagram in

Figure 5 that the segmentation effect of the original U-Net is

relatively poor, and there will be many misjudgments of target

categories. In addition, the recovery effect of target segmentation

integrity and edge information is also very broad. The U-Net

model that replaces the VGG backbone with ResNet50 has

relatively good prediction results, and there are much fewer

misjudgments of the target category. Most of the pixels can be

classified correctly, and most of the target area can be predicted.

The prediction results of PSPNet are still very good (Zhao et al.,

2017). Compared with the previous two, it can be seen from the

fourth picture that the pixel accuracy of the model is much

higher, and the segmentation effect is very good. The

performance of the DeepLab model is comprehensively

between the U-Net of the PSPNet and ResNet50 versions

(Chen et al., 2017). The overall prediction effect of SUIM-Net

is also good, but there will be some misclassifications.

The last column is the prediction result of RMP-Net

proposed in this paper. It can be seen intuitively that its effect

is better than that of the other models. There are a few cases of

misjudgment of the target category in the six test images. The
Frontiers in Marine Science 08
prediction results of the first picture show that RMP-Net has a

high degree of restoration for the target contour feature recovery.

From the results of the fourth picture, it can also be seen that the

model has a better recovery effect on the edge contour feature

details of the human hand. Experiments show that the test

results of the RMP-Net model are better than those of the

other models.
3.1.2 Quantitative analysis
The evaluation metrics use two metrics commonly utilized

in semantic segmentation tasks: mIoU and mPA, which can

better reflect the comprehensive performance of the model.

The mIoU is the weighted average of the IoU of each class.

The IoU of each class can be calculated by the confusion matrix,

and the value on the diagonal of the confusion matrix is the

intersection of the class; each row plus each column minus the

value on the diagonal is the sum of the class.

After getting the IOU of each class, we only need to obtain

the average to get the mIoU. Let N be the number of categories

and Sum be the summation; then mIoU is given as follows:

mIoU =
Sum(IoUi)

N
(8)

The mPA is the proportion of the number of pixels correctly

classified for each class calculated separately, i.e., the CPA and

then averaged cumulatively. Assuming that P is the accuracy of

each category pixel, the mPA is given as follows:

mPA =
Sum   (P)

N
(9)

The SUIM dataset is used to test the segmentation accuracy

of the model, and the corresponding verification models are

RMP-Net, UNet (ResNet50), UNet (VGG16), PSPNet,

DeepLabV3, DeepLabV3, and SUIM-Net. As mentioned

above, the evaluation indicators mIoU and mPA are used to

evaluate the model, and the final evaluation results are shown in

Figure 5 and Table 5, 6.

Observing the two data comparison tables, the RMP-Net

proposed in this paper is the best among all models in terms of

comprehensive indicators. In the segmentation test on the SUIM

dataset, mIoU reached 84.52%, and mPA reached 92.33%.

Compared with the baseline, mIoU and mPA are improved by
TABLE 3 Model hyperparameters at different training stages.

Hyperparameters Epoch Learning Rate Batch Size Freeze Train Optimizer LR Decay Momentum

Values 1–50 5e-3 16 True Adam Step 0.9

51–100 5e-5 8 False
TABLE 4 Classes of objects annotated with pixels in the dataset and
the corresponding codes.

Object category Code

Background/water body BW

Human divers HD

Aquatic plants and seagrass AS

Robots/instruments RO

Reefs and invertebrates RI

Fish and vertebrates FV

Wrecks or ruins WR

Seafloor and rocks SR
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about 9.25% and 9.33%, respectively. We can see that among the

eight categories in the dataset, the model has the highest

classification accuracy for humans and coral reefs and

invertebrates, reaching 96.31% and 92.93%, respectively.

Compared with the SUIM-Net model, our proposed model

achieves about 3.37% and 4.62% higher mIoU and mPA,

respectively. The experimental results show that the effect of

RMP-Net in this seabed image segmentation task has reached

the expectation and can meet the needs of ocean multitarget

segmentation. ()

In Figure 6, data visualization of the performance of different

segmentation models on the dataset can be seen. It can be seen that

RMP-Net has achieved the best results in multiple classifications

and achieved SOTA in comparison with the most advanced

methods, which further reflects the effectiveness of using RMP-

Net in the task of ocean scene segmentation from the data.
Frontiers in Marine Science 09
3.2. Results on DeepFish

3.2.1. Qualitative analysis
In order to further verify the robustness and effectiveness of

the proposed model, we selected the binary segmentation dataset

DeepFish to test the model (Saleh et al., 2020). The DeepFish

dataset focuses on fish in the marine environment and can be

used in the fields of target detection, classification, and

segmentation. In this experiment, we use the semantic

segmentation part of the dataset as the experimental data. The

segmentation dataset has a total of 620 images, and the

corresponding label of the picture only contains two

categories: fish and background. We will divide the training

and verification set given by an official for model training and

model verification. Figure 7 shows the final prediction effect of

the model.
TABLE 5 Comparing mIoU metrics between different models on the SUIM dataset, where the metrics with the highest rankings are shown in bold.

Method Backbone mIoU(%) IoU per category(%)

BG RO FV HD RI WR

PSPNet MobileNet 77.8 82.1 69.7 79.1 80.2 79.4 80.4

PSPNet ResNet50 81.2 84.5 72. 81.2 83.4 85.2 83.9

DeepLabV3 MobileNet 78.7 81.2 70.9 79.0 79.3 83.2 81.0

DeepLabV3 Xception 80.7 82.9 70.5 80.9 82.6 85.2 85.2

U-Net VGG16 77.3 80.2 69.2 77.3 77. 82.2 80.6

U-Net ResNet50 79.0 83. 71. 79.6 78.3 84.5 81.3

SUIM-Net VGG 81.7 86.5 70.3 82.22 84.1 86.6 85.4

RMP-Net RepVGG 84.52 89.53 75.3 81.9 88.86 88.92 87.63
frontiers
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FIGURE 5

Qualitative comparative experiments on state-of-the-art segmentation models. (A) Input image. (B) Label. (C) Baseline. (D) U-Net (ResNet50).
(E) PSPNet. (F) DeepLabV3. (G) SUIM-Net. (H) RMP-Net.
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Renderings of the seven images verify the result of

concentrated random screening. From the model-predicted

results, there can be found two different ambient lights of

ocean scene. We put forward the model to forecast the effect

of fish, which is still very ideal; at the same time, for different

sizes of fish, the model can also be fully used. We need to pick up

the goal for fish edge contour feature recovery. From the above

results, we can see that subpixel convolution can well-integrate

the features of different scales, so that the back-end network can

retain and fuse the semantic information of features of different

scales extracted from the front-end network, which is very

effective for the task of ocean scene segmentation.

3.2.2 Quantitative analysis
We use the mIoU and mPA evaluation indicators to test

different models on the DeepFish dataset, and the final test

results are shown in Table 7.

It is not difficult to analyze the experimental data: our

proposed model is very competitive in both background and

fish (foreground) segmentation performance, with an IoU of
Frontiers in Marine Science 10
99.61% verified on the background and reached 90.90%. The

DeepFish dataset contains many fish of different sizes and

shapes. Experiments show that our proposed model can

achieve very good segmentation results for the above targets,

which further confirms the multibranch backbone and subpixel

in RMP-Net. The convolution module has a very good effect on

feature processing of complex underwater environments and can

fully cope with complex ocean scene segmentation tasks.
4 Discussion

4.1 Ablation study

Although the performance of RMP-Net is significantly

improved compared with the baseline, it is not clear how each

model affects the performance of the whole model. Therefore,

ablation experiments are needed to verify the impact of each

module on the performance of the network model separately.

The ablation results are shown in Table 8.
TABLE 6 Comparing mPA metrics between different models on the SUIM dataset, where the metrics with the highest rankings are shown in bold.

Method Backbone mPA(%) PA per category(%)

BG RO FV HD RI WR

PSPNet MobileNet 84.63 83.21 75.28 84.22 89.91 86.83 86.89

PSPNet ResNet50 87.27 87.59 77.53 86.58 92.05 89.64 90.55

DeepLabV3 MobileNet 84.9 85.47 76.46 85.71 85.94 89.3 87.08

DeepLabV3 Xception 87.42 86.1 76.47 86.49 90.97 93.37 89.78

U-Net VGG16 84.45 85.23 75.4 84.33 84.23 90.15 88.15

U-Net ResNet50 86.3 86.66 78.49 87.51 85.66 91.27 88.59

SUIM-Net VGG 88.25 89.01 75.25 88.29 93.52 90.87 89.62

RMP-Net RepVGG 92.33 93.52 80.74 86.28 96.31 92.93 92.22
frontiers
FIGURE 6

Testing different mainstream segmentation networks on the SUIM dataset, RepVGG, and subpixel convolution helps to improve the
performance of the segmentation model, illustrating the effectiveness of RMP-Net in the task of ocean scene segmentation.
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The data in Table 8 are obtained from the ablation

experiment. We can know from the data that RepVGG and

subpixel convolution both play a significant role in improving

the performance of the network model whether added separately
Frontiers in Marine Science 11
or together. Therefore, in RMP-Net, we apply both structures to

the model, which is helpful for the overall performance

improvement, and it is not an accidental combination. The

above experiments prove the effectiveness of RepVGG and
B C DA

FIGURE 7

Results on DeepFish. (A) Input image. (B) Label. (C) Prediction. (D) Mixed image of original image and predicted image.
TABLE 7 Comparing our proposed method with state-of-the-art methods on the DeepFish dataset.

Method Background IoU(%) Fish IoU(%) mIoU(%)

SUIM-Net (Islam et al. (2020)) 99.03 78.4 88.71

SegNet (Badrinarayanan et al. (2017)) 98.89 68.94 83.91

DeepLabv3 (Chen et al. (2017)) 99.11 71.35 85.23

PSPNet (Zhao et al. (2017)) 99.15 72.61 85.88

DPANet (Zhang et al. (2021)) 99.31 82.86 85.88

MFAS-Net (Haider et al. (2022)) 99.15 84.86 92.01

RMP-Net (Ours) 99.61 90.9 95.26
fro
The bold type is to emphasize that our algorithm achieved the highest score in the task compared to other state-of-the-art algorithms.
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subpixel convolution. This combination may be used in network

models of other structures.
4.2 Comparison of model
inference speed

We tested and compared different models with a parameter

amount, FLOPS, and the inference speed of the model on the test

set. It can be seen that compared with other advanced models,

RMP-Net has strong backbone feature extraction capabilities

and is deployed in inference. When multibranch fusion is

performed, the model inference speed can be further

accelerated, but the performance in terms of model parameters

and inference speed is still not good enough. The test results are

detailed in Table 9.
4.3 Future work

With the continuous improvement of computer hardware’s

computing power and the in-depth exploration and research of

machine learning by researchers, deep learning has been widely

used in all aspects of human society. Among them, many

achievements have been made in object detection, image

processing, and natural language processing. These

technologies have facilitated people’s lives in various aspects.

However, there are still very few related applications in ocean

observation. In addition to the high cost of equipment required

for ocean observation, the main reason is that people do not pay
Frontiers in Marine Science 12
enough attention to the ocean, and there are relatively few

research studies related to ocean observation. Through testing,

we found that, although the performance of the model is very

strong, the operation of the algorithm still requires certain

hardware conditions to achieve satisfactory results. Therefore,

we aim to compress and optimize the proposed network model

based on the work performed in this research, so that it can

become more lightweight and can meet the hardware

environment with lower requirements.

Realizing that the existing work is far from enough, if there is

an opportunity in the future, we will go to the field to conduct

ocean observations and will also carry out some data collection,

which can also help more researchers to promote ocean

observation research and contribute to the development of

ocean exploration.
5 Summary

In this paper, a segmentation network RMP-Net based on

structural reparameterization and subpixel convolution was

proposed for effective and accurate segmentation of seafloor-

related targets, which can be used to construct 3D semantic

maps to facilitate ocean observation. This study was carried out

to enhance the comprehensive performance of the model for

segmentation by introducing a structurally reparameterized

classification network as the backbone feature extraction

network, while redesigning the decoder side of the network to

use subpixel convolution for upsampling to recover the

information in the deep feature maps, and then using
TABLE 9 Results of comparison of Params, FLOPS, and inference speed of different models (Single Nvidia RTX2080 GPU).

Method Params(M) GFLOPS(G) FPS

PSPNet 46.716 118.44 36.51

DeepLabV3 54.714 167.01 34.10

U-Net(VGG16) 24.892 452.31 23.53

U-Net(ResNet50) 43.934 184.73 44.69

SUIM-Net 12.219 120.58 48.30

RMP-Net 78.449 202.46 42.88
frontiers
Baseline: U-Net (VGG16). RV, RepVGG; SP, subpixel convolution. The bold type is to emphasize that our algorithm achieved the highest score in the task compared to other
state-of-the-art algorithms.
TABLE 8 Ablation study.

Method Input size mIoU(%) mPA(%)

Baseline 512 x 512 77.36 84.45

+ RV 512 x 512 82.17 89.57

+SP 512 x 512 80.85 88.13

+ RV + SP(Ours) 512 x 512 84.52 92.33
Baseline: U-Net (VGG16). RV, RepVGG; SP, subpixel convolution.
The bold type is to emphasize that our algorithm achieved the highest score in the task compared to other state-of-the-art algorithms.
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multiscale fusion to segment the target features in the images

accurately. The backbone network can be compressed by a

multibranch fusion algorithm to further improve the model

inference and prediction speed without losing performance,

making the model simultaneously have high performance and

high real-time performance. Several mainstream semantic

segmentation networks are tested for evaluation metrics using

the SUIM underwater image dataset, and the experimental

results show that RMP-Net achieves 84.52% mIoU and 92.33%

mPA. Compared with PSPNet, mIoU and mPA are improved by

1.57% and 1.28%, respectively, and the overall performance

metrics are the highest compared with other segmentation

networks, which also shows that the high performance of

RMP-Net is fully capable of meeting the segmentation task

requirements in ocean observation scenarios.
Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: SUIM, https://irvlab.cs.umn.edu/

resources/suim-dataset; DeepFish, https://alzayats.github.io/

DeepFish/.
Ethics statement

Ethical review and approval were not required for the

animal study because, in this research, we used two open

databases of DeepFish and SUIM, which can be freely used for

academic purposes.
Author contributions

JC completes the main work of this paper. JT, SL and DZ

guide JC in the research of this work. WL, JY, BS and YL help

complete the part of experiment. All authors are involved in

revising the manuscript, proofreading, and approving the submit.
Frontiers in Marine Science 13
Funding

This work was supported by Special Fund for Scientific and

Technological Innovation and Cultivation of College Students in

Guangdong Province: pdjh2021 a0625 and the Science and

Technology Program of Social Development,Zhuhai,2022

under grant 2220004000195 and the Guangdong Province

universities key field special 2022ZDZX4061.
Acknowledgments

Throughout the process of conducting the experiment and

writing the paper. I received great support and help, and received

many valuable comments. I would like to express my sincere

gratitude to all those who have helped me throughout the

process. First of all, I would like to thank my supervisor, Tang

Jialin, who gave me valuable advice on academic matters. This

thesis would not have been possible without his patient

guidance, insightful criticism and professional instruction.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). Segnet: A deep
convolutional encoder-decoder architecture for image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 39 (12), 2481–2495 doi: 10.1109/TPAMI.2016.2644615

Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., and Erhan, D. (2016).
Domain separation networks. Neural Inf. Process. Syst. 29, 343–351. doi: 10.48550/
arXiv.1608.06019

Chen, L.-C., Papandreou, G., Schroff, F., and Adam, H. (2017). Rethinking
atrous convolution for semantic image segmentation. arXiv: Comput. Vision
Pattern Recognit. abs/1706.05587. doi: 10.48550/arXiv.1706.05587

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V. K., and Le, Q. V. (2018).
Autoaugment: Learning augmentation policies from data. arXiv: Comput. Vision
Pattern Recognit. abs/1706.05587. doi: 10.48550/arXiv.1805.09501
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. Comput. Vision Pattern Recognit. 248–255.
doi: 10.1109/CVPR.2009.5206848

Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., and Sun, J. (2021). Repvgg:
Making vgg-style convnets great again. Comput. Vision Pattern Recognit. abs/
2101.03697, 13733–13742. doi: 10.1109/CVPR46437.2021.01352

Gonzalez, S., and Miikkulainen, R. (2019). Improved training speed, accuracy,
and data utilization through loss function optimization. congress evol. Comput. abs/
1905.11528, 1–8. doi: 10.48550/arXiv.1905.11528

Haider, A., Arsalan, M., Choi, J., Sultan, H., and Park, K. R. (2022). Robust
segmentation of underwater fish based on multi-level feature accumulation. Front.
Mar. Sci. 9, 1010565. doi: 10.3389/fmars.2022.1010565
frontiersin.org

https://irvlab.cs.umn.edu/resources/suim-dataset
https://irvlab.cs.umn.edu/resources/suim-dataset
https://alzayats.github.io/DeepFish/
https://alzayats.github.io/DeepFish/
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.48550/arXiv.1608.06019
https://doi.org/10.48550/arXiv.1608.06019
https://doi.org/10.48550/arXiv.1706.05587
https://doi.org/10.48550/arXiv.1805.09501
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR46437.2021.01352
https://doi.org/10.48550/arXiv.1905.11528
https://doi.org/10.3389/fmars.2022.1010565
https://doi.org/10.3389/fmars.2022.1032287
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chen et al. 10.3389/fmars.2022.1032287
He, K., Zhang, X., Ren, S., and Sun, J. (2015a). Deep residual learning for image
recognition. arXiv: Comput. Vision Pattern Recognit. abs/1512.03385, 770–778. doi:
10.1109/CVPR.2016.90

He, K., Zhang, X., Ren, S., and Sun, J. (2015b). Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. Int. Conf.
Comput. Vision. abs/1502.01852, 1026–1034. doi: 10.1109/ICCV.2015.123

Islam, J., Edge, C., Xiao, Y., Luo, P., Mehtaz, M., Morse, C., et al. (2020).
Semantic segmentation of underwater imagery: Dataset and benchmark. Intell.
Robots Syst. abs/2004.01241, 1769–1776. doi: 10.1109/IROS45743.2020.9340821

Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv: Learn. doi: 10.48550/arXiv.1412.6980

Kraft, K., Velhonoja, O., Eerola, T., Suikkanen, S., Tamminen, T., Haraguchi, L.,
et al. (2022). Towards operational phytoplankton recognition with automated
high-throughput imaging, near-real-time data processing, and convolutional
neural networks. Ocean Science Discussions 2020, 1–20. doi: 10.3389/
fmars.2022.867695

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. Commun. ACM. 60, 84–90. doi: 10.1145/3065386

Li, L., Rigall, E., Dong, J., and Chen, G. (2020). Mas3k: An open dataset for
marine animal segmentation. Int. Symp. Benchmarking Meas. Optim. 12614, 194–
212. doi: 10.1007/978-3-030-71058-3_12

Ma, J., Chen, J., Ng, M., Huang, R., Li, Y., Li, C., et al. (2021). Loss odyssey in
medical image segmentation. Med. Image Anal. 71, 102035. doi: 10.1016/
j.media.2021.102035

Pan, S. J., and Yang, Q. (2010). A survey on transfer learning. IEEE Trans.
Knowl. Data Eng. 22, 1345–1359. doi: 10.1109/TKDE.2009.191

Rayner, R., Jolly, C., and Gouldman, C. (2019). Ocean observing and the blue
economy. Front. Mar. Sci. 6, 330. doi: 10.3389/fmars.2019.00330

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional
networks for biomedical image segmentation. Med. image comput. Comput.
assist. intervention. abs/1505.04597, 234–241. doi: 10.48550/arXiv.1505.04597
Frontiers in Marine Science 14
Rubinstein, R. Y., and Kroese, D. P. (2004). The cross-entropy method: a unified
approach to combinatorial optimization, Monte-Carlo simulation, and machine
learning Vol. 133 (New York: Springer).

Saleh, A., Laradji, I. H., Konovalov, D. A., Bradley, M., Vazquez, D., and Sheaves,
M. (2020). A realistic fish-habitat dataset to evaluate algorithms for underwater
visual analysis. Sci. Rep. 10, 1–10. doi: 10.1038/s41598-020-71639-x

Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, A. P., Bishop, R., et al. (2016).
Real-time single image and video super-resolution using an efficient sub-pixel
convolutional neural network. Comput. Vision Pattern Recognit. abs/1609.05158,
1874–1883. doi: 10.1109/CVPR.2016.207

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. Comput. Vision Pattern Recognit.

Sun, Y., Chen, J., Liu, Q., and Liu, G. (2020). Learning image compressed sensing
with sub-pixel convolutional generative adversarial network. Pattern Recognit. 98,
107051. doi: 10.1016/j.patcog.2019.107051

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2014).
Going deeper with convolutions. arXiv: Comput. Vision Pattern Recognit. abs/
1409.4842, 1–9. doi: 10.48550/arXiv.1409.4842

Xu, G., Xie, W., Dong, C., and Gao, X. (2021). Application of three deep learning
schemes into oceanic eddy detection. Front. Mar. Sci. 8, 715. doi: 10.3389/
fmars.2021.672334

Zhang, W., Wu, C., and Bao, Z. (2021). Dpanet: Dual pooling-aggregated
attention network for fish segmentation. Iet Comput. Vision. 16, 67–82.
doi: 10.1049/cvi2.12065

Zhang, X., Zhou, X., Lin, M., and Sun, J. (2017). Shufflenet: An extremely
efficient convolutional neural network for mobile devices. Comput. Vision
Pattern Recognit. abs/1707.01083, 6848–6856. doi: 10.48550/arXiv.
1707.01083

Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017). Pyramid scene parsing
network. Comput. Vision Pattern Recognit. abs/1612.01105, 6230–6239. doi:
10.1109/CVPR.2017.660
frontiersin.org

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/IROS45743.2020.9340821
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.3389/fmars.2022.867695
https://doi.org/10.3389/fmars.2022.867695
https://doi.org/10.1145/3065386
https://doi.org/10.1007/978-3-030-71058-3_12
https://doi.org/10.1016/j.media.2021.102035
https://doi.org/10.1016/j.media.2021.102035
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.3389/fmars.2019.00330
https://doi.org/10.48550/arXiv.1505.04597
https://doi.org/10.1038/s41598-020-71639-x
https://doi.org/10.1109/CVPR.2016.207
https://doi.org/10.1016/j.patcog.2019.107051
https://doi.org/10.48550/arXiv.1409.4842
https://doi.org/10.3389/fmars.2021.672334
https://doi.org/10.3389/fmars.2021.672334
https://doi.org/10.1049/cvi2.12065
https://doi.org/10.48550/arXiv.1707.01083
https://doi.org/10.48550/arXiv.1707.01083
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.3389/fmars.2022.1032287
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	RMP-Net: A structural reparameterization and subpixel super-resolution-based marine scene segmentation network
	1 Introduction
	2 Materials and methods
	2.1 Structural reparameterization
	2.2 Subpixel convolution
	2.3 Structure of RMP-Net model
	2.4 Loss function
	2.5 Model training

	3 Results
	3.1 Results on SUIM
	3.1.1 Qualitative analysis
	3.1.2 Quantitative analysis

	3.2. Results on DeepFish
	3.2.1. Qualitative analysis
	3.2.2 Quantitative analysis


	4 Discussion
	4.1 Ablation study
	4.2 Comparison of model inference speed
	4.3 Future work

	5 Summary
	Data availability statement
	Ethics statement 
	Author contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


