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Communication, Guilin University of Electronic Technology, Guilin, China
Underwater images always suffer from low contrast and color distortion due to

the wavelength-dependent scattering and absorption effects caused by

particles existing in turbid water, especially in high turbidity conditions. Based

on the polarization properties of the backscattering light, polarimetric methods

can estimate the intensity level of the backscattering and the transmittance of

the media. Accordingly, they can separate the target signal from the undesired

ones to achieve high-quality imaging. In addition, learning-based polarimetric

methods are effective for gray-model image restoration, but the learning-

based polarimetric technique for color image restoration has yet to be

considered. In this paper, we propose a 3- dimensional convolutional neural

network, which maintains the correlation of polarization information among

different polarization channel images as well as embodies polarization

constraints, for underwater color image restoration. The experimental results

verify that the proposed solution improves the image quality (i.e., the image

contrast, details, and color) and outperforms other existing methods, especially

when the turbidity of scattering media is high. The proposed solution can be

readily applied to practical applications and potentially realize the clear vision in

other scattering media, including biomedical imaging and remote sensing.

KEYWORDS

Polarization, polarimetric imaging, scattering media, imaging recovery, physical imaging
Introduction

High-quality imaging under turbid water or sea is significant in marine biology,

archaeology, and military exploration (Li et al., 2018; Li et al., 2020; Hu et al., 2020; Li

et al., 2022), as such applications significantly depend on the imaging systems’ ability to

obtain targeted object signals. However, the targeted object signal is scattered and
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absorbed by the existing particles, resulting in severe degradation

of the signal received by the detector. The backscattered light

also veils the image and reduces the image contrast. Besides, for

underwater color imaging, the levels of absorption and scattering

by the existing particles for three channels (red, green, and blue,

RGB) are different, which makes the image color distorted (Li

et al., 2018; Li et al., 2019).

Various underwater image restoration methods have been

developed to enhance the quality, including contrast and color.

Examples of such methods include the histogram stretching

(HS) method (Seeram, 2019) based on the image enhancement,

color-line (Fattal, 2014) and dark channel prior (DCP) (He et al.,

2010) based on physical models. We first recall the basic physical

model of imaging through scattering media. The signal received

by the detector can be divided into two parts (Liang et al., 2021).

One part is the unpolarized light Dc(x,y) obtained from the

reflected light of the targeted object in the water after scattering

by the existing particles, which can be written as the product of

the reflected signal Lc(x,y) and the transmission map tc(x,y) , i.e.,

as shown in Eq. (1).

Dc(x, y) = Lc(x, y) · tc(x, y)  c ∈ R,G,Bf g (1)

The transmission map tends to include abundant detailed

information about the targeted object. The second part is the

partially polarized backscattered light Bc(x,y) caused by

scattering particles, which can be expressed as:

Bc(x, y) = Ac∞ · (1 − tc(x, y)) c ∈ R,G, Bf g (2)

where Ac∞ named air light or backscattered light denotes the

ambient light scattered into the detector extending to infinity.

The sum signal Ic(x,y) received by the detector can be given by:

Ic(x, y) = Dc(x, y) + Bc(x, y) c ∈ R,G,Bf g (3)

The reflected signal of the targeted object can be obtained by

stripping the backscattered light, thus achieving the goal of de-

scattering in visual. Combining Eqs. (1) - (3), the reflected signal

of the targeted object could be restored by Eq. (4):

Lc(x, y) =
Ic(x, y) − Ac∞

tc(x, y)
+ Ac∞ c ∈ R,G,Bf g (4)

Based on the expression in Eq. (4), various methods have

been proposed to recover underwater images by applying high-

performance detectors (Skinner and Johnson-Roberson, 2017)

or developing new processing algorithms. In 2003, Schechner

(Schechner et al., 2003) et al. first introduced the polarization

information, i.e., the degree of polarization (DoP), to solve the

underwater image enhancement problem and achieved better

results because the backscattered light is partially polarized, and

the targeted object signal is unpolarized (Schechner et al., 2003;

Schechner and Karpel, 2004; Liang et al., 2015; Hu et al., 2018;

Wei et al., 2021; Qi et al., 2022). It should be noted that

Schechner’s model is significantly different from such
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polarimetric imaging methods based on the orthogonal state

contrast (OSC) (Shao et al., 2006; Novikova et al., 2009;

Novikova et al., 2010) or polarization difference (PD)

(Nothdurft and Yao, 2006) images. This is because the OSC or

PD-based methods only consider the polarization difference of

targets while the practical physical degradation model, i.e., the

expression in Eq. (3) is ignored. Liang (Liang et al., 2015) et al.

developed Schechner’s basic model and proposed a new

polarization angle (AoP)-based polarimetric method to handle

the image degeneration in scattering media, including foggy,

hazy, and turbid environments. In 2021, Qi (Hu et al., 2021)

designed a particular polarimetric method based on the typical

polarization difference model and addressed the underwater

color imaging issue well. This method solves the problem of

HS for processing colors, ensuring the accuracy of mutually

orthogonal polarization information recovery. Liu (Liu et al.,

2019) et al. introduced the absorption coefficients of the water

body particles and established the Lambertian body model

algorithm based on a fundamental physical model. This

method overcomes the problem that the recovered image has

color distortion when using a fundamental physical model

without considering the absorption coefficient of water

body particles.

Recently, the deep learning method has developed rapidly

and has been considered a successful way to outperform the

traditional intensity-based ones and boost performance in

polarimetric imaging techniques, including denoising,

demosaicing, and de-scattering tasks (Sun et al., 2021; Liu

et al., 2022; Ding et al., 2022). In contrast to the physical

model, deep learning methods don’t require complex physical

models and prior knowledge due to powerful fitting capability.

Hu (Hu et al., 2022) et al. proposed a well-designed neural

network and proved that the combination of polarization model

and neural network was beneficial to improving the image

quality even in a high turbidity environment. It can effectively

remove the scattering light and obviously be more robust than

other traditional methods; but this method cannot deal with

color images. A medium scale of color polarization image

datasets from natural conditions through passive polarization

imaging was built by Ding (Ding et al., 2022) et al. They

constructed generative feature-fusion adversarial networks to

extract different polarization angles features and obtain better

results on both laboratory simulated and real natural datasets.

Since passive polarization imaging relies on ambient light for

illumination, the method is not suitable for the task of strong

scattering environment de-scattering. Therefore, an effective way

to enhance the image contrast and reduce the color distortion of

underwater images is important for the current demands.

In this paper, we propose a 3- dimensional convolutional

kernel-based polarization-guided network, which maintains the

correlation of polarization information between images of

different polarization angles and reflects polarization

constraints for underwater color image recovery. The
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superiority of the proposed method is demonstrated by

comparing it with representative methods for digital image

processing and deep learning. Furthermore, the proposed

method can be applied to the de-scattering task on real

polarization city foggy environments, which verifies its

effectiveness and advantage. The remaining parts of the article

are arranged as follows: In Section 2, we first introduce the

applied method and methodology, including the designed

network structure and training details; in Section 3, we present

the experimental setup and perform the imaging experiments;

Finally, we conclude this paper and draw future works in

Section 4.
Methods and methodology

Network structure

In this section, we first introduce the structure of the

proposed UCRNet. The network is based on the customized

3D convolution kernel and a two-step feature extraction

strategy. As its significant advantage in addressing multiple

channels and improving recovery accuracy, 3D convolution

kernels have been successfully applied to various vision tasks

(Varol et al., 2017; Carreira and Zisserman, 2017). For example,

one of the most representative works is the two-stream inflated

3D Convolutional network (i.e., I3D) (Carreira and Zisserman,

2017). The 3D convolution kernel is inflated from the traditional

2D kernel and its dimension is transformed from N×N to
Frontiers in Marine Science 03
N×N×n, where n endows the network with an additional

temporal dimension, making the neural network better

understand the correlation between video frames; therefore, it

improves the accuracy of video action understanding. Inspired

by this work, we applied the 3D convolution kernel for the task

of polarimetric imaging through scattered media, i.e., under

turbid water. Specially, the 3D convolution kernels were used to

extract the relationship between channel pixels and different

polarization angles (i.e., 0, 45 and 90 in this work). Besides, we

design a two-step strategy to balance the network’s depth and

training time; the first part of the network structure uses 2D

convolution kernels to extract and address former features (e.g.,

the color, edge, and shape) and the second part uses 3D

convolution kernels for the deeper features (e.g., the global

style and abstract features). This strategy ensures that the

network structure is not particularly deep and saves training

time. Figure 1 proposes the network structure of UCRNet.

The left and right side of Figure 1A shows the 3D RGB pixels

spatial distributions of the input, output and label image,

respectively. This figure represents the gray value of each pixel

in a three-dimensional coordinate system with red, green, and

blue as the coordinate axis. Each point’s color denotes its true

color in the related images. Besides, we also draw the projection

on the R (red)-B (blue) and B (blue)-G (green) plane. In fact, 1)

the more color the clearer the images, as the input low-quality

images always perform a single color, e.g., the gray. 2) the more

scattered the pixels clearer the images as the inputs are

compressed into a narrow pixel space. Besides, we may

observe that the restored image’s point distribution of the 3D
A

B

FIGURE 1

Network structure of UCRNet. (A) Overall model frame and 3D-RGB color models for input and output (B) Details of network structure.
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RGB pixels is more scattered and is close to that of the label

image. From Figure 1B (i.e., in the proposed network), we first

use two convolutional layers to extract shallow features from the

input image (i.e., the raw images captured by the DoFP

polarization camera), which is then sent into the followed

eight residual dense blocks (Zhang et al., 2018) (RDBs) to

extract hierarchical features. After a global features fusion

operation including one concatenate layer and two

convolutional layers. All the above steps use 2D convolution

kernels and are combined as the first step (or the first sub-

network) of the UCRNet, named 2D-Net. It can be seen in

Figure 1A that the output features of the 2D-Net are images with

different polarization angles. Subsequently, the output features

are thrown into the following sub-network (i.e., 3D-Net), in

which all the kernels are the 3D type. The output of the whole

network is intensity image S0, and all the other structures and

parameter designs are similar to the former 2D-Net. The detailed

settings of the 3D-Net are listed in Table 1, where P and P0 are

channels of features that should be determined before training. P

is also called the growth rate of the residual dense blocks, and P ×

k is the input channel of the kth Conv-ReLU layer. Besides, the

number of residual dense blocks in the 3D-Net is 4, and C is the

total number of the Conv-ReLU layer in a single residual dense

block. represents the hierarchical features from the preceding

residual dense blocks, and F denotes the fusion operation. Eq. (5)

can express the output image.

Iout = F(fn, fn−1,⋯ f1, f0) (5)
Loss function

To guide the training, the designed loss functions include

two types, i.e., the polarization loss and perceptual loss. Eq. (6)

gives the polarization loss.

Lout =
1
Noi

∥ yci (q) − ŷ c
i (q) ∥1 (6)

where Lout denotes the polarization loss for the final output

and Nmeans the scale of the training dataset. yci (q) indicates the
Frontiers in Marine Science 04
ith reconstructed polarization image corresponded to the

polarization angle (i.e., q ) of 0, 45, or 90 degrees ŷ c
i (q) is as

the ith corresponding label image. The perceptual loss (Johnson

et al., 2016) could be expressed as:

Lper =
1

CWH
∥ fj(I

c
S0
) − fj(Î

c
S0
) ∥22 (7)

where C, W and H are the images’ channel, width, and

height, respectively. fj is the jth layer of the pre-trained VGG-16

network on the ImageNet dataset (He et al., 2015). Ic
S0
and Î c

S0

respectively represent the output S0 and label S0 images,

calculated as yc(0°)+yc(90°) . We compute the perceptual loss

at layer relu1_2 of the VGG-16 pretrained network. By

comparing the features of reconstructed and labeled images,

we could take full advantage of the image feature extraction

accuracy from networks pre-trained on enormous-scale datasets.

Finally, Lsum in the following Eq. (8) denotes the summation of

loss functions; l1 andl2 are the weights of polarization loss in

Eq. (6) and perceptual loss in Eq. (7).

Lsum = l1Lout + l2Lper (8)

where l1=Lout/Lout+Lper and l2=Lper/Lout+Lper .
Training model details

The dataset includes 130 paired images collected and pre-

processed under scattering media of full cream milk; 100 pairs

were used as the training dataset, and the rest were divided into

the validation dataset (15 pairs) and the test dataset (15 pairs).

To expand the scale of the dataset and improve the training

performance, the dataset is cropped to 64×64 pixels in the

stride of 32 pixels in horizontal and vertical directions. As such,

the scale of the training dataset reaches more than one hundred

thousand images. Before the training, all the input images were

normalized to [0,1], and each layer’s weights were initialized

using the initialization method in ref (He et al., 2015). We use

Pytorch as the deep learning framework on the Nvidia

RTX2080Ti GPU, and the initial learning rate is e-4 and

decays by a factor of 0.6 every ten epochs. We trained the
TABLE 1 Parameters of the 3D-Net.

Part Layer name Input channel Output channel Kernel size

Extraction Conv. 3 P0 (3×3×3)

Conv. P0 P (3×3×3)

Hierarchical features processing Conv. P×k P (3×3×3)

ReLU. / / /

Conv. P×(C+1) P (1×1×1)

Fusion Conv. 4P P0 (1×1×1)

Conv. P0 P0 (3×3×3)

Conv. P0 3 (3×3×3)
f
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network for 60 epochs using the Adam optimizer with a mini-

batch size of 32.
Experiment

Dataset acquisition

Figure 2 presents the experimental setup for polarimetric

imaging under turbid water, and all the image pairs in the

dataset are captured by this setup. In this setup, the polarization

state generator (PSG) is to produce linearly polarized light via a

white broad-spectrum LED light source. The targeted object is

placed in a water tank made of polymethyl methacrylate

(PMMA) in size of 65 × 26 × 26 cm3. The imaging device is a

chromatic division of focal plane (DoFP) polarization camera

(Lucid-PHX050S) with a pixel size of 2048 × 2448 × 3. As shown

in Figure 2, each macro super-pixel of the chromatic DoFP

polarization camera consists of four micro super-pixels, i.e., two

for green (G), one for red (R), and one for blue channels (B);

each micro color super-pixel further consists of four pixels, each

of which has a micro wire-grid polarizer orientated at 0°, 45°,

90°, and 135°, and the related intensity images are denoted as

Ic0(x, y), I
c
45(x, y), I

c
90(x, y) and Ic135(x, y), respectively, where c

denotes the three color channels, i.e., R, G, and B. In practice, the

circularly polarized light could perform better for the imaging

through scattering media (Lewis et al., 1999; Xu and Alfano,

2005); yet the related optical system is more complex, and the

data collection may become time-consuming. Based on that, we

choose the chromatic DoFP polarization camera for the

data acquisition.

For the imaging experiments, we first added clear water to

the tank and recorded the related image as the label for training.

Subsequently, as the scattering properties of milk were

confirmed to be relatively close to those of seawater by the

long-term experiment (Dubreuil et al., 2013), we added the full
Frontiers in Marine Science 05
cream milk into the clear water to generate the scattering media.

Then, we record the images with degraded polarization

information in the scattering environment after the milk is

uniformly diffused. The scattering coefficient of the medium is

influenced by the concentration of fat microspheres and casein

molecules in the milk solution, which is equal to 3.00 mc (cm-1)

for full cream milk, where mc represents the milk concentration

in water (Piederrière et al., 2005). Notably, as the value of mc

increases, the scattering coefficient becomes higher, and in this

case, the polarization information of the object is further

degraded. To ensure the reasonability of the experiments and

the validity following verifications, we build the dataset in

varying milk concentrations.
Visual comparisons

In this section, we perform imaging experiments to verify the

effectiveness of the proposed network. Figure 3 first presents the

raw images of two example scenes in dense turbid water. From

Figure 3A, we may observe that most details are annihilated by

the backscattered light, from which the color information cannot

be distinguished. Besides, Figure 3B presents the related ground

truths (GTs). The restored images by the proposed method are

proposed in Figure 3C. From the results, we can see that all the

details are well-addressed and the color information is

significantly similar to GTs.

To further verify the proposed method, we also present the

restored images by some representative works, i.e., a fusion

algorithm (Ancuti et al., 2012) proposed by Cosmin Ancuti

et al., MLLE (Zhang et al., 2022), and RDN-Net (Hu et al., 2020).

The Fusion method fuses several images using different

enhanced method through Laplace’s pyramid to complement

each other’s strengths. The MLLE method uses the grayscale

world assumption as a criterion to achieve the effect of color

compensation through several iterations. It is worth pointing out
FIGURE 2

Simulation diagram of the experimental setup for dataset acquisition. The scattering medium shown in the simulation diagram is full cream milk.
The RGB-polarization pattern array of chromatic DoFP polarization camera by Lucid vision is at the top-left corner.
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FIGURE 3

Results of the visual comparison. Two evaluation metrics below the image represent PSNR (dB) and SSIM respectively. (A) Intensity; (B) GT;
Results by (C) Proposed method, (D) MLLE (E) Fusion, (F) RDN, (G) w/o Lper, and (H) UCRNet-2D. (1) and (2) are represented two samples in the
test set.
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that the Fusion method is influenced by the active light source,

and the halo affects the recovery image qualification, as shown in

Figure 3E. The common problem of these digital image

processing-based recovery methods is that the backscattered

light scattered by the scattering medium is not well

suppressed. As a result, the images seem still “hazy”. As shown

in Figure 3F, this method greatly improves the image contrast

but suffers from severe color distortion. In addition, we use two

representative metrics, i.e., the peak of signal to noise ratio

(PSNR) and structural similarity (SSIM), to quantificationally

evaluate the final performance. The comparison values (PSNR/

SSIM) are listed under the corresponding images in Figure 3.

The value of the method based on digital image processing is

significantly lower than that of the proposed method.

To verify that adding perceptual loss can improve the quality

of the restored image, we remove the perceptual loss and the rest

of the training details remain unchanged. Without (w/o)

perceptual loss in Figure 3G, the result obtained has some

yellow artifacts (framed by the red rectangle) in different

positions of the first image. In addition, we can also observe

the effect of over-enhancement (a broad edge along the pattern
Frontiers in Marine Science 07
lines) on the boundaries of the second image. For the UCRNet-

2D method, we change the 3D-Net of the proposed method to a

2D-Net. The parameters of a 3-D convolution kernel are

approximately three times that of a 2-D convolution kernel.

To ensure the consistency of the overall network parameters,

twelve dense residual blocks are used in the UCRNet-2D

method. The recovered images are close to the proposed

method, but with a certain degree of artifacts. The superiority

of the proposed method of recovery considering polarization

guidance is demonstrated by comparison with UCRNet-2D

method. Besides, Figure 4 shows an additional example to

compare the performance in avoiding artifacts for the

UCRNet-2D and -3D methods. From this figure, we may find

that, compared with the UCRNet-3D’s result, there are

significant artifacts in that of UCRNet-2D, as shown in the

red rectangles.

Furthermore, we also calculate the PSNR, SSIM, ZNCC

(Zero-normalized cross-correlation) and UICM (underwater

image colorfulness measure) average values on the test set, as

shown in the Table 2. In terms of the average PSNR value, the

proposed method shows a better performance than other
FIGURE 4

Results of the visual comparison. (A) Intensity image (B) Proposed method and (C) Result obtained by UCRNet-2D.
TABLE 2 Quantitative comparisons of different methods.

Methods PSNR↑ SSIM↑ ZNCC↑ UICM↑

MLLE (Zhang et al., 2022) 13.679 0.274 0.402 18.969

Fusion (Ancuti et al., 2012) 12.890 0.361 0.429 17.062

RDN-Net (Hu et al., 2020) 15.463 0.423 0.622 9.673

w/o Lper 24.564 0.758 0.890 16.273

UCRNet-2D 24.783 0.762 0.893 16.475

Ours 24.901 0.764 0.894 16.654
front
Values in bold for each evaluation metric represent numerically best-performing data.
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representative methods in Figure 3. This conclusion agrees with

the results of the visual comparisons in Figures 3D–F, proving

the superiority of the proposed method. Compared with w/o Lper
and ours, the value is improved by 0.35dB, which further

demonstrates the necessity of well-designed loss in the

proposed method. As for the UCRNet-2D, the average value

of the proposed method is increased by 0.12dB. Consequently,

we can conclude that the polarization-guided network is

significant in improving the network performance. ZNCC is

for evaluating the cross-correlation between two images and the

higher the value, the more correlated the two images are. Our

proposed method performs best on the ZNCC evaluation metric.

UICM is an evaluation metric that measures the deviation of the

different color channels. Since the backscattered light of the

images processed by MLLE and Fusion methods is not

completely removed, the UICM evaluation metric is falsely

high. The value of UICM also confirm our method features

the better restored color information.

We also perform the proposed method on different turbidity

and the results are shown in Figure 5. The corresponding PSNR/

SSIM values are also presented under the restored results. From

the Figure 5, we may observe that the proposed method can well

restore the hazy images in both low and high turbidity levels,

verifying the universality of our method.

Moreover, we extend the proposed method to other

scattering media-real foggy environments. The dataset we

used is Polarized Foggy Cityscapes-DBF dataset-Zurich in

ref (Zhou et al., 2021). This dataset provides depth and foggy

maps corresponding to different scattering coefficients,

semantic segmentation maps, and intensity images of urban

streets. Using the depth map and the corresponding scattering

coefficient, the scattering length distribution map that can

simulate the effect of haze gradually deepening from near to
Frontiers in Marine Science 08
far can be obtained. The polarization characteristics are

related to the object’s material, taking advantage of

semantic segmentation images to assign equal degrees of

polarization value to objects with the same semantic

information is more suitable for the natural environment.

Paired images of different polarization directions are obtained

using Malus law. Figure 6 presents the related extension

results, which includes the comparison of intensity, GT, our

restoration images as well as the calculated PSNR/SSIM

values. From Figure 6, we may conclude that the trained

model proposed in Section 2.1 is fine-tuned in the Zurich. The

image details are well observed in the restored image, such as

the bus stop (in the orange rectangle) nearby the trees in

Figure 6A and the distant views (in the red rectangle)

in Figure 6B.

Furthermore, Table 3. compares the imaging performance

between our method and the selected the typical polarimetric

methods, i.e., polarization difference imaging models proposed

by Schechner (Skinner and Johnson-Roberson, 2017), and three

non-polarimetric methods, including the (1) dark channel prior-

based method (DCP) (He et al., 2010), (2) fusion method

(Ancuti et al., 2012), and (3) an open dehazing platform

developed by Baidu (Li et al., 2017). From the Table 3, one

may find that our method achieved the highest values in most

metrics, including PSNR, SSIM, ZNCC and NIQE. These

compared methods are not capable of dealing with unevenly

distributed haze environment images. Compared with the raw

image and Baidu’s results, our method has effectively improved

the image’s PSNR values by 10.9dB and 10.8dB, respectively. In

conclusion, both subjective visual effects and objective

evaluation metrics prove that this method could be extended

to city foggy scattering environments. We must note that the

recovery results contain more noise than GTs; this is because the
FIGURE 5

Results on low turbidity and high turbidity. Two evaluation metrics below the image represent PSNR (dB) and SSIM respectively.
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original intensity images are noisy. Besides, the scattering

density of the foggy dataset is also lower than that in the

turbid water we designed. The two problems can be further

addressed by choosing a high-scattering but high-quality dataset,

which is a promising work in future.
Conclusion

To our knowledge, this is the first work to introduce

polarization information into a network to achieve the de-
Frontiers in Marine Science 09
scattering effect on color imaging. We successfully constructed

a polarization-guided network, which further improved the

recovery effect of the network. We also show that the quality of

restored images can be enhanced by introducing a well-

designed loss function and the capability of the proposed

method in different turbidity. Comprehensive experimental

results confirm that the proposed method outperforms other

representative methods, including learning-based methods

and digital image processing-based methods. Moreover, we

demonstrate that the technique can be extended to the field of

image dehazing in natural environments. Our solution may
TABLE 3 Average evaluation metrics on the test set.

Methods PSNR↑ SSIM↑ ZNCC↑ UICM↑ NIQE↓ BRISQUE↓

Intensity 16.56 0.715 0.605 0.002 4.964 18.836

DCP (He et al., 2010) 11.62 0.314 0.552 0.004 6.058 41.001

Baidu (Li et al., 2017) 16.67 0.661 0.743 0.003 5.087 16.018

Schechner (Skinner and Johnson-Roberson, 2017) 16.56 0.675 0.579 0.002 5.368 18.588

Fusion (Ancuti et al., 2012) 16.39 0.625 0.640 0.003 5.606 21.498

Ours 27.49 0.899 0.967 0.001 2.846 26.885
f

Values in bold for each evaluation metric represent numerically best-performing data.
FIGURE 6

Visual de-scattering effects on Polarized Foggy Cityscapes-DBF dataset-Zurich. The numbers on the bottom-right corner of each image refer to
its PSNR (dB) and SSIM. The bottom of each image represents the corresponding area in the rectangle frame. (1) and (2) are represented as two
samples in the test set.
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find important applications in object detection and clear

vision under strong scattering conditions (e.g., dense fog,

deep-sea, and biological field) by adjusting the designs of

loss functions and network structures according to the

special applications.
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Novikova, T., Bénière, A., Goudail, F., and De Martino, A. (2010). “Contrast
evaluation of the polarimetric images of different targets in turbid medium: Possible
sources of systematic errors,” in Polarization: Measurement, analysis, and remote
sensing IX, vol. 7672. (Bellingham, WA, USA: SPIE), 189–197.

Piederrière, Y., Boulvert, F., Cariou, J., Le Jeune, B., Guern, Y., and Le Brun, G.
(2005). Backscattered speckle size as a function of polarization: Influence of particle-size
and-concentration. Optics Express 13 (13), 5030–5039. doi: 10.1364/OPEX.13.005030

Qi, P., Li, X., Han, Y., Zhang, L., Xu, J., Cheng, Z., et al. (2022). U2R-pGAN:
Unpaired underwater-image recovery with polarimetric generative adversarial
network. Optics Lasers Eng. 157, 107112. doi: 10.1016/j.optlaseng.2022.107112

Schechner, Y. Y., and Karpel, N. (2004). “Clear underwater vision,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. I–I.

Schechner, Y. Y., Narasimhan, S. G., and Nayar, S. K. (2003). Polarization-based
vision through haze. Appl. Optics 42 (3), 511–525. doi: 10.1364/AO.42.000511

Seeram, E. (2019). “Digital image processing concepts,” in Digital radiography
(Singapore: Springer), (pp.21–(pp39).
Frontiers in Marine Science 11
Shao, H., He, Y., Shao, Y., andMa, H. (2006). “Contrast enhancement subsurface
optical imaging with different incident polarization states,” in Fourth international
conference on photonics and imaging in biology and medicine, vol. 6047.
(Bellingham, WA, USA: SPIE), 226–231.

Skinner, K. A., and Johnson-Roberson, M. (2017). “Underwater image dehazing
with a light field camera,” in Proceedings of the IEEE conference on computer vision
and pattern recognition workshops. 62–69.

Sun, Y., Zhang, J., and Liang, R. (2021). Color polarization demosaicking by a
convolutional neural network. Optics Lett. 46 (17), 4338–4341. doi: 10.1364/
OL.431919

Varol, G., Laptev, I., and Schmid, C. (2017). Long-term temporal convolutions
for action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40 (6), 1510–1517.
doi: 10.1109/TPAMI.2017.2712608

Wei, Y., Han, P., Liu, F., and Shao, X. (2021). Enhancement of underwater vision
by fully exploiting the polarization information from the stokes vector. Optics
Express 29 (14), 22275–22287. doi: 10.1364/OE.433072

Xu, M., and Alfano, R. R. (2005). Circular polarization memory of light. Phys.
Rev. E 72 (6), 065601. doi: 10.1103/PhysRevE.72.065601

Zhang, Y., Tian, Y., Kong, Y., Zhong, B., and Fu, Y. (2018). Residual dense
network for image super-resolution. In Proc. IEEE Conf. Comput. Vision Pattern
Recognition 133, 2472–2481. doi: 10.1109/CVPR.2018.00262

Zhang, W., Zhuang, P., Sun, H. H., Li, G., Kwong, S., and Li, C. (2022).
Underwater image enhancement via minimal color loss and locally adaptive
contrast enhancement. IEEE Trans. Image Process. 31, 3997–4010. doi: 10.1109/
TIP.2022.3177129

Zhou, C., Teng, M., Han, Y., Xu, C., and Shi, B. (2021). “Learning to dehaze with
polarization,” in Advances in neural information processing systems (San Diego,
CA: Advances in Neural Information Processing Systems (NeurLPS)), vol. 34,
11487–11500.
frontiersin.org

https://doi.org/10.1364/OL.458514
https://doi.org/10.1364/OL.457964
https://doi.org/10.1364/OL.457964
https://doi.org/10.1364/AO.45.005532
https://doi.org/10.1364/OE.17.023851
https://doi.org/10.1364/OPEX.13.005030
https://doi.org/10.1016/j.optlaseng.2022.107112
https://doi.org/10.1364/AO.42.000511
https://doi.org/10.1364/OL.431919
https://doi.org/10.1364/OL.431919
https://doi.org/10.1109/TPAMI.2017.2712608
https://doi.org/10.1364/OE.433072
https://doi.org/10.1103/PhysRevE.72.065601
https://doi.org/10.1109/CVPR.2018.00262
https://doi.org/10.1109/TIP.2022.3177129
https://doi.org/10.1109/TIP.2022.3177129
https://doi.org/10.3389/fmars.2022.1031549
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	UCRNet: Underwater color image restoration via a polarization-guided convolutional neural network
	Introduction
	Methods and methodology
	Network structure
	Loss function
	Training model details

	Experiment
	Dataset acquisition
	Visual comparisons

	Conclusion
	Data availability statement
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


