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The seed bank of Halophila ovalis is crucial for resilience to disturbance

through re-establishment. Understanding seasonal changes in abundance

and quality of seeds in natural seed banks is critical for seed-based

restoration. We selected an estuary in southwestern Australia and

investigated the seasonal changes of seed distribution and viability in H.

ovalis seed banks. We also adapted an X-ray viability test used for terrestrial

seeds to test the viability of H. ovalis seeds. We then simulated the effect of low

salinity on seed viability through a short-term indoor experiment. Seed density

was significantly different between sites and seasons (0 to 43590 seeds·m-2),

and the highest seed density in the seed banks was found after the reproductive

season (May). The proportion of viable seeds in the seed bank was less than

22%, and was not subjected to substantial seasonal variability. The density of

seeds in the seed bank decreased in spring, which indicated winter conditions

were not prompt seed loss. We also predicted that extreme rainfall events and

the resulting extremely low salinity would significantly reduce seed viability, and

could decrease in seed germination; limit population recruitment. As it rapidly

colonizes marine sediments from seeds, H. ovalis was considered an ideal

seagrass for restoration purposes. Our results provide physiological

information for H. ovalis seed banks to support seed-based restoration plans.

Such understanding would enable accurate predictions about seagrass

population resilience to extreme climate events in estuaries, where variable

and extremely low salinity may limit seagrass population recovery from seeds

through decreasing their viability.
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Introduction

Seagrasses provide a number of ecosystem services like

provision of habitat, food, and a nursery for a variety of

marine organisms, and are the key sites for global carbon

storage. Seagrasses are also being lost at an alarming rate

(Orth et al., 2006a; Barbier et al., 2011; Fourqurean et al.,

2012). Seed-based restoration is recognized as a cost-efficient

method for large-scale seagrass restoration programs (Marion

and Orth, 2010; Tanner and Parham, 2010). The high genetic

diversity in seeds promote high genetic diversity in restored

meadows with resistance and resilience capacities (Reynolds

et al., 2013; Kilminster et al., 2015). Although, seeding has

emerged as an effective tool to some seagrass species, the

science behind seed-based approaches including collection of

seeds, viability of seeds, and conditions for seed storage and

germination, requires further research.

The seed bank in surface sediments of seagrass beds for a

given species can be transient (turnover in less than 1 year) or

persistent (seeds that remain longer than 1 year) and the length

of time that seeds are viable in the seed bank is critical for long-

term seagrass population stability (Orth et al., 2000). The

presence, persistence and spatial dispersion of a sediment seed

bank drives recovery and growth of seagrass meadows due to its

functional characteristics (Fenner and Thompson 2005). In

some species, seeds produced from sexual reproduction

undergo a period of dormancy which provides a buffer against

times of reduced reproductive output, thereby increasing the

resilience of local populations to disturbance (Smith et al., 2016).

However, previous research on recruitment from seed in

seagrasses have found high mortalities in seed settlement, with

the probability of surviving at a density of 100 seeds·m-2 was

expected to be around 0.1% (Orth et al., 2006b; Statton et al.,

2017a). That phenomenon might be caused by the failure of

seedling establishment or the loss of seed viability before the

germination or seedings. There have been numerous studies

focusing on the relationships between seeding density and

seedling establishment, and the seedling establishment process

was considered as the most vulnerable step limiting restoration

success (Marion and Orth, 2010; Statton et al., 2017a). However,

few studies focused on the changes of seed abundance and

viability, which is also a critical process in seed banks.

The abundance of seeds in seed banks of seagrass beds are

highly variable, but less is known about their spatial distribution,

particularly over an annual reproductive cycle (Harwell and

Orth, 2002; Hovey et al., 2015). The density of seeds varied

significantly among the seasons, and a large amount of seagrass

seeds are lost after reproduction and seed dispersal (Hovey et al.,

2015; Máñez-Crespo et al., 2020; Yue et al., 2020; Vercaemer

et al., 2021). Comprehensive studies over the life cycle in seagrass

species are necessary to collect complete information on that

spatial variability of seed abundance. Additionally, previous
Frontiers in Marine Science 02
studies had indicated variability in seeds is driven by several

factors such as wave and currents, distribution of female and

male flowers, the distribution of large mammals and birds, hence

more in situ and ex situ experiments are needed to be conducted

on the spatial and temporal dynamics of seagrass seed

abundance (Inglis, 2000; Wu et al., 2016).

Halophila ovalis (R. Br.) Hook.f. is a pioneer species in the

Swan-Canning Estuary, Western Australia, providing several

important ecological functions such as provision of food for

black swan, habitat for invertebrates, and sediment

stabilization (Orth et al., 2006c; Kilminster and Forbes,

2014). However, H. ovalis coverage declined by more than

one-third over the last 30 years due to anthropogenic activities

and climate change (Kilminster et al., 2014). H. ovalis has an

annual life cycle with fast vegetative growth, flowering and high

seed production during spring and summer months

(Kilminster and Forbes, 2014). Previous studies pointed out

the persistence and recovery of H. ovalis depended on sexual

reproduction, with 900 seeds m-2 potentially entering the

sediment seed bank each year in southwest Australia (Kuo

and Kirkman, 1992; Kilminster et al., 2014). However, a

thorough assessment of the sediment seed bank of H. ovalis

in this region has been poorly investigated.

Conditions required for a seed to break dormancy and

germinate have not been addressed for every seagrass species

(Orth et al., 2000). Also, the methodology of seed viability testing

needs to be improved. H. ovalis has dormant seeds like Zostera

spp. In Zostera, tetrazolium staining and squish/sink viability

methods have been used to test seed viability (Inglis, 2000; Orth

et al., 2000). Conventional tetrazolium seed staining has been

applied to Zostera and Ruppia to test seed viability, but is

typically labor intensive and destructive (Sawma and Mohler,

2002; Cho and Sanders, 2009; Marion and Orth, 2010). The

interpretation of viability from tetrazolium staining in H. ovalis

seeds has been shown to be equivocal (Waite et al., 2021).

Moreover, the above approaches would consume large

numbers of seagrass seeds when testing their viability.

Meanwhile, the “squish/sink” method which commonly used

to test viability in Zostera marina (Orth et al., 2012), does not fit

H. ovalis seeds due to their seed’s small size (< 1mm). X-ray

analysis is used widely in determining seed viability in terrestrial

species and is a quick and non-destructive approach (Al-Turki

and Baskin, 2017). Waite et al. (2021) compared this method

with the squish/sink test to detect H. ovalis seed viability, and it

proved to be substantially more efficient and less destructive.

The present study was aimed at testing the following

hypotheses: (1) H. ovalis seeds have seasonal differences in

spatial distribution and abundance; (2) viability of H. ovalis

seeds from in situ seed banks were variable between sites; (3)

spatial and temporal variability in salinity within the Swan-

Canning Estuary was the main cause of loss of viability in H.

ovalis seeds.
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Materials and methods

Study sites

The study was conducted in the Swan-Canning Estuary,

Southwestern Australia (Figure 1). The Swan and Canning rivers

flow into Swan-Canning estuary and reach the Indian Ocean at

Fremantle. This area covers around 40 km2, and salinities vary among

sites (Webster et al., 2021). Point Roe site (RCK, 32°01′32″ 115°46′
22″) is the site closest to the mouth of the Swan-Canning estuary and

therefore more impacted by marine biota than the other sites.

Freshwater Bay site (FB, 31°59′59″ 115°46′16″) is located

downstream near the inlet of the estuary and therefore experiences

near-oceanic salinities. Another site is located near the Pelican Point

Marine Park (PPT, 32°02′31″ 115°47′20″) exposed to south westerly

winds, and is a high use area for water sports. The Canning River site

(CAN, 32°02′29″ 115°51′45″) is subjected to large salinity variability

driven by rainfall (Kilminster and Forbes, 2014). All four sites contain

H. ovalis, where water depths ofH. ovalismeadows are less than 1 m

during the low tide period, and were selected because they varied in

salinity (Hillman et al., 1995; Kilminster and Forbes, 2014).
H. ovalis life cycle and salinity in Swan-
Canning Estuary

In the Swan-Canning estuary, H. ovalis starts flowering from

early summer to late autumn. Fruits develop and seeds are
Frontiers in Marine Science 03
released in summer and autumn (January-May, Figure S1).

The frequency of reproduction varies between sites (Kilminster

and Forbes, 2014). Once released, the seed immediately sinks to

the sediment, with minimal capability for long distance dispersal

by water movement (Kendrick et al., 2012, 2019). The salinity

regime varies across upstream (W1, W2), middle (W3) and

downstream (W4) sections of the estuary (Figure 1). The highest

salinity occurs in summer (36-40 psu) due to minimal river flow

and increased evaporation, while in winter the lowest salinity

varies from 0 to10 psu as a result of rainfall, runoff and river flow

(Webster et al., 2021).
Seed bank abundance

Considering the short spatial dispersion of H. ovalis seeds,

the Generalised Random Tessellation Stratified (GRTS)

sampling design (Stevens and Olsen, 2004) was applied to

investigate seed bank abundance at FB, PPT, and CAN within

permanent plots. Sampling was carried out at four different

times over an annual reproductive cycle of H. ovalis during

2014-2015: (1) May, after seed release at the end of the

reproductive period and representing autumn conditions; (2)

July, two months after seed release and representing winter

conditions; (3) December, seven months after seed release and

representing the end of spring condition; (4) January, nine

months after seed release or before the next reproductive

event, and representing summer conditions. At each of the 3
FIGURE 1

Study sites (box) and the water quality monitoring (circle) across the Swan-Canning estuary (Webster et al., 2021). FB and RCK located at
downstream, and PPT and CAN located at upstream.
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sites, a permanent plot of 16×16 m was established and divided

into 64 sampling units within the plot. Each sampling unit was

further subdivided in four sub-units, which were set up to avoid

repeated sampling at the same point during the study. At each

sampling time, a total of 60 core samples were collected in the

sub-unit randomly within each site during the low tide period,

and brought back to the laboratory in an incubator (Esky) on the

same day (Figure 2). Sediment cores, made from PVC tubes with

the size of 10cm diameter, 7 cm length, were then sieved with

fresh water using two layers of sieves in the greenhouse. The first

layer (1mm) removed the large particle of sediment and

fragments of H. ovalis, whereas the second layer (710 mm)

extracted H. ovalis seeds, small particles and decayed organic

material. Then, the seeds were identified and counted under a

microscope, and the numbers of shoots, flowers, fruits in cores

were recorded to exhibit the reproductive performance of

every site.
Seed viability

From the result of above investigation, the seed density in

CAN was the lowest among the three sites, which could not

support the following seed viability investigation. Thus, CAN

was changed with RCK where H. ovalis seeds could be easier

collected from sediment. We randomly sampled every two

months from September 2019 to March 2020, and collected 60

sediment cores as above at every site. In the laboratory, the

samples were sieved as above but with the use of sea water. The

number of seeds, shoots, flowers, and fruits in cores were

recorded, and seed viability was measured.

X-ray analysis was applied to examineH. ovalis seed viability

following methods from Waite et al. (2021). The seeds from

every site were separated into 4 groups. Then, we assessed the
Frontiers in Marine Science 04
viability of these seeds by visualizing seed fill via X-ray analysis

(MX-20 digital X-ray, Faxitron, Tucson, AZ, USA; and Leica

M205C). The seeds were patted dry and placed onto a plate with

plastic wells (one seed per well). According to the X-ray image,

the seeds from sediment samples were classified as 7 types

(Figure 3). It was reasonably assumed that the soft and dark

seeds were non-viable, and the seeds with an intact seed coat

were potentially viable seeds. The seed coat (Figure 3G) was

ignored to avoid double counting as seed number. After

analyzing H. ovalis seeds, the seeds displaying “intact coat”

(Figure 3A), “intact endocarp” (Figure 3C) and “intact

endosperm” (Figure 3D) from RCK samples were selected to

test their viability via a germination experiment. All these seeds

were divided into 30 seeds per replicate, four replicates per type,

then cultured in one aquaculture tank for 1 month with red light,

30 psu salinity and 30°C. The germination rate, non-viable seeds

(soft seed and dark seed, Figures 3E, F) were recorded every week

(Waite et al., 2021).
Short term salinity exposure

To determine the effect of salinity changes on H. ovalis seed

viability, the seeds were exposed to three different salinity

conditions mimicking natural seasonal variability in the study

area (Table S1). The lowest and highest salinity values in the

Swan-Canning estuary were 2.04 psu in August 2018 (winter)

and 37.07 psu in April 2019 (autumn), respectively. All the viable

seeds came from mature fruits of H. ovalis, which were collected

from PPT on the 30th Jan 2020 following Statton et al. (2017b).

Groups made of 50 seeds was put into a single heat-sealed tulle

mesh bag (Harwell and Orth, 1999). A total of 36 replicated bags

were placed in fresh water tank (salinity 0.2 psu) and sea water

tank (salinity 34.7 psu) for one week to simulated heavy rain fall
FIGURE 2

The layout of a permanent plot with 64 sampling units (2×2m2) and 256 subsampling units(1×1m2).
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and the otherwise habitual salinity during that period,

respectively. Then, these bags were transported into salinity

levels set at 5, 20, 40 psu for another 2 weeks. Each treatment

level contained 6 replicate bags. Seed viability was checked in 3

bags with X-ray twice, once per week. All the incubations were

under room temperature (22 °C) and red light (Ocean Optics,

Largo, FL, USA). We recorded the dark seeds (Figure 3E) and

soft seeds (Figure 3F) as non-viable seeds.
Statistical analysis

The differences in the abundance of seeds in the seed bank

across the four sites (Factor 1) and over eight sampling times

(Factor 2) were analyzed using a two-way ANOVA. When the

interaction was significant, a simple effect test (a one-way
Frontiers in Marine Science 05
ANOVA and Tukey’s multiple comparisons) was conducted

(Zar, 1999). The differences of germination rates and non-viable

rates among different seed states were arcsine transformed to

normalize the distributions and checked for homogeneity of

variances using Levene’s test (p > 0.05) with SPSS (version 21)

before a one-way ANOVA. To estimate the number of sample

and data precision in seed bank, we used the seed density data

from FB (May, 2014). Sample size was estimated by assessing the

behaviour of the standard error of seed density along a number

of replicates varying from 3 to 50. The minimax algorithm

revealed that the associated standard error stabilized at 40

replicates. Such value was taken as sample size for testing for

potential differences in the abundance of seeds among H. ovalis

seed banks. Moreover, to analyze seed spatial distribution, data

were interpolated using the Simple Kriging method in Arc GIS

version 10.3 software.
FIGURE 3

The X-ray images and microscope photos of H. ovalis seeds. (A) intact seed coat; (B) intact endocarp with small-scale broken seed coat and
intact endocarp; (C) intact endosperm and endocarp with large-scale broken seed coat; (D) intact endosperm without endocarp; (E) soft seed;
(F) dark seed with unhealthy endosperm; (G) seed coat. (A–C) were considered as viable seeds, and (D–F) were considered as non-viable seeds.
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Results

Seasonal change of H. ovalis seed bank

The seed distribution varied greatly between FB, PPT and

CAN over an annual cycle (Figure 4). The seed density in FB was

the highest among the three sites, and varied across the grid from

0 to 43590 seeds·m-2 and was more dense in the southern

offshore area in May. The seeds in PPT were more dispersed

than the other two sites, while seeds in CAN were mostly located

at the offshore area. The maximum seed density in PPT and

CAN decreased through time from 15513 seeds·m-2 and 6154

seeds·m-2 to 1026 seeds·m-2 and 513 seeds·m-2, respectively,

indicating significate seed loss between mid-winter and

summer at these sites.

Based on the seed density in FB on May 2014, sample size as

40 was likely to have a stable standard error (SE) over replication

across five times. Therefore, this sample size could set at 40 in

the further H. ovalis seed bank investigation (Figure S2).
Seed viability of H. ovalis

Based on the X-ray imagery, we classified 7 types of H. ovalis

seeds from the sediment (Figure 3). After 1 month incubation

and culture, the germination rates among intact coat seed, intact

endocarp seed and intact endosperm seed were similar
Frontiers in Marine Science 06
(Figure 5). However, the seeds without intact coat deteriorated

easily, and the nonviable rate in the seed without seed coat and

endocarp (Figure 3D) was the highest. Seeds with intact coat, or

lacking coat but presenting intact endocarp were identified as

viable seeds (healthy seeds, Figures 3A–C), while, soft seeds, or

seeds with dark coat, or lacking endocarp but displaying intact

endosperm were all considered as non-viable seeds (unhealthy

seeds, Figures 3D–F).

There were significant differences in seed density inH. ovalis

seed banks among RCK, FB, and PPT (p<0.001) in the late 2019

to early 2020 period. Seed densities in RCK and FB showed

significant differences among seasons (pRCK<0.001, pFB<0.001),

while the seed bank in PPT was relatively constant (p=0.072,

Figure 6A). Moreover, the seed density in RCK was generally

higher than in FB and PPT, and the seed density in PPT was the

lowest among the three sites, indicating that a relatively higher

salinity with less seasonal variation may contribute to higher

seed survival rates (Figures 4, 6A and Table S1).

The density of non-viable seeds among the three sites was

lower than 22%, and the differences among seasons were not

statistically significant in RCK and FB (Figure 6B; pRCK=0.107,

pFB=0.721) but it was in March for PPT. The density of non-

viable seeds in March was significantly lower than the other

three investigation times (p=0.01), because of the newborn seeds

input (Figure 6B). Moreover, seeds with intact endosperm

without endocarp contributed to the highest proportion of

non-viable seeds in all three sites (Figure 3D).
FIGURE 4

Halophila ovalis seed bank spatial distribution of FB, PPT, and CAN over an annual reproductive cycle. The legend on the right side explains the
number of seeds at each of the sites. The permanent plot has a size of 16×16 m2.
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The sexual reproductive cycle
of H. ovalis

Halophila ovalis shoots were recorded during all seasons in all

four sites with varying densities across the 2014-2015 and the 2019-

2020 seed bank assessments (Figure 7). The shoot density would

change with the season conversion, the overall shoot density trend is

autumn > summer > spring > winter. Moreover, the shoot density

at CAN was also impacted by salinity change: the highest shoot

density (3529 ± 167 shoots·m-2) was recorded in May with higher

salinity, and decreased significantly in July and December (1212 ±

103 and 1245 ± 128 shoots·m-2, respectively) then increased in

January (1871 ± 118 shoots·m-2) with the salinity

increasing (Figure 7A).

Sexual reproduction started from November, and the

number of flowers were highest in January in the Swan-

Canning Estuary (Figures 7B, E). In general, higher

reproductive performances were founded in CAN and PPT

than FB and RCK, with less shoot density and more flower or

fruits produced. However, the overwinter seed banks were larger

in FB and RCK than the other two sites, which indicated low

salinity exposure would hurt the H. ovalis seeds and resulted in

reduction in seed banks over winter (Figure 6 and Table S1).
Short-term low salinity exposure

Treatments exposing the seeds to fresh water were applied to

estimate the impacts of extremely low salinity (salinity 0.4 psu) on

seed viability and seeds exposed to seawater was the control
Frontiers in Marine Science 07
(Figure 8). Non-viable seeds were found in every treatment and

were either dark seeds or soft seeds (Figures 3E, F). Moreover, the

non-viableH. ovalis seeds when exposed to fresh water for one week

were significantly greater than those in seawater, andmore than half

of the seeds (29 ± 7 seeds from 50 seeds) were non-viable in the

treatment “freshwater to 5 psu salinity” after culturing for 14 days.

Whereas cultured at a relatively high salinity (≧20 psu) the non-

viable numbers were reduced within 7 days (p=0.02). The seeds in

these treatments showed no statistically significant differences in

viability after 14 days (p= 0.6, Figure 8). The non-viable seeds in the

freshwater pre-treatment and the low salinity recovery treatment

were significantly greater than other salinities indicating that low

salinity which is commonly found in winter across Swan-Canning

Estuary would result in loss of seeds in the H. ovalis seed banks.
Discussion

Seed abundance and spatial distribution

Seed density in seed banks of the Swan-Canning Estuary

dramatically varied annually and among sites within the estuary.

High seed densities always occurred towards the end of

reproduction in austral autumn and through to mid-winter.

By the spring and summer months, after reestablishment of

meadows from seed in spring, seed bank numbers are

significantly lower. Similar seasonal patterns in seed densities

in seed banks have been described from tropical H. decipiens in

Australia (Hovey et al., 2015) and seems to be a strategy for

persistence of colonizing seagrasses under strong seasonal
FIGURE 5

The germination rate and non-viable rate of three types H. ovalis seeds after culturing in red light, 30 psu salinity and 30°C for 1 month (n=12).
The black column represents the germination rate and the gray column represents the non-viable rate (mean ± SE). Different letters a, b, and c
indicate significant differences among H. ovalis seed types in non-viable rate. And x represents no significant differences among these seed
types in germination rate. The data were analyzed using one-way ANOVA.
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environmental forcing, worldwide (Kilminster et al., 2015;

Kendrick et al., 2017).

Most of Halophila seed bank studies applied a random or

stratified random survey to collect samples, but a random

survey design is likely to generate clumped sampling

(Jongman et al., 2006). Stratified random sampling is more

reliable to increase the precision of the samples in a diverse

community (Benoit et al., 1989; Jongman et al., 2006).

However, this method may not be appropriate if the seagrass

community is distributed in an environmental gradient such as

salinity. Differing from the methods above, we used GRTS

method introduced by Stevens and Olsen (2004), which benefit
Frontiers in Marine Science 08
to collect a random distribution of sample points and provides

more advantages such as preserving the neighbouring distances

between sampling points, and reducing sample variance by

using a local variance estimator such as local neighborhood-

based. According to the results of FB, PPT, and CAN over an

annual reproductive cycle, the H. ovalis seeds in the seed bank

always shows high spatial variability, thus, the sample

collection along and across transects was more representative

than random collections. Moreover, the minimum efficient

sample number was 40, which was enough to describe the

seed bank distribution of H. ovalis seed bank in Swan-

Canning Estuary.
B

A

FIGURE 6

The seed density (n=720) and non-viable seed rate (n=48)in RCK, FB, and PPT during 2019-2020 (mean ± SE). (A) the seed density (seeds·m-2).
(B) the non-viable seed rate (%). Different letters x, y, and z represent significant difference among the sites. Different letters a, b, and c indicate
significantly different among the survey time in one site. And * indicates the significant difference between March and the other three
investigations at PPT.
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Seed viability protocols—X-ray analysis

High seed viability is essential for rapid and uniform plant

establishment (Orth et al., 2000). Physiological characteristics of

seeds such as those active to break dormancy and for

germination are generally closely linked to specific

environmental conditions and are different among seagrass

species (Xu et al., 2016; Statton et al., 2017b; Waite et al.,

2021). A number of methods applied in seagrass seed viability

testing have been based on visual inspection using squash and

sink tests and tetrazolium chloride staining, that are destructive

and time consuming (Gu et al., 2018; Jarvis et al., 2021). X-ray

analysis which was widely used in the terrestrial seed industry

was applied for seagrass seed inspection recently (Kotwaliwale

et al., 2014; Huang et al., 2015; Waite et al., 2021). The main

advantage of this technique is its ability to non-destructively

obtain information on the internal seed morphology (de

Medeiros et al., 2021). This method could only be generalized

in desiccation tolerance seed of seagrass species such as H. ovalis
Frontiers in Marine Science 09
and Ruppia as seeds need to be dry because water disturbs the X-

ray transmission. (Waite et al., 2021; Gu et al., 2018). Moreover,

the interpretation of X-ray images is a subjective and tedious

task by seed analysts. Hence, we propose development of a deep

learning-based, semi-automated or automated image

analysis method.
X-ray images of H. ovalis seeds

To develop the seed viability method with X-ray analysis, a

detail learning of seed X-ray images was conducted. In general,

the H. ovalis seed consists of endosperm, endocarp and seed

coat. X-ray images of newly produced H. ovalis seeds (Waite

et al., 2021) differ from the seeds in the seed bank, and seeds

collected from the sediment are more variable. The result of the

indoor germination experiment showed all three seed types had

similar seed germination rates. However, the non-viable rate in

these three seed types indicated seeds without any cover (only
B

C

D

E

F

A

FIGURE 7

The density of H. ovalis shoots and reproductive performance including flower and fruit density in the sites (mean ± SE, n=720). (A–C) showed the
investigation results in FB, PPT, and CAN during 2014-2015; (D–F) showed the investigation results in RCK, FB, and PPT during 2019-2020.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1025615
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Gu et al. 10.3389/fmars.2022.1025615
intact endosperm) were the most vulnerable seed type. Based on

the X-ray images, the viability of newly produced H. ovalis seeds

were over 97.46% (Waite et al., 2021) while, the viability of seed

bank seeds was lower, approximately 77.95%.
The impact of salinity on H. ovalis
seed viability

The seasonal cycle of seed germination of H. ovalis in the

Swan-River Estuary typically occurs over a period of 4-6

months after seed release, during austral spring, when the

rivers flood the estuary resulting in a light shift toward yellow

and red wavelengths, and as spring temperatures gradually
Frontiers in Marine Science 10
increase, the seeds start to germinate (Statton et al., 2017b).

The precipitation can exceptionally reach up to 114 mm/day

in this region, resulting in the estuary salinity sharply

decreasing and reaching minimum values in a week or less

(Webster et al., 2021). Low salinity and relative high

temperature could promote seagrass seed germination (Orth

et al., 2000; Xu et al., 2016; Gu et al., 2017; Yue et al., 2019). In

such conditions, H. ovalis seeds in the sediment quickly

germinate, while the environmental conditions are not

suitable for seedling establishment, resulting in losses to the

seed bank and less effective recruitment the following spring

(Statton et al., 2017a; Waite et al., 2021; Webster et al., 2021).

Also, it was here demonstrated in an experiment that

freshwater inputs over short-time periods contribute to
B

A

FIGURE 8

Non-viable seed rate after exposing to different salinity (mean ± SE). (A) non-viable seeds after culturing for 7days (n=18); (B) non-viable seeds
after culturing for 14 days(n=18). Different letters a and b indicate significant differences among different exposure salinities. * represents
significant between fresh water and sea water treatment. The data were analyzed using one-way ANOVA.
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significant declines in seed viability, and over 20% of seeds

lose viability following a pulse of freshwater of a week.
The recovery strategy of H. ovalis

H. ovalis is the most widely distributed species of seagrass in the

Swan-Canning Estuary. Its fruit production occurs in the summer

months, between January and March, and seed germination occurs

in spring, around October (Webster et al., 2021). Other researchers

investigated the optimal environmental conditions forH. ovalis seed

germination, and found the relative low temperature (15 °C) and

high salinity (over 20 psu) limited seed germination, prompting

seed storage (Figure 8, Statton et al., 2017a). Red light (peak l=673
mm) enhanced H. ovalis seed germination, growth and survival

(Strydom et al., 2017). Combining this information, we suggest a

management and restoration strategy where fruit would be

harvested from a site with high seed production followed by

storage in the dark in ocean salinities and temperature <15°C

then break dormancy through culturing in a gradient changing

temperature (such as 15°C-20°C-25°C) in red light (Statton et al.,

2017b; Waite et al., 2021). These germinated H. ovalis seeds could

be then used to replenish the seed bank after heavy rainfall periods

to avoid seed loss caused by extremely low salinity exposure, and

increase the potential of seasonal bed recovery.
Conclusions

This study contributed to our knowledge ofH. ovalis seed bank

dynamics through insights into its seasonal seed abundance, spatial

distribution, and seed viability. And we provided evidence to

support our hypothesis that extremely low salinity would result in

seed loss from the seed bank through promoting seed germination

or decreasing seed viability. We also demonstrated a potential

restoration plan based on H. ovalis seeds, while, this plan still

needs further practice to estimate its feasibility. In addition, we used

the X-ray analysis to test seed viability of the H. ovalis seed bank,

added more X-ray images of H. ovalis seed, and have taken a step

further with more evidence of the utility of this technique, which is

however labour intensive. Thus, future studies are needed to

improve the efficiency of the technique for seagrass seeds,

including automatic image recognition.
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