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Deep learning-based DOA
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underwater acoustic arrays
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1Joint Laboratory of Environmental Sound Sensing, School of Marine Science and Technology,
Northwestern Polytechnical University, Xi’an, China, 2School of Computer Science and Technology,
Xi’an University of Posts & Telecommunications, Xi’an, China
In the marine environment, estimating the direction of arrival (DOA) is

challenging because of the multipath signals and low signal-to-noise ratio

(SNR). In this paper, we propose a convolutional recurrent neural network

(CRNN)-based method for underwater DOA estimation using an acoustic array.

The proposed CRNN takes the phase component of the short-time Fourier

transform of the array signals as the input feature. The convolutional part of the

CRNN extracts high-level features, while the recurrent component captures

the temporal dependencies of the features. Moreover, we introduce a residual

connection to further improve the performance of DOA estimation. We train

the CRNN with multipath signals generated by the BELLHOP model and a

uniform line array. Experimental results show that the proposed CRNN yields

high-accuracy DOA estimation at different SNR levels, significantly

outperforming existing methods. The proposed CRNN also exhibits a

relatively short processing time for DOA estimation, extending its applicability.

KEYWORDS

DOA estimation, array signal processing, underwater acoustic, convolutional
recurrent neural network, deep learning
1 Introduction

Direction of arrival (DOA) estimation of an acoustic signal is of considerable interest

in several applications, including environmental monitoring, defense, and information

acquisition (Singer et al., 2009; Zhang et al., 2022; Kandimalla et al., 2022). Especially in

the underwater environment, DOA estimation plays an important role in source

tracking, coastal surveillance, and navigation. Underwater DOA estimation methods

are based on the capability of sonar arrays to receive acoustic signals transmitted from the

source. The use of sonar arrays has significant advantages, including a wide detection

range, reduced power consumption, and increased safety. Such advantages are preferable
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in underwater target detection, recognition, and tracking (Han

et al., 2019; Zhang and Yang, 2021).

Several effective methods for estimating DOAs in different

complex scenarios have been developed, such as conventional

beamforming (CBF), estimation of parameters via the rotational

invariance technique (ESPRIT), minimum variance

distortionless response (MVDR), multiple signal classification

(MUSIC), and their variants (Li et al., 2019). However, the

underwater environment has additional complexity in terms of

changing time-space-frequency channels (Jia et al., 2012), which

introduce signal attenuation during transmission, multipath

effects, Doppler effects, and varying propagation delays (Yang,

2012). The multipath effects occur because underwater the signal

propagates through multiple paths with an abundance of delay

spreads that cause a lot of interference to the original signal. The

resultant signal obtained at the sonar array is significantly faded

and has the ambiguity of direction. Similarly, the complex time-

variant nature of the ocean and the waves generated on the

ocean surface result in a large Doppler spread that makes the

estimation of DOAs a difficult task. Due to these challenging

characteristics, the signals received by sonar arrays consist of

anomalies that make it difficult for traditional algorithms to

accurately determine the DOA of the source. Although several

methodologies have been proposed for accurate DOA estimation

in the underwater environment, their performance degrades in

the presence of the above challenging characteristics. To

improve the capability of sonar array systems in the

challenging underwater environment, novel DOA estimation

methodologies are required.

In recent years, the availability of big data has enabled

machine learning and deep learning to be employed in

research domains such as image processing, speech processing,

and acoustic signal processing (Wang et al., 2019; Bai et al., 2019;

Bai et al., 2021; Chen et al., 2022; Bai et al., 2022). Various

methodologies based on deep learning have been highly effective

in solving classification, localization, association, and functional

approximation tasks (Ayub et al., 2021; Desai and Mehendale,

2022; Ayub et al., 2022). Deep learning has recently been applied

to the estimation of various parameters from acoustic signals in

an underwater environment using sonar array systems (Niu

et al., 2017; Ferguson et al., 2017; Houégnigan et al., 2017; Wang

and Peng, 2018; Bianco et al., 2019; Shen et al., 2020; Ozanich

et al., 2020).These studies show that deep learning performs

exceptionally well in comparison to traditional methods.

Specifically, in the domain of DOA estimation in an

underwater environment using sonar arrays, several methods

based on convolutional neural networks (CNNs) have been

developed (Liu et al., 2021; Cao et al., 2021). These methods

take the DOA estimation task as a classification problem and

employ a CNN to compute the DOA of the source. CNNs are

good at modeling time and frequency invariances and have the

capability to exploit temporal contexts. Nonetheless, they

struggle to exploit longer temporal context information. To
Frontiers in Marine Science 02
overcome this shortcoming, recurrent neural networks (RNNs)

combine information from previous temporal windows,

enabling theoretically unlimited contextual information to be

incorporated (Sun et al., 2021). To combine the advantages of

CNNs and RNNs, the two architectures can be employed

together in the form of a single network with convolutional

layers followed by recurrent layers. This structure is typically

referred to as a convolutional recurrent neural network (CRNN).

To efficiently solve the underwater DOA estimation

problem, this paper proposes a deep DOA estimation

algorithm for underwater signals based on CRNNs. The model

takes the phase components of the short-time Fourier transform

(STFT) of the received signal at each sensor of the array. The

CNN is used to efficiently extract high-level information, while

the RNN is used to ensure that temporal context information is

efficiently modeled to enable DOA estimation. To adopt

challenging conditions like multipath propagation of high-

frequency sound signals in a shallow water environment, the

proposed method is validated on a synthetic dataset generated by

BELLHOP Jing et al. (2018); Han et al. (2021); Li et al. (2022).

Similarly, to validate the performance of the proposed

methodology in actual complex underwater environmental

effects we test it on real data obtained through experiments in

the sea. The results show that our model obtains accurate DOA

estimates for multipath signals using a sonar array, and is

suitable for use in underdetermined scenarios that are

overlooked by traditional methods.

The main contributions of the paper are listed as follows:
1. We propose to use deep learning-based method for

underwater DOA estimation. The proposed method

uses residual CNN to extract high-level information

and RNN to model the temporal contexts of the

received signals.

2. For data simulation, we use BELLHOP to simulate the

array signals which are multipath signals and with low

SNRs in the underwater environment.

3. We further conduct the proposed method on real sea

data to validate the performance of DOA estimation.

4. The proposed method achieves a notable improvement

in the performance of DOA estimation on simulated

and real data as compared to traditional and deep

learning-based methods
The remainder of this paper is organized as follows.

Section 2 presents a review of existing traditional and

learning-based methods for the problem of DOA estimation

in underwater scenarios. In section 3, the signal model is

formulated and the array formation, feature generation

process, and proposed DOA estimation model are described.

Section 4 presents experimental results and analysis to verify

the effectiveness of the proposed methodology. Finally, this

paper is concluded in section 5.
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2 Related work

2.1 Traditional DOA estimation methods

Since the breakthrough of sonar array systems, determining

the DOA has been the most important task in underwater

applications. The earliest method for estimating the DOA is

beamforming (Singer et al., 2009). This method employs the

array to define the directivity and searches through spatial

regions to determine the direction. Although the limited

processing and analysis power at the time meant this method

had low accuracy and performed poorly in the presence of noise,

it laid the foundations for the development of novel estimation

methods. During the 1960s, a new methodology of maximum

entropy spectral estimation (Ables, 1974; Berger et al., 1996) was

presented, which is the basis of most modern estimation

methods. This class of methodologies possesses high resolution

but has significant computational requirements. Later, Capon

presented the MVDR methodology based on the maximum SNR

criterion (Capon, 1969). MVDR estimates the spatial wave

number spectrum as a means of improving the resolution and

collectively increasing the noise suppression. Nonetheless, the

computational complexity of this methodology is still high.

A methodology based on the time difference of arrival was

proposed by Knapp and Carter (1976). This focused on

minimizing the calculation complexity while increasing the

resolution, but the performance deteriorates significantly in

the presence of noise and reverberation (Zhang et al., 2020;

Zhang et al., 2021). A breakthrough was achieved in the 1970s

when Schimt proposed a methodology based on the spatial

subspace (Schmidt, 1986). This MUSIC method laid the

foundation for a new direction of research in the field of DOA

estimation. The concept of estimation gave birth to the

expansion of subspace class estimation methodologies. In

subsequent years, many enhanced variants of MUSIC were

proposed, including the weighted MUSIC method (Stoica and

Nehorai, 1990; Xu and Buckley, 1992), root MUSIC algorithm

(Barabell, 1983; Rao and Hari, 1989; Ren and Willis, 1997), and

several others. In the 1980s, the ESPRIT framework was

presented (Roy and Kailath, 1989). This methodology

employed the phenomenon of rotation-invariance among the

subspaces to compute the DOA. The methodology was further

enhanced to produce the MI-ESPRIT (Swindlehurst et al., 1992)

and weighted ESPRIT (Eriksson and Stoica, 1994) methods.

In the 1990s, Ottersten and Viberg developed weighted

subspace fitting (Viberg et al., 1991), which consists of a

combined structure for minimizing the error in the estimation

of the covariance matrix. This methodology can distinguish the

sources accurately and has enhanced resolution. Nonetheless, the

methodology is computationally expensive in terms of computing

the set parameters and is prone to fail in the presence of small
Frontiers in Marine Science 03
errors. In 2006, Candes et al. presented a new concept based on

sparse signal acquisition and recovery, known as compressed

sensing (Donoho, 2006; Candès et al., 2006). Their methodology

is based on the sparsity of signals and can be employed without

fulfilling the Nyquist sampling theorem.
2.2 Deep learning-based DOA
estimation methods

Recently, there have been continuous improvements in deep

learning theory and methodologies for DOA estimation (Hu

et al., 2020). The use of deep learning for DOA estimation can be

segregated into two broad domains. The first domain is based on

supervised learning and employs the learned projective

relationship among the input measurements to give the DOA

output. A single-layer network model that learned the DOA

using the input features for the first time was presented by Xiao

et al. (2015). Similarly, a CNN was employed by Chakrabarty

and Habets (2017) to learn the DOAs from the input features.

This methodology enhanced the accuracy of estimation in noisy

and reverberant environments. Xiang et al. (2020) presented a

methodology that employs phase enhancement to increase the

accuracy of DOA estimation. They later proposed an LSTM-

based DOA estimation method for moving targets, which

achieved high robustness to array imperfections (Xiang

et al., 2021).

The second domain is based on unsupervised learning. For

instance, Yuan et al. (2021) proposed an unsupervised learning

strategy for DOA estimation using a novel loss function.

Although methods based on deep learning provide significant

improvements in the estimation results, they cannot be easily

generalized to the underwater environment, which is complex

and exhibits temporal and spatial variations. Several methods

have been proposed to target these changing conditions. Liu

et al. (2021) proposed a DOA estimation method based on

CNNs using sonar arrays. Their methodology consists of a two-

channel CNN that estimates the DOA using the real and

imaginary covariance matrices. This approach outperforms

MUSIC in terms of accuracy and estimation time. Similarly, a

deep transfer learning methodology in which a CNN-based

network adapts to new environments has been proposed (Cao

et al., 2021). This methodology uses a single vector sensor as

opposed to a sonar array. However, the above approaches cannot

efficiently exploit the temporal context information, which is

essential in the underwater environment. To solve this problem,

we propose a DOA estimation method based on a CRNN that

can capture the temporal context information in addition to the

time-frequency invariance. The proposed methodology achieves

accurate DOA estimation with relatively low time and

space complexity.
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3 Methodology

In this section, we introduce the proposed method for

underwater DOA estimation using an acoustic array. We first

formulate the problem of underwater DOA estimation using a

uniform sonar linear array. Secondly, we show the scheme

overview of the proposed method. Then we introduce the

feature extraction part of our method. Finally, we describe the

proposed CRNN for underwater DOA estimation.
3.1 Problem formulation

This paper presents a methodology based on an underwater

sonar array. The methodology considers a uniform sonar linear

array for the reception of acoustic signals. The assumption of

narrowband conditions requires the time during which the

signal passes through the complete array to be less than the

coherence time of the generated signal. It is also assumed that

the generating source and the receiving array lie on the same

plane. Similarly, the far-field condition is imposed and it is

assumed that the signal reaches the array as a plane wave.

Consider a total of N narrowband signals, denoted by sn(t) ,

which are received by the sonar array consisting of M sensor

elements with an inter-element distance of d . The wave path

difference among the elements of the receiving array is denoted

by Dm and can be expressed as:

Dm = (m − 1)dsinqn (1)

The time difference of arrival among the elements of the

array can be computed as:

tm =
Dm

v
(2)

In the above equation, v denotes the speed of signal

propagation in the underwater environment. The phase-shift

of the signals approaching the array can then be computed as:
Frontiers in Marine Science 04
b = e−j*2p f
(m−1)dsinqn

v (3)

This can be further elaborated by setting f=v/l:

b = e−j*2p
(m−1)dsinqn

l (4)

The signal received by the array can then be formulated as:

xm(k) = o
N

n=1
Sn(k)e

−j*2p
(m−1)dsinqn

l + nm(k) (5)

In the above equation, nm(k) denotes the interference at the

m th sensor element. The objective is to estimate the DOA of

the source using the acquired signal. The methodology divides

the set of incident angles [−70∘,70∘] into 141 distinct classes and

computes the probability among the classes to give the

model output.
3.2 Methodology overview

The overview of the proposed deep learning-based

underwater DOA estimation method using CRNN is shown in

Figure 1. Initially, we use the BELLHOP model to simulate the

multipath array signals for the underwater marine environment.

Then, we extract the acoustic features in the feature extraction

stage. Next, we propose to use CRNN for modeling the local and

temporal acoustic characteristics, and finally, the trained model

is used to estimate the direction of the target source.
3.3 BELLHOP for underwater
data simulation

BELLHOP is a well-known model for ocean environment

simulations, allowing acoustic ray tracing to be performed by

configuring the ocean environmental files and predicting the

acoustic pressure fields in the ocean (Porter and Bucker, 1987).

As BELLHOP provides detailed modeling of the underwater
FIGURE 1

Overview of the proposed method.
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environment, we used it in this study to generate underwater

acoustic signals.

In the BELLHOP tool, the number of multipaths, incident

angles, transmission losses, amplitudes, and delays are obtained

by specifying the parameters of the channel geometry, velocity

profile, submarine topography, and interface reflection loss

(Porter, 2011).
3.4. Feature extraction

Feature extraction aims to extract an acoustic representation

that enables the acoustic model to learn the mapping from array

signals to a set of DOA values via training. In this paper, we use

the phase map of STFT as the input feature instead of applying

explicit feature extraction to calculate the input acoustic features

of the network.

We first transform the array signals into STFTs with an N

-point Fourier transform. The STFT feature of the array signals

is computed as:

X = ½X1(t, f ),X2(t, f ),…,Xm(t, f ),…,XM(t, f )�T (6)

where X∈CM×T×F is the STFT feature, T is the number of

frames, F is the number of frequency bins, Xm(t,f) = Am(t,f)e
jfm(t,

f) is the complex component of X at the m -th element for the t

-th frame and f -th frequency bin, and Am(t,f) , fm(t,f) are the

corresponding magnitude and phase, respectively. We directly

use the phase part of the STFT as the input feature of our

method, formulated as Y∈RM×T×F , where F=N/2+1 can be up to

the Nyquist frequency. The phase of the STFT is denoted as the

STFT phase in this paper.
3.5 CRNN for underwater
DOA estimation

CNNs have achieved significant success in computer vision

tasks due to their feature extraction ability. CNNs have recently

been used for audio pattern recognition tasks, such as speech

recognition, environmental sound recognition, and DOA

estimation. Conventional CNNs usually consist of convolution

layers, downsampling layers, and fully connected layers. The

CNNs adopted in the proposed CRNN are structured as follows.

We assume that the input to the proposed network is Y,
which is fed to the convolutional layers. We employ three

convolutional layers in the CRNN, each having the same

kernel size of 3×3 . After each convolutional layer, we apply

batch normalization to accelerate and stabilize the training.
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Next, we adopt the ReLU (Nair and Hinton, 2010) nonlinear

activation function. The operations on the input feature Y are

expressed as:

O = s (W⊗Y + b) (7)

where O is the output feature,W is the kernel, b is the bias ⊗

represents the convolution, and s(·) denotes the ReLU. We

apply max-pooling in the downsampling layer to reduce the

dimensionality of the feature. The first to third convolutional

layers have channels of 32, 64, and 64. The kernels and filters of

the convolutional layers are used to learn the local patterns of the

input features. High-level features can be extracted by the

stacked convolutional layers.

To further improve the performance and simplify the

training process, we introduce a residual connection into the

proposed CRNN. We assume that the input of the residual

connection is O and express the operations of the residual

connection as:

O0 = s (W⊗O + b) + O (8)

where O′ is the output of the residual connection.

CNNs sometimes struggle to capture the temporal

dependency of the input features. Therefore, an RNN is used

to model temporal sequences by storing historical information

in the hidden states. As we are using the phase map of the STFT

as the input feature, we adopt an RNN to model the STFT phase

over the time dimension. The temporal information is useful for

robust DOA estimation.

After the convolutional layers, we average the frequency

dimension of the CNN output, denoted as Oc∈RT′
×C , where T′

is the time dimension and C is the number of channels of the

final convolutional layer. The temporal features from Oc are

iteratively modeled by multiple RNN units, which output a

hidden feature ot for each frame. The operations can be

formulated as:

o1t = F(o0t , o
1
t−1)

⋯

olt = F(ol−1t , olt−1),

ot = G(olt),

(9)

where F and G represent the mapping functions of the RNN

and l is the number of recurrent layers. In this paper, we use

different RNN units, i.e., gated recurrent unit (GRU), bi-

directional GRU (biGRU), long short-term memory (LSTM),

and bi-directional LSTM (biLSTM).

The output of the final RNN layer is passed into a fully

connected layer to predict the direction probabilities. Three

different architectures used in this paper are shown in Figure 2.
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4 Experiments

4.1 Dataset

The steps for generating the underwater acoustic signals

using BELLHOP are elaborated here. We used a 1000 Hz sound

source at a source depth of 75 m, with the receiver placed at a

distance of 1.5 km and a depth of 75 m. The DOA varied from

−70∘ to 70∘ . All other parameters are presented in Table 1. By

setting the environmental parameters, the multipath signals

(eigenrays) of the receiver were simulated. The received

multipath signals consisted of impulse responses with different
Frontiers in Marine Science 06
amplitudes and delays. The multipath signals are illustrated

in Figure 3.

The dataset used to evaluate our proposed method was

generated using the following procedures. We simulated the

signal of the first element by applying the BELLHOP toolbox in

MATLAB. Array signals were generated by delaying the signal of

the first element in the uniform line array (ULA) with an inter-

element distance of d = 0.75 m. The DOA angles ranged from

−70∘ to 70∘ at intervals of 1∘ . We generated 500 samples for each

direction, and so the total number of underwater ULA signals

was 70,500. The samples were divided into training, validation,

and test sets at a ratio of 7:2:1 . The training and validation sets

were fed into the deep learning-based method, and the testing set

was used to compare the performance of all methods.
4.2 Feature and training setups

We used the phase map of the STFT as the input acoustic

features for the proposed CRNN. The duration of the

underwater ULA signals was 0.5 s with a sampling rate of

5000 Hz. We calculated the STFT using a frame length of 26

ms and a hop length of 13 ms in a Hanning window. For each

channel of the array signals, the size of the STFT-phase was

65×24 .

For training, we used the Adam optimizer with an initial

learning rate of 0.001, which was reduced by a factor of 0.95
FIGURE 2

Three different architectures of the proposed networks.
TABLE 1 Environmental parameters of BELLHOP.

Parameter Value

Sound source frequency (Hz) 1000

DOA (°) -70:1:70

Source depth (m) 75

Source range (km) 1.5

Receiving depth (m) 75

Water depth (m) 100

Sound speed (m/s) 1500

Density (g/cm3) 1.3

Attenuation (dB/l) 0.3

Sampling frequency (Hz) 5000

Duration of signal time series (s) 0.5
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every two epochs. The batch size was set to 32. We trained the

model for 50 epochs in all of the experiments.
4.3 Performance metrics

We evaluated the performance of our proposed method for

the DOA estimation of underwater array signals via the

classification accuracy (ACC) and root mean square error

(RMSE), which is formulated as:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N o

N

n=1
jjqn − q̂ njj22

s
(10)
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where N is the number of test samples, qn is the true angle of
the n -th sample, and q̂ n is the estimated angle of the n -th

sample. The RMSE is calculated as the averaged mean value of

500 samples for all angles from −70∘ to 70∘ at intervals of 1∘
4.4 DOA estimation of different methods

In this section, we present results from various DOA

estimation methods to evaluate the effectiveness of our

proposed algorithm.

Table 2 compares the performance of different methods for

DOA estimation. CBF and MUSIC are conventional DOA

estimation algorithms. The grid interval of these methods was
TABLE 2 Performance comparison of different methods.

SNR (dB) -10 -5 0

ACC (%) RMSE (°) ACC (%) RMSE (°) ACC (%) RMSE (°)

CBF 85.4 0.390 98.1 0.140 98.7 0.116

MUSIC 85.2 0.395 98.0 0.140 99.9 0.036

Two-channel CNN 83.0 0.434 98.9 0.110 99.9 0.029

DTL CNN 85.0 0.638 93.6 0.259 98.0 0.144

Dense U-net 92.3 0.351 99.2 0.090 99.9 0.038

CRNN (proposed) 90.3 0.313 99.3 0.080 99.9 0.024
fro
FIGURE 3

Multipath signals using BELLHOP. The picture above is underwater impulse responses with amplitudes and delays, and the picture below is
received underwater multipath signals.
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set to 1° for comparison. The two-channel CNN (Liu et al., 2021)

for underwater DOA estimation uses real and imaginary

covariance matrices as the two-channel inputs to the network.

The deep transfer learning (DTL) CNN was proposed for the

DOA estimation using a single vector sensor Cao et al. (2021).

The authors also used KRAKEN to simulate the underwater

array signals, which is similar to the research target of this paper.

This method contains 8 convolutional layers and 4 fully

connected layers. We used the phase map of the STFT as

input instead of the real and imaginary parts of the cross-

spectrum due to the difference between the two types of

acoustic arrays. The Dense U-net was proposed for high-

resolution DOA estimation using a DenseBlock-based U-net

structure with the bearing-time record Sun et al. (2022). In our

experiment, we only used the contracting path because we do not

focus on reconstructing the input feature. And we also use the

phase map of the STFT as the input feature to make a

fair comparison.

In Table 2, the results from the different methods are

compared in terms of ACC and RMSE under different SNRs

with 10 array elements. For all methods, ACC increases and

RMSE decreases with increasing SNR. Generally, deep learning-

based methods achieve better DOA estimation performance

than conventional methods. That is, the deep learning-based

methods achieve higher ACCs and lower RMSEs than the

conventional methods. Compared with different deep learning-

based methods, the proposed CRNN achieves high ACCs of

99.9% (0 dB), 99.3 % (-5 dB), and 90.3 % (-10 dB), and low

RMSEs of 0.024∘ (0 dB), 0.080° (-5 dB), and 0.313° (-10 dB),

outperforming the other deep learning-based methods. Dense

U-net outperforms two-channel CNN when SNR is -10 and -5

dB but achieves worse results when SNR is 0 dB. Moreover, the

DTL CNN fails to achieve good performance for DOA

estimation The parameters of CNN are too large, so we

assume that the network is overfitting. The above observations

indicate that the proposed CRNN outperforms conventional and
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deep learning-based methods, and achieves stable DOA

estimation performance under different SNRs.
4.5 Comparison of networks
and features

We conducted ablation experiments to compare the DOA

estimation performance of different features and networks. In

Table 3, we first analyze the proposed CNN using the covariance

matrix as the input feature. The proposed CNN does not achieve

better results when the STFT-phase is used as the input feature

instead of the covariance matrix. We then introduced various

RNNs (GRU, biGRU, LSTM, and biLSTM) into our CNN

architecture. The RMSE can be further reduced by introducing

the GRU into our CNNmodel, indicating that RNNs can exploit

temporal information in the STFT phase. From the experimental

results with the various RNNs, we can see that bi-directional

architectures do not produce lower RMSEs. Moreover,

the proposed CRNN adopts a residual connection to improve

the performance of DOA estimation. It can be seen that the

proposed residual-CNN-GRU achieves an ACC of 99.9% and an

RMSE of 0.024∘ , outperforming the other networks.
4.6 Comparison of array elements

For underwater DOA estimation in realistic conditions, the

SNR is usually low. More array elements will enable more useful

information to be obtained from the target signals. Therefore, we

further explored the relationships between the number of array

elements and the performance of deep learning-based DOA

estimation at a low SNR of -10 dB. Table 4 presents the ACC and

RMSE results of the proposed CRNN with 10, 16, and 20 array

elements. The ACC increases and the RMSE decrease with the

increasing number of array elements. This is because the STFT-
TABLE 3 Performance comparison of different networks and features.

Feature Network Metric

ACC (%) RMSE (°)

Covariance matrix CNN 99.9 0.034

STFT-phase CNN 99.5 0.072

CNN-GRU 99.9 0.030

CNN-biGRU 99.6 0.067

CNN-LSTM 99.9 0.034

CNN-biLSTM 99.4 0.080

Residual-CNN-GRU 99.9 0.024
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phase channels increase with an increase in the number of array

elements, and so more useful information is available for

modeling between the directions and features.
4.7 Comparison of the estimation time

The underwater acoustic environment is complex and

dynamic. Therefore, the processing time is important for

practical DOA estimation methods. We compared the

processing time of conventional methods against that of the

proposed CRNN using only the CPU. As deep learning-based

methods usually transform underwater signals into acoustic

features, we included the processing time for feature extraction

to ensure a fair comparison. Figure 4 shows the mean DOA

estimation times of different methods with 10 array elements.

The experiments were repeated 7,050 times for each method.

The proposed CRNN achieves the best DOA estimation time of

3.21 ms. MUSIC has a processing time of 3.29 ms, which is five

times faster than that of CBF. This is because the matrix

operations are optimized in MUSIC, leading to lower

processing times. The proposed CRNN simultaneously
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achieves high accuracy and fast processing for DOA

estimation, making it suitable for real-time applications.
4.8 Analysis of angles within 1°

In realistic conditions, there will be non-integer source

directions. Conventional methods can calculate non-integer

directions by changing the search grid, but this increases the

computation time. However, the proposed deep learning-based

DOA estimation method has been trained with defined integer

angles. Therefore, we performed an experiment with three

different non-integer angles to investigate whether these

directions could be correctly estimated by the proposed method.

The DOA estimation results of three different non-integer angles

are shown in Figure 5. The proposed CRNN tends to classify 0.3∘

as 0∘ and 40.7∘ as 41∘ . That is, the non-integer angles are mostly

classified as the nearest integer value. This indicates that the

proposed CRNN can classify non-integer angles to the closest

integer angle with the least error. Thus, the deep learning-based

method can achieve stable and accurate DOA estimation

performance in the case of non-integer directions.
FIGURE 4

Estimation times of different methods.
TABLE 4 Performance comparison of different array elements under SNR of -10 dB.

M Metrics

ACC (%) RMSE (°)

10 90.3 0.313

16 98.4 0.212

20 99.7 0.052
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4.9 Results in real marine environment

In this section, we conduct experiments using the proposed

method and the comparative deep learning-based methods on

the actual data in the marine environment. The real marine

underwater data was collected in January 2016 with a vertical

ULA in the shallow water sea area around China Jiang et al.

(2022). The target source is a real ship sailing on the sea. The

ULA consists of 16 elements, the depth of the first element is

about 205m, and the depth of the 16th element is about 303m.

The GPS information of the ULA and the target ship is provided,

so we can calculate the distance between the ULA and the target

ship, and then calculate the direction of the target ship. The

angle of the ship is ranged from 20° to 70°, and we divided the

angles into 51 classes. We collected a total of 500 recordings each

for a duration of 0.5s at a sampling rate of 17,067 Hz. We divided

the dataset into training, validation, and test sets at a ratio

of 7:2:1.

Table 5 compares the performance of different deep

learning-based methods on the test set for DOA estimation in

the real sea environment. The Dense U-net achieves an RMSE of

7.709°, which is higher than the other methods. While the DTL

CNN performs better than the two-channel CNN, showing

better DOA estimation performance than that on simulated

data. And the proposed CRNN achieves an RMSE of 3.594°,

outperforming the other methods on the real data.

Similarly, we calculate the RMSEs in different angle intervals

for the deep learning-based methods, and the results are shown
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in Figure 6. It can be seen that the proposed CRNN achieves less

than 2° RMSEs when the angle is in 20° - 30° and 40° - 50 and .

The two-channel CNN achieves less than 2° RMSEs when the

angle is in 20° - 30° and 30° - 40. Similarly, the DTL CNN has

less than 2° RMSEs in 60° - 70°, however, the performance of this

method degrades in other intervals. The Dense U-net achieves

an RMSE of about 2° in 40° - 50 but fails to achieve robust

performance in other intervals.

From the above observations, it is seen that the DOA

estimation results in a real marine environment are not

accurate as in simulation. Nevertheless, the proposed method

can achieve robust performance for DOA estimation in different

underwater environments, and deep learning-based methods

can be applied to more complex underwater environments.
5 Conclusion

This paper has proposed a CRNN-based method for

underwater DOA estimation employing an acoustic ULA. We

used the phase component of the STFT as the input feature of

the CRNN. The CRNN structure uses CNN layers to extract

local invariant features and RNN layers to model the temporal

dependencies of the input features. The method was validated on

a dataset consisting of multipath signals, which was simulated

using the BELLHOP model and a ULA. We compared the

proposed CRNN with traditional and deep learning-based

methods for DOA estimation. The simulations and
TABLE 5 Performance comparison of deep learning-based methods on real data.

Method RMSE(°)

Dense U-net 7.709

Two-channel CNN 5.395

DTL CNN 4.943

CRNN (proposed) 3.594
fron
FIGURE 5

DOA estimation results in three different non-integer angles (0.3°, 20.5°, and 40.7°).
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experimental analysis at various SNRs indicate that the proposed

method achieves high accuracy and low RMSEs compared with

previous methods. We also experimented with different network

architectures and found that the residual-CNN-GRU achieves

the best DOA estimation performance. In a comparison of

different array elements under a low SNR of -10 dB, it was

observed that the DOA estimation could be improved by

increasing the number of array elements. The proposed CRNN

has a lower estimation time than other DOAmethods. Similarly,

experiments are also validated on real data captured from the

sea. The observations and experimental results show that the

proposed method is sufficiently robust and accurate for

underwater DOA estimation in different underwater

environments, and can be applied to various underwater

monitoring tasks.
Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.
Author contributions

XL wrote the data processing code, conducted the

experiments, and wrote the first draft of the manuscript. JC

designed the experiments and revised the draft of the

manuscript. JB conducted the experiments and analysis and
Frontiers in Marine Science 11
created the figures. AM, DZ, MSA, and QY conducted the

experiments. All authors contributed to manuscript revision,

read and approved the submitted version, and were involved in

the conception and design of the study.
Funding

This work is supported by the National Natural Science

Foundation of China (Grant No. 62071383) and the Key

Research and Development Plan of Shaanxi Province (Grant

No. 2021NY-036).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
FIGURE 6
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