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Underwater image restoration
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coherent structures
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Restoration of underwater images plays a vital role in underwater target

detection and recognition, underwater robots, underwater rescue, sea

organism monitoring, marine geological survey, and real-time navigation.

Mostly, physics-based optimization methods do not incorporate structural

differences between the guidance and transmission maps (TMs) which affect

the performance. In this paper, we propose a method for underwater image

restoration by utilizing a robust regularization of coherent structures. The

proposed method incorporates the potential structural differences between

TM and the guidance map. The optimization of TM is modeled through a

nonconvex energy function which consists of data and smoothness terms. The

initial TM is taken as a data term whereas the smoothness term contains static

and dynamic structural priors. Finally, the optimization problem is solved using

majorize-minimize (MM) algorithm. The proposed method is tested on

benchmark dataset and its performance is compared with the state-of-the-

art methods. The results from the experiments indicate that the proposed

regularization scheme adequately improves the TM, which results in high-

quality restored images.

KEYWORDS

underwater images, image restoration, robust regularization, coherent structures,
optimization problem
1 Introduction

Restoration of underwater images is a challenging task and it plays a vital role in

underwater target detection and recognition, underwater robots, underwater rescue, sea

organism monitoring, marine geological survey, and real-time navigation Jian et al.

(2021). Underwater images suffer from strong light absorption, scattering, color

distortion, and noise from the artificial light source. Image formation in the water is

shown in Figure 1A. It can be observed that the image is formed through the three types

of lights 1) the reflected light comes to the camera directly after striking the object, 2) the
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forward-scattered light that deviates from its way from the

original direction after striking the object, 3) the back-

scattering light comes to the camera after encountering

particles Han et al. (2020); Islam et al. (2020).

Underwater image restoration is well studied in terms of

enhancement, noise reduction, defogging/dehazing,

segmentation, saliency detection, color constancy, and color

correction Jian et al. (2021). Methods for underwater images

can be divided into physics and machine/deep learning-based

methods Islam et al. (2020). A comprehensive survey on deep

learning-based underwater image enhancement algorithms is

done in the study Anwar and Li (2020). This study suggested

that the algorithms can further be divided into several categories,

e.g., encoder–decoder models, modular designs, multi-branch

designs, depth-guided networks, and dual generator GANs. In a

study, generative adversarial networks (GANs)-based method is
Frontiers in Marine Science 02
proposed to improve the quality of visual underwater scenes

Fabbri et al. (2018). As mostly, deep learning-based models are

computationally expensive, so a convolutional neural network

(CNN)-based diver detection model is suggested to balance the

trade-offs between robustness and efficiency Islam et al. (2019).

In another work, the authors employed the cycle-consistent

adversarial networks to generate synthetic underwater images,

and then a deep residual framework-based model is developed

for image enhancement Liu et al. (2019). The deep learning

approach has become the state-of-the-art solution and it has

provided reasonable performance.

Physics-based methods usually restore the image by

computing a transmission map (TM). The initial TM is

improved using various techniques including guided filtering,

statistical models, and matting algorithms Lu et al. (2013). For

instance, in a work, guided trigonometric bilateral filters are
A

B

FIGURE 1

(A) Underwater image formation. Object signal is attenuated along the line of sight (direct transmission). Light scattered from the environment
(e.g., particle) carries no information of the scene. Forward scattered light blurs the scene. (B) Proposed method. Firstly, following the physical
scattering model, a transmission map (TM) and veiling light are computed from the input image. Then, the initial TM is improved by solving a
robust energy function that utilizes a nonconvex regularizer and two types of regularization weights. Finally, an enhanced image is restored by
using the regularized TM.
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applied for improving the TM and then a color correction

algorithm is applied for enhancing the image visibility Lu et al.

(2013). In another work, an underwater enhancement method is

proposed that provided two versions of the restored image. This

method is based on the minimum information loss principle and

histogram distribution prior Li et al. (2016). In a recent work, the

authors suggested methods for image restoration and color

correction by taking into account the different optical water

types. The revised model for image formation Akkaynak and

Treibitz (2018) has been used and a depth map is also required

as an input for their solutions Berman et al. (2021). Another

recent work with improved results uses a locally adaptive color

correction method using the minimum color loss principle and

the maximum attenuation map-guided fusion strategy Zhang

et al. (2022). In another study, an underwater normalized total

variation (UNTV) model is suggested for underwater image

dehazing and deblurring that uses sparse prior knowledge of blur

kernel. The blur kennel is obtained by using an iterative

reweighted least squares algorithm Xie et al. (2022). Mostly,

physics-based optimization-based methods optimize TM by

utilizing weights from some guidance map that depends on

the input image. However, these methods do not incorporate

structural differences between the guidance map and TM.

Consequently, images recovered are of poor quality.

In this paper, we propose a method for underwater image

restoration by utilizing a robust regularization of coherent

structures in image and transmission map. The proposed

method incorporates the potential structural differences

between TM and the guidance map. The optimization of TM

is modeled through a nonconvex energy function which consists

of data and smoothness terms. The initial TM is taken as a data

term whereas the smoothness term contains static and dynamic

structural priors. Finally, the optimization problem is solved

using majorize-minimize (MM) algorithm. The proposed

method is tested on benchmark dataset and its performance is

compared with the state-of-the-art methods. The results from

the experiments indicate that the proposed regularization

scheme adequately improves the TM, which results in high-

quality restored images.
2 Proposed method

The proposed method for underwater image restoration can

be divided into three steps as shown in Figure 1B. In the first

step, the veiling light and initial TM are computed. In the second

step, initial TM is regularized through the proposed nonconvex

energy framework. During this step, static and dynamic weights

are computed from the input image and iteratively regularized

TM. In the last step, an image is restored using the underwater

imaging model. These steps have been described in detail in the

following sections.
Frontiers in Marine Science 03
2.1 Veiling light and initial
transmission map

Based on the Koschmieder’s law Koschmieder (1924), only a

small portion of the reflected light reaches the observer and it

causes poor visibility. The formation of images underwater has

been described in Figure 1A. Usually, a linear interpolation-

based model is used to describe the image formation in

scattering media like water Han et al. (2020); Islam et al.

(2020). Recently, a refined image formation model has been

proposed in Akkaynak and Treibitz (2018). This revised model

tries to explain the instabilities of current models however it also

has certain limitations Li et al. (2021). Contrarily, the widely

used physical scattering model Han et al. (2020); Berman et al.

(2021) that describes the formation of images underwater is as

follows,

I(x) = J(x)n(x) + V(1 − n(x)) (1)

where x = (x,y) denotes the pixel coordinates, I is the

observed intensity (i.e., underwater image), J is the scene

radiance, V is the global veiling light, and n is the medium

transmission map (TM). When the medium is homogeneous,

TM can be expressed as n(x) = e-bd(x), where b is the medium

extinction coefficient, and d(x) is the depth. Actually, this b is

dependent on the color channel, however, for simplicity, we have

used it same for all three channels. The main goal of underwater

image restoration methods is to recover J, V, and n from I.
Although the initial TM n can be obtained through any priors

mentioned in the literature, in this work, veiling light V and

initial TM n were computed using the haze-lines (HL) prior

(Berman et al., 2020). The initial TM is computed per-pixel and

is not spatially coherent. To improve this initial TM n, we

propose to apply non-convex regularization. The improvement

in TM ultimately leads to the restoration of images that are of

better quality.
2.2 Model

This paper proposes optimizing the initial TM n by

efficiently minimizing the following energy function

E(n̂ ) =ox∈W(n̂ (x) − n(x))2+ lox∈Wox0∈Nx
wx,x0 (s)yr(n̂ (x

0))

(2)

where n̂ is the regularized (target) TM, W is the 2D spatial

domain of TM, l controls the smoothness level by adjusting the

significance of two terms on the right-hand side, Nx is a 2D

neighborhood window centered at x. wx,�x(s) is the spatially

varying weighting function computed from guidance s. The

neighborhood coherence (smoothness) between pixels located

at positions x and �x is enforced adaptively using spatially varying
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weights wx,�x . To benefit from the advantages of guided filtering

He et al. (2013); Shen et al. (2015), we have incorporated

guidance signal s in our proposed framework. Specifically, the

spatial regularization (smoothness) weights have been computed

from s instead of n or n̂ . Gray-scale image computed from the

input image I has been taken as the guidance s. The idea is that if

s(x) is considerably different from s(�x) (e.g., if x and �x are across

an edge in the gray-scale input image), then n̂ (x) should have a

little effect in the regularization of n̂ (�x). We define these weights

using Gaussian distance in space and intensity as,

wx,�x(s) = exp ( − m x − �x)2
� �

exp ( − n s xð Þ − s �xð Þ)2� �
 , (3)

where the first term is the spatial filter that would decrease

the weight wx,�x if the distance between x and �x is large, second is

the intensity range filter that would decrease the weight wx,�x if

the intensity difference between s(x) and s(�x) is large. m and v are

the positive parameters defined by the user. These parameters

control the decay rate of the spatial and intensity range filter,

respectively, and thus adjust the regularization (smoothness)

bandwidth. The proposed robust regularizer is the

parameterized squared hyperbolic tangent function defined as

yr n̂ xð Þ − n̂ �xð Þð Þ = tanh r n̂ xð Þ − n̂ �xð Þð Þ2� �
  (4)

where r djusts the skewness of this function. This function

maps any (n̂ (x) − n̂ (�x)) to the range [0 1] and can

compresses large values to approach to 1. While observing this

function, it can be inferred that this function yr(j) penalizes

large gradients of n̂ less than L2 or L1 regularizer function during

filtering. This results in better preservation of high-frequency

features (e.g., edges and corners). In other words, our function

restrains the large deviations to be fused together.
2.3 Regularization

In the literature, mostly, a convex energy function is

minimized for regularization. Contrarily, we have proposed and

solved a non-convex energy function (Eq. 2). For such non-convex

energy functions, the optimization is non-trivial. To solve this

optimization problem, we have used a sophisticated technique of

majorize minimization (MM) algorithm. This algorithm performs

two steps several times. In the first (i.e., majorization) step, a

convex surrogate function for the objective function is created. In

the second (i.e., minimization) step, a local minimum is found for

the surrogate function. These two steps are followed

interchangeably several times until the algorithm converges.

While the iteration number k is increased, the values of E(n̂ )

corresponding to the set fn̂ (k)g decrease monotonically.

At the majorization step, E(k) for E is achieved by

substituting the regularizer yr(j) with Yi
r(j) in (2) as follows
Frontiers in Marine Science 04
E kð Þ n̂ð Þ = o
x∈W

½(n̂ xð Þ − n xð Þ)2+

l o
�x∈N x

wx,�x(s)Y
n̂ kð Þ xð Þ−n̂ kð Þ �xð Þð Þ

r n̂ xð Þ − n̂ �xð Þð Þ�,
(5)

where Yi
r(j) is a surrogate function for yr(j). That is, Yi

r(j)

stays above the yr(j), and they touch each other only at j = i. The

convex function E(k) is easy to be minimized by taking its first

derivative with respect to n̂ . The normal equation of (5) is

0 = n̂ xð Þ − n xð Þð Þ + l o
�x∈N x

wx,�x sð Þh kð Þ
x,�x n̂ð Þ n̂ xð Þ − n̂ �xð Þð Þ, (6)

where,

h kð Þ
x,�x n̂ð Þ = 1 − yr n̂ kð Þ xð Þ − n̂ kð Þ �xð Þ

� �� �2h i
r : (7)

The output n̂ is obtained through the vectorized form of (6)

by iteratively solving the linear systems of the form, n̂ (k) =

(I + lL(k))−1 n, where I is an identity matrix, n and n̂ denote

the column vectors of n and n̂ , respectively, and L is a

Laplacian matrix.
2.4 Recovered image

The goal of underwater image restoration is to recover the

scene radiance J(x) from I(x) based on Eq. 1. Once the

regularized TM n̂ (x) is obtained, the scene radiance J(x) can

be recovered by using,

J(x) =
I(x) − V
n̂ (x)

+ V   : (8)
3 Results and discussion

Our proposed regularization-based scheme (Eq. 2) involves a

number of parameters. We firstly describe what are the values of

these parameters and how these values are determined. We have

performed extensive experiments on a variety of underwater

images and empirically found the optimal values for these

parameters. Those optimal values are l = 200, r = 2.5, m = 1,

and v = 200. These same values have been used for all the images

tested in this work. Now, we visually examine how our

regularization scheme improves the initial TM. To do so, few

underwater images have been taken from the EUVP dataset

Islam et al. (2020). These images are named as jellyfish, shark,

angel butterfly, coral leaf, snake eels, red snapper, mangrove, and

yellow fish, and these images have been shown in the first row of

Figure 4. Their initial TMs have been shown in the second row,

where the color variation between black (dark) and white
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(bright) corresponds to the variation in the TM values. It can be

seen that the initial TMs have abrupt variations even for the

neighboring similar depth regions. Moreover, in these initial

TMs, the object boundaries have mingled with the background.

If these inaccurate TMs are used for image restoration, their

inaccuracies cause degradation in the quality of restored images.

This is indicated by the images shown in the third row. These

images are obtained through Eq. 8 by using the initial TMs, i.e.,

n̂ (bfx) = n(x). It can be seen that these images suffer from poor

visibility. Further, these images have several glitches like, detail

loss, color shift, and dimmed light. The inaccuracies of initial

TMs need to be addressed for accurate image restoration. We

have improved these initial TMs through our non-convex

regularization scheme. Our regularized TMs have been

displayed in the fourth row. These TMs are considerably

better than the initial TMs in a number of ways. Like, our

regularized TMs have retained the structures as well as edges of

the objects in the scene. On the one hand, these regularized TMs

are adequately smooth which ensures the consistency of

structures in the spatial domain. On the other hand, sharp

structural edges are retained which agrees with the depth

discontinuities in the scene. These attributes of the regularized

TMs characterize the geometry of the scene. The images restored

by using these regularized TMs in Eq. 8 are shown in the last

row. It can be observed that these images have higher visibility as

compared to the images in the third row. In these images, the

details and the natural appearance of the scene are well-

preserved. These restored images have rich color information
Frontiers in Marine Science 05
with no artifacts like color saturation. In short, we can also

compare the quality of restored images in the third and fifth

rows of Figure 2 on the likert scale. Accordingly, each of the

images in the third row is of ‘poor’ quality as compared to the

corresponding image in the fifth row which is of ‘good’ quality.

This comparison indicates the necessity of improving the initial

TM, and that the proposed regularization scheme is effective in

improving the initial TM.

Next, we quantitatively evaluated the advantage gained by

regularizing the initial TM. To do so, we computed the

perception-based image quality evaluator (PIQE) Venkatanath

et al. (2015) for the images, where lower values of this metric

indicate better perception quality of the images. PIQE values (before

applying regularization, after applying regularization) for the images

shown in Figure 2 are jellyfish (42.76,36.20), shark (53.36,38.44),

angel butterfly (49.26,24.96), coral leaf (44.07,22.27), snake eels

(44.08,34.34), red snapper (50.71,30.55), mangrove (46.89,28.60),

and yellow fish (48.46, 23.87). It can be observed that PIQE values

of images restored from the initial TMs are worse as compared to

the values of images restored from the regularized TMs. This

indicates that the regularization of initial TM results in the

restoration of better quality images.

Finally, we compared the performance of the proposed

method with several state-of-the-art methods. Among the

compared methods, eight are learning-based: (i) image

enhancement based on generative adversarial network with

paired (IE-GAN), and (ii) unpaired training (IE-GAN-UP)

Islam et al. (2020), (iii) GAN with cycle-consistency loss
FIGURE 2

Improvement of initial TMs using the proposed regularization scheme. The images restored using the regularized TMs are of better quality as
compared to the images restored using the initial TMs.
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(CycleGAN) Zhu et al. (2017), (iv) underwater GANwith gradient

penalty (UGAN-P) Fabbri et al. (2018), (v) Pix2Pix Isola et al.

(2017), (vi) least-squared GAN (LS-GAN) Mao et al. (2017), (vii)

GAN with residual blocks in the generator (Res-GAN) Li et al.

(2017), and (viii) Wasserstain residual GAN (Res-WGAN)

Arjovsky et al. (2017). Two physics-based methods: (i) multi-

band fusion-based enhancement (Mband-En) Cho et al. (2018),

and (ii) underwater color restoration based on haze-lines (Uw-

HL) Berman et al. (2021), are also included for comparison. The

output restored images of these methods have been shown in

Figure 4 for few underwater images from the EUVP dataset Islam

et al. (2020). It can be seen that the IE-GAN and IE-GAN-UP

have increased the visibility to some extent but shifted the colors.

CycleGAN and LS-GAN exhibit poor visibility, and loose the

object boundaries and texture details. UGAP-N, Pix2Pix, Res-

GAN, Res-WGAN, Mband-En, and Uw-HL over saturate the
Frontiers in Marine Science 06
objects. Pix2Pix and LS-GAN often fail to improve global

brightness as well. Mband-En and Uw-HL have shifted the

colors by a large extent. On the other hand, our proposed

method provides good quality results which are free from the

above mentioned artifacts of the compared methods. Our

proposed method adequately enhances the visibility without any

color-shifting artifacts. Further, the output images of our method

retain the fine details. We also used the quantitative measures to

evaluate the quality of the images of Figure 3. Two quantitative

measures naturalness image quality evaluator (NIQE) Mittal et al.

(2012), and perception-based image quality evaluator (PIQE)

Venkatanath et al. (2015) have been computed and shown in

the Figure 4. Lower values of these measures reflect better

perceptual quality of the image. The eleven bars for each image

respectively correspond to the images restored by approaches IE-

GAN, IE-GAN-UP Islam et al. (2020), CycleGAN Zhu et al.
FIGURE 3

Comparison of our method with other approaches IE-GAN, IE-GAN-UP Islam et al. (2020), CycleGAN Zhu et al. (2017), UGAN-P Fabbri et al.
(2018), Pix2Pix Isola et al. (2017), LS-GAN Mao et al. (2017), Res-GAN Li et al. (2017), Res-WGAN Arjovsky et al. (2017), Mband-En Cho et al.
(2018), and Uw-HL Berman et al. (2021).
FIGURE 4

Quantitative measures NIQE Mittal et al. (2012) and PIQE Venkatanath et al. (2015) for the six images shown in Figure 3. The eleven bars for each
image respectively correspond to the images restored by different compared approaches and our method.
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(2017), UGAN-P Fabbri et al. (2018), Pix2Pix Isola et al. (2017),

LS-GANMao et al. (2017), Res-GAN Li et al. (2017), Res-WGAN

Arjovsky et al. (2017), Mband-En Cho et al. (2018), Uw-HL

Berman et al. (2021), and our method. It can be seen that the

proposed method attains the least values for both of these

quantitative measures for almost all six images. These values

suggest that the perception qualities of our restored images are

better than the input images and the restored images by the

compared methods. From this qualitative and quantitative

comparison among the quality of restored images, it can be

deduced that our proposed method outperforms the state-of-

the-art methods.
4 Conclusion

In this paper, a robust regularization-based method has been

proposed for the underwater image restoration. Usually, the TM

suffers from several artifacts like, abrupt variations which are

inconsistent with the scene, and object boundaries mingled with

the background. These inaccuracies in TM lead to the image

restoration of degraded quality. We have formulated a nonconvex

energy function for the optimization of initial TM. As a result, the

regularized TM is free from the artifacts; it is adequately smooth as

well as retains the sharp boundaries. This improvement in TM

results in image restoration of better quality. The experimental

results demonstrated that the proposed method is remarkably

effective for the restoration of underwater images and it

outperforms the state-of-the-art methods.
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