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Feeding juvenile largemouth
bass (Micropterus salmoides)
with carboxymethyl cellulose
with different viscous: Impacts
on nutrient digestibility,
growth, and hepatic and
gut morphology

Yu Liu1,2,3, Jiongting Fan1,2,3, Hang Zhou1,2,3, Yumeng Zhang1,2,3,
Huajing Huang1,2,3, Yixiong Cao1,2,3, Wei Zhang1,2,3,
Junming Deng1,2,3* and Beiping Tan1,2,3*

1College of Fisheries, Guangdong Ocean University, Zhanjiang, China, 2Aquatic Animals Precision
Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province,
Zhanjiang, China, 3Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology
in South China, Ministry of Agriculture, Zhanjiang, China
A 56-day trial investigated the impact of the dietary inclusion of cellulose with

different viscosities on the growth, nutrient digestibility, serum biochemical

indices, and the hepatic and gutmorphology of largemouth bass juveniles. Four

practical diets (42.50% protein and 13.70% lipid) were designed containing 8%

microcrystalline cellulose (MC) and carboxymethyl cellulose (CMC) of 2,500,

5,000, and 6,500mPa s dynamic viscosity [namedMC, low-viscosity CMC (Lvs-

CMC), medium-viscosity CMC (Mvs-CMC), and high-viscosity CMC (Hvs-CMC)

groups, respectively]. Fish of a uniform size (6.0 g) were randomly assigned into

16 cages, with 40 fish per cage. The results showed that the protein and lipid

deposition rates, specific growth rate, protein efficiency ratio, and the weight

gain rate decreased significantly in the CMC groups compared to the MC

group, whereas the feed intake and feed coefficient rate exhibited the opposite

trend. Moreover, the intestinal Na+/K+-ATPase, alkaline phosphatase, and

lipase activities significantly decreased in the Mvs-CMC and Hvs-CMC groups

compared to the MC group, as well as the serum triglyceride, total cholesterol,

and high-/low-density lipoprotein contents. The nutrient apparent digestibility

significantly decreased in the CMC groups compared to the MC group. The

viscerosomatic and intestinal length indices in the CMC groups and the villus

height in the Hvs-CMC group were significantly lower than those in the MC

group, whereas the number of gut goblet cells and muscular thickness in the

Mvs-CMC and Hvs-CMC groups exhibited opposing results. The results also

showed that dietary CMC damaged the hepatic and gut morphology and

decreased the digestive enzyme activity, nutrient apparent digestibility, and
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growth of largemouth bass. In summary, viscosity is the main anti-nutritional

effect of dietary CMC and soluble non-starch polysaccharides.
KEYWORDS

carboxymethyl cellulose, viscous, growth performance, gut morphology,
largemouth bass
Introduction

Non-starch polysaccharides (NSPs) mainly consist of

hemicellulose, pectin, and cellulose, which compose the plant

cell wall (Ma et al., 2017). Hence, plant feed ingredients usually

contain high concentrations of NSPs (Choct, 2015; Cai et al.,

2019). Recently, the increasing price of fishmeal has forced the

addition of more plant-based feed ingredients in aquafeed to

reduce production costs (Steinberg, 2022). In addition, some

binders and fillers have also been used in feed formulations to

improve the physical quality of the feed, such as wheat bran and

rice bran. These strategies ultimately increased the contents of

NSPs in the aquafeed (Deng et al., 2021). However, dietary NSPs

cannot be directly digested by fish. They are trapped in the

intestine, they inhibit nutrient digestion and absorption, and

they reduce fish growth (Cai et al., 2019; Ren et al., 2020; Deng

et al., 2021; Liu et al., 2022a; Liu et al., 2022b).

The physiological influences of dietary NSPs on aquatic

animals have recently gained increasing attention. Commonly

thought to be a class of anti-nutritional factors, these

biomolecules have been shown to interfere with the

absorption process, reduce the nutrient apparent digestibility,

and induce metabolic disorders and metabolic organ damage in

fish (Glencross et al., 2012; Gao et al., 2018; Cai et al., 2019;

Deng et al., 2021). Based on the solubility of NSPs in natural

buffers, they can be classified into insoluble and soluble types

(INSP and SNSP, respectively), and differences in solubility

lead to the varied viscosities of these two NSP types (Sinha

et al., 2011). To date, many studies have found that dietary

INSPs and SNSPs exhibit inconsistent physiological influence

on aquatic animals, with dietary SNSPs typically exhibiting

stronger anti-nutritional effects than dietary INSPs (Glencross

et al., 2012; Deng et al., 2021; Jiang et al., 2022; Liu et al.,

2022a). Recent studies have shown that the inclusion of 16.8%

SNSPs extremely impaired gut health in rainbow trout

(Oncorhynchus mykiss) compared to supplementation with

24.8% NSPs (Deng et al., 2021); moreover, supplementation

with 30% SNSP (pectin) extremely decreased nutrient

digestibility and induced intestine and liver impairments in

yellow catfish (Pelteobagrus fulvidraco) compared to

supplementation with 30% INSP (cellulose) (Cai et al., 2019).
02
Thus, it can be speculated that the inconsistent physiological

effects of dietary INSPs and SNSPs on fish may be associated

with the differences in their physicochemical properties,

including solubility and viscosity. However, there is limited

information related to this issue in fish.

It is worth noting that dietary INSPs and SNSPs exert

different effects on the physicochemical properties of the

digesta. For example, dietary INSPs swelled with water have

been shown to increase chyme volume, while dietary SNSPs tend

to increase chyme viscosity (Sinha et al., 2011). The intestine is

the main digestive organ for fish; therefore, dietary INSPs and

SNSPs will inevitably affect the morphology and the

development of the intestine. Although scholars have

confirmed that dietary NSPs affect the intestinal development

and morphology in fish (Leigh et al., 2018; Cai et al., 2019; Lin

et al., 2020), the relationship between the viscosity of dietary

NSPs and the digestive organ’s morphology remains unclear.

Carnivorous fish have high dietary protein requirements,

and fishmeal is usually added to their commercial feeds

at more than 30% (Ma et al. , 2020). For instance,

the commercial feed of largemouth bass (Micropterus

salmoides) contains 35%–50% fishmeal (Yang et al., 2022),

while that of hybrid grouper (Epinephelus fuscoguttatus♀ × E.

lanceolatus♂) is supplemented with 50% fishmeal, indicating

that the commercial feed of carnivorous fish has broad

potential for fishmeal substitution. Carnivorous fish are not

equipped with the digestive physiology to cope with NSPs

because their natural diet does not contain NSPs. Hence,

dietary NSPs may have extreme impacts on carnivorous fish.

However, there is limited knowledge on the physiological

influences of dietary NSPs on carnivorous fish, and the

correlation between the viscosity of dietary NSPs and their

physiological effects is poorly understood. Therefore, it is

necessary to investigate the correlation between the viscosity

of dietary NSPs and their anti-nutritional effects in order to

design feasible strategies for carnivorous fish to cope with the

challenges of dietary NSPs. Toward this goal, the present trial

investigated the influences of the physicochemical properties

of dietary NSPs on the digestive enzyme activity, nutrient

apparent digestibility, hepatic and gut morphology, and the

growth of largemouth bass.
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Materials and methods

Feed preparation

Four practical diets containing 8% microcrystalline cellulose

(MC) and carboxymethyl cellulose (CMC) of 2,500, 5,000, and

6,500 mPa s [hereinafter MC, low-viscosity CMC (Lvs-CMC),

medium-viscosity CMC (Mvs-CMC), and high-viscosity CMC

(Hvs-CMC) groups, respectively] were designed (values in

millipascal second denote the dynamic viscosity, which

represents the internal friction force generated by the

interaction of fluids between two 1-m2
flat plates with a

distance of 1 m when they move relative to each other at

a speed of 1 m/s). The control group data have been published

in a previous study (Liu et al., 2022b). All materials were first

finely milled into powder, mixed thoroughly after being screened

using a 0.30-mm diameter mesh, and then accurately weighed.

Subsequently, the mixture was combined with the oil source

following diet formulation (Table 1) and then 30% of pure water
Frontiers in Marine Science 03
added to make a dough. Finally, using a double screw extruder

(F-75; South China University of Technology, China), the dough

was extruded into a moist feed (2.0 mm) and then stored at

−20°C after air drying.
Fish and farming

The juvenile largemouth bass used in this trial were supplied

by the Freshwater Aquaculture Base of Guangdong Ocean

University. A total of 640 fish of similar size (6.00 ± 0.01 g)

were randomly assigned to 16 net cages after being fasted for

24 h. The cages with dimensions of 1.2 m × 0.8 m × 1.0 m were

set in a pool. For farmed water quality: temperature, average of

29.31°C; pH, average 7.02; ammonia nitrogen, <0.02 mg/L;

nitrite, <0.05 mg/L; and dissolved oxygen, >6.00 mg/L. Fish

were fed to satiation twice a day (0700 and 1700 hours), and fish

mortality and feeding amount were accurately recorded during

the feeding trial (56 days).
TABLE 1 Formulation and composition of the test diets.

Item Group

MC Lvs-CMC Mvs-CMC Hvs-CMC

Ingredients (%)

Fish meala 45.00 45.00 45.00 45.00

Corn gluten meal 10.00 10.00 10.00 10.00

Soy protein isolate 15.00 15.00 15.00 15.00

Fish oil 4.50 4.50 4.50 4.50

Soy oil 3.40 3.40 3.40 3.40

Soy lecithin 1.00 1.00 1.00 1.00

Starch 10.00 10.00 10.00 10.00

MCb 8.00 – – –

Lvs-CMCb – 8.00 – –

Mvs-CMCb – – 8.00 –

Hvs-CMCb – – – 8.00

Ca(H2PO4)2 1.00 1.00 1.00 1.00

NaCl 0.20 0.20 0.20 0.20

Choline chloride 0.30 0.30 0.30 0.30

Vitamin C 0.03 0.03 0.03 0.03

Vitamin and mineral premixc 1.50 1.50 1.50 1.50

Ethoxyquin 0.02 0.02 0.02 0.02

Yttrium(III) oxide 0.05 0.05 0.05 0.05

Proximate composition, dry matter (%)

Crude protein 42.59 42.48 42.43 42.38

Crude lipid 13.75 13.81 13.70 13.72

Ash 9.70 9.66 9.73 9.70

Viscosity (mPa s) 5.14 182.15 320.48 440.65
fro
MC, microcrystalline cellulose; Lvs-CMC, low-viscosity carboxymethyl cellulose; Mvs-CMC, medium-viscosity CMC; Hvs-CMC, high-viscosity CMC.
aSupplied by Zhanjiang Haibao Feed Co., Ltd. (Zhanjiang, China): fish meal, 65.81% crude protein and 7.69% crude lipid.
bSupplied by Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China).
cSupplied by Qingdao Master Biotech (Qingdao, China).
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Digestibility test

The digestibility test was carried out in the feeding period

using yttrium trioxide (Y2O3, 99.9% purity) as the indicator.

Fecal collection was initiated 2 weeks after the fish had adapted

to the diet. Feces at the bottom of the cages were collected daily

using a 200-mesh brail net, with intact feces selected for

subsequent analysis.
Sampling strategy

The fish were counted and weighed accurately after a 24-h

fast after the fish had eaten their last meal, and then they were

anesthetized using 100 mg/L of an MS-222 solution. From each

cage, four fish were randomly chosen for the measurement of

body length and weight, and then the fish were dissected on an

ice plate. The visceral mass, gut, and liver were weighed

accurately and the intestinal length measured. Another group

of fish (n = 4 from each cage) was randomly selected for the

collection of blood samples according to the method described

by Liu et al. (2022b). The proximal and distal intestines of two

fish from each cage were collected into separate Eppendorf (EP)

tubes and stored at −80°C for subsequent analysis. Thereafter,

another batch of fish (n = 3 from each cage) was randomly

collected and stored at −20°C for whole-body chemical

composition analysis.
Gut and hepatic morphological
observation

One hindgut (1 cm) and liver sample per cage was collected

into separate EP tubes and then fixed using 4% formaldehyde

solution to prepare hematoxylin–eosin (HE) staining sections

according to the method described by Liu et al. (2022b). HE-

stained sections were observed using a Nikon Ni-U microscope

imaging system (Nikon Ni-U, Tokyo, Japan) following the

method described by Huang et al. (2022).

Furthermore, another hindgut tissue was collected per cage

in the MC, Lvs-CMC, and Hvs-CMC groups and then fixed with

2.5% glutaraldehyde to prepare ultrathin sections according to

the method described by Liu et al. (2022b). Finally, the ultrathin

sections were examined using a transmission electron

microscope (HT7600; Hitachi, Tokyo, Japan) according to the

method of Huang et al. (2022).
Chemical analysis

Feces, whole-body, and the diet’s approximate composition

were measured using a laboratory method (AOAC, 2005), as

follows: moisture, drying samples at 105°C until obtaining a
Frontiers in Marine Science 04
constant weight; crude protein, using the Kjeldahl method; crude

lipid, using the Soxhlet extraction method; and crude ash,

burning the samples in a muffle furnace. Dietary viscosity was

detected using a viscometer (LV-SSR type) with reference to the

methods described in Liu et al. (2022b). The content of yttrium

in the feed and fecal samples was measured using inductively

coupled plasma mass spectrometry. Firstly, 100–200 mg sample

was digested with a digestion solution (1 ml hydrogen peroxide

and 6 ml nitric acid) in a microwave digestion apparatus

(Multiwave PRO 41HVT56; Anton Paar, Graz, Austria).

Thereafter, the digested solution of each sample was used to

determine the yttrium content using mass spectrometry (7500cx;

Agilent, Santa Clara, CA, USA).
Intestinal digestive enzyme activity
analysis

Moist intestinal samples were first precisely weighed and

then homogenized (IKA Works Asia, Bhd., Rawang, Malaysia)

by adding 9x phosphate buffer (ice-cold, v/w) to obtain the

supernatant for the analysis of enzyme activity. The activities of

intestinal creatine kinase (CK), lipase, Na+/K+-ATPase, protease,

alkaline phosphatase (AKP), and amylase and the concentration

of protein were determined using commercial kits following the

instructions of the manufacturer (ELISA; Shanghai Enzyme Link

Biotechnology Co., Ltd., Shanghai, China).
Serum biochemical index analysis

The contents of serum low-/high-density lipoprotein cholesterol

(LDL-C/HDL-C, respectively),malondialdehyde (MDA),bloodurea

nitrogen (BUN), triglyceride (TG), total amino acid (TAA), and total

cholesterol (T-CHO) and the activities of serum superoxide

dismutase (SOD), peroxidase (POD), catalase (CAT), and alanine

and aspartate aminotransferase (ALT and AST, respectively) were

examined using commercial kits according to the manufacturer’s

instructions (Nanjing Jiancheng Bioengineering Institute,

Nanjing, China).
Calculation and statistical analysis

The formulas used in the present study were as follows:

Survival rate (SR,   % ) = 100� Final fish number
Initial fish number

� �

Weight gain rate (WGR,   % )

=
100� Final body weight − Initial body weightð Þ

Initial body weight
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Specific growth rate (SGR,   % =day) =

100� Ln Final body weightð Þ − Ln Initial body weightð Þ½ �
Days

Feed intake (FI,   % body
weight
day

)

= 100� 2� Feed consumption � Days
Final body weight + Initial weightð Þ

Feed conversion ratio (FCR)

=
Feed intake

Final body weight − Initial weight

Protein efficiency ratio (PER)

=
Final body weight − Initial body weightð Þ

Protein intake

Protein deposition rate (PDR,% )

= 100� Protein retention
Protein intake

Lipid deposition rate (LDR,% ) = 100� Lipid retention
Lipid intake

Condition factor (CF,  g=cm3) =
Body weight
Body length∧3

Organ index (OI,   % ) = 100� Organ weight
Body weight

Hepatosomatic index (HSI,   % ) = 100� Liver weight
Body weight

Viscerosomatic index (VSI,   % ) = 100� Intestinal weight
Body weight

Intestinal length index (ILI,   % )

= 100� Intestinal length
Body weight

Apparent digestibility of dry matter ( % )

= 100� 1 −
Dietary Y content
Fecal Y content

� �

Apparent digestibility of dry nutrient ( % ) =

100� 1 −
Dietary Y content
Fecal Y content

� �
� Dietary Y content

Fecal Y content

� �� �
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Experimental data were presented as the mean ± standard

error of the mean (SEM). The percentage data were arcsine-

transformed before analysis, and all data were subjected to one-

way analysis of variance with SPSS software (version 22.0;

Chicago, IL, USA). Tukey’s multiple range test was performed

when there was a significant difference between data (p < 0.05).

Results

Growth indices

The survival rate (SR) of largemouth bass was not

significantly affected by the experimental diets (p > 0.05;

Table 2). The protein efficiency ratio (PER), protein deposition

rate (PDR), specific growth rate (SGR), and the weight gain rate

(WGR) in the CMC groups were significantly lower than those

in the MC group, whereas the feed intake (FI) and feed

conversion ratio (FCR) in the CMC groups exhibited the

opposite results (p < 0.05). Moreover, the lipid deposition rate

(LDR) decreased significantly in the CMC groups compared to

that in the MC group, and this parameter also decreased

significantly with increasing CMC viscosity (p < 0.05).
Chemical composition and
morphological parameters

The organ index (OI) and the whole-body crude protein and

moisture contents were not significantly affected by the

experimental diets (p > 0.05; Table 3). The condition factor

(CF) in the Hvs-CMC group was significantly lower than that in

the other groups. The hepatosomatic index (HSI) in the CMC

groups was significantly lower than that in the MC group;

moreover, this parameter significantly decreased with

increased CMC viscosity (p < 0.05). The viscerosomatic index

(VSI) and intestinal length index (ILI) in the CMC groups were

significantly higher than those in the MC group, with the VSI

showing an increasing trend with increased CMC viscosity

(p < 0.05). Moreover, the whole-body crude lipid content

decreased significantly in the CMC groups compared to that

in the MC group, and this parameter decreased significantly in

the Hvs-CMC group compared to the Lvs-CMC and Mvs-CMC

groups (p < 0.05).
Dietary nutrient digestibility

Dietary crude lipid, crude protein, and the dry matter

apparent digestibility coefficient in the CMC groups were

significantly lower than those in the MC group (p < 0.05;

Table 4). Additionally, the dietary dry matter apparent
frontiersin.org
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digestibility in the Lvs-CMC group was significantly higher than

that in the Hvs-CMC group (p < 0.05).
Digestive and absorption enzyme activity

The activities of intestinal amylase and CK were not

significantly affected by the experimental diets (p > 0.05;

Table 5). The activities of intestinal AKP and lipase in the

CMC groups were significantly lower than those in the MC

group (p < 0.05). Additionally, the activities of intestinal Na+/

K+-ATPase and protease in the Mvs-CMC and Hvs-CMC

groups were significantly lower than those in the Lvs-CMC

group (p < 0.05).
Frontiers in Marine Science 06
Serum biochemical indices

The concentrations of TAAandMDAand the activities of POD,

SOD, and CAT in the serum were not significantly affected by the

experimental diets (p > 0.05; Table 6). The concentrations of serum

TG, HDL-C, LDL-C, and T-CHO in the CMC groups were

significantly lower than those in the MC group (p < 0.05).

Moreover, the serum HDL-C concentration in the Mvs-CMC and

Hvs-CMC groups was significantly lower than that in the Lvs-CMC

group (p < 0.05). Conversely, the activities of serumALT andAST in

the CMC groups were significantly higher than those in the MC

group; the serumALTactivity increased significantlywith increasing

CMC viscosity (p < 0.05). The serumBUN content in theHvs-CMC

groupwas significantlyhigher than that in theothergroups (p<0.05).
TABLE 3 Effects of increasing dietary viscosity on the morphological parameters and body composition of juvenile largemouth bass.

Item Group

MC Lvs-CMC Mvs-CMC Hvs-CMC

Morphological parameters

Condition factor (g/cm3) 2.20 ± 0.04b 2.17 ± 0.04b 2.13 ± 0.10b 2.09 ± 0.03a

Organ index (%) 8.04 ± 0.13 8.32 ± 0.16 8.15 ± 0.16 7.97 ± 0.18

Hepasomatic index (%) 1.86 ± 0.06d 1.39 ± 0.05c 1.05 ± 0.05b 0.87 ± 0.04a

Viserosomatic index (%) 0.69 ± 0.02a 1.04 ± 0.03b 1.16 ± 0.03c 1.24 ± 0.02d

Intestinal length index (%) 0.86 ± 0.01a 0.94 ± 0.01b 0.96 ± 0.02b 0.95 ± 0.01b

Body composition (%)

Moisture 72.01 ± 1.06 72.59 ± 0.92 72.70 ± 1.12 73.73 ± 1.27

Crude protein 15.66 ± 0.20 15.29 ± 0.18 15.73 ± 0.17 15.79 ± 0.04

Crude lipid 8.53 ± 0.09c 7.39 ± 0.08b 7.33 ± 0.20b 6.68 ± 0.03a

Ash 4.06 ± 0.20 3.97 ± 0.12 4.10 ± 0.15 4.10 ± 0.12
fro
Values shown are the mean ± SEM (n = 4). Different superscript letters in the same row indicate significant difference between data (p < 0.05).
MC, microcrystalline cellulose; Lvs-CMC, low-viscosity carboxymethyl cellulose; Mvs-CMC, medium-viscosity CMC; Hvs-CMC, high-viscosity CMC.
TABLE 2 Effects of increasing dietary viscosity on the growth and feed utilization of juvenile largemouth bass.

Item Group

MC Lvs-CMC Mvs-CMC Hvs-CMC

Final body weight (g) 67.23 ± 1.26b 60.87 ± 0.61a 58.01 ± 0.94a 57.79 ± 1.53a

Survival rate (%) 98.75 ± 1.25 100.00 ± 0.00 98.75 ± 0.72 96.88 ± 1.88

Weight gain rate (%) 1,118.50 ± 20.53b 1,012.28 ± 10.36a 966.23 ± 16.00a 962.55 ± 24.33a

Specific growth rate (%/day) 4.31 ± 0.03b 4.13 ± 0.02a 4.05 ± 0.03a 4.04 ± 0.04a

Feed intake (% BW/day) 2.85 ± 0.05a 3.11 ± 0.03b 3.25 ± 0.05b 3.26 ± 0.08b

Feed coefficient rate 0.95 ± 0.02a 1.06 ± 0.01b 1.12 ± 0.02b 1.13 ± 0.03b

Protein efficiency ratio 2.46 ± 0.05b 2.22 ± 0.03a 2.11 ± 0.04a 2.10 ± 0.06a

Protein deposition rate (%) 38.57 ± 0.77b 33.82 ± 0.40a 33.11 ± 0.61a 33.22 ± 0.96a

Lipid deposition rate (%) 67.91 ± 1.29c 52.40 ± 0.59b 49.69 ± 0.88a 41.60 ± 1.98a
Values shown are the mean ± SEM (n = 4). Different superscript letters in the same row indicate significant difference between data (p < 0.05).
MC, microcrystalline cellulose; Lvs-CMC, low-viscosity carboxymethyl cellulose; Mvs-CMC, medium-viscosity CMC; Hvs-CMC, high-viscosity CMC; BW, body weight.
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Hindgut and liver morphology
observation

Morphological observations of the gut and liver are

presented in Figures 1–3. The measurement strategy is also

indicated in the figures. The gut crypt depth and villus width

were not significantly affected by the experimental diets

(p > 0.05; Table 7). The gut microvillus height in the CMC

groups was significantly lower than that in the MC group, and

this parameter decreased significantly with increasing CMC

viscosity (p < 0.05). Moreover, the gut villus height in the Hvs-

CMC group was significantly lower than that in the other groups

(p < 0.05). The gut muscular thickness and goblet cell number in

the Mvs-CMC and Hvs-CMC groups were significantly lower

than those in the MC and Lvs-CMC groups (p < 0.05).
Discussion

An increasing amount of reports confirmed that the

physiological impacts of dietary NSPs on aquatic animals are

associated with the type of dietary NSPs (either insoluble or

soluble) (Sinha et al., 2011; Ren et al., 2020; Deng et al., 2021;

Jiang et al., 2022). Several studies have shown that the anti-

nutritional impacts of dietary NSPs are mainly caused by the
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SNSP component (Cai et al., 2019; Ren et al., 2020; Deng et al.,

2021; Liu et al., 2022b). However, there is limited information on

the correlation between the physicochemical characteristics of

NSPs and their anti-nutritional effects. Our data demonstrated

that dietary CMC exerts a greater anti-nutritional influence

compared to dietary MC, suggesting that solubility and

viscosity are the major anti-nutritional features of dietary

NSPs. Similarly, dietary SNSPs negatively affected the growth

of yellow catfish and rainbow trout compared to dietary INSPs

(Cai et al., 2019; Deng et al., 2021), and dietary supplementation

exceeding SNSP (guar gum) negatively affected the growth

performance of mullet (Mugil liza) and striped catfish

(Pangasianodon hypophthalmus) (Ramos et al., 2015; Tran-Tu

et al., 2018).

Dietary SNSPs increase the viscosity of the digesta and slow down

the passage of gastrointestinal emptying (Tran-Tu et al., 2019), which

may, in turn, reduce the intake of fish feed. Additionally, dietary

SNSPs can induce the production of glucagon-like peptides and

peptide YY through bacterial fermentation, thereby enhancing satiety

in fish (Lattimer and Haub, 2010). Therefore, the increase of dietary

SNSP levels is usually accompanied by a decrease in the FI of fish

(Sinha et al., 2011). In previous studies, an increase in dietary viscosity

has been shown to decrease the FI ofM. liza (Ramos et al., 2015), but

increased the FI of rainbow trout (Deng et al., 2021). In this study,

dietary CMC supplementation significantly increased the FI of
TABLE 5 Effects of increasing dietary viscosity on the intestinal digestive and absorptive enzyme activities of juvenile largemouth bass.

Item Group

MC Lvs-CMC Mvs-CMC Hvs-CMC

Proximal intestine

Protease (U/g protein) 4.55 ± 0.14b 4.29 ± 0.23b 3.60 ± 0.23a 3.51 ± 0.09a

Lipase (U/g protein) 0.85 ± 0.04b 0.68 ± 0.02a 0.71 ± 0.03a 0.69 ± 0.02a

Amylase (U/g protein) 0.33 ± 0.04 0.40 ± 0.03 0.29 ± 0.05 0.26 ± 0.04

Distal intestine

Creatine kinase (U/mg protein) 0.16 ± 0.02 0.12 ± 0.03 0.13 ± 0.03 0.16 ± 0.02

Na+/K+-ATPase (U/mg protein) 24.37 ± 1.44b 23.28 ± 0.83b 19.59 ± 0.54a 18.55 ± 0.44a

Alkaline phosphatase (U/g protein) 145.63 ± 5.69b 124.82 ± 5.53a 126.67 ± 4.74a 125.08 ± 2.40a
Values shown are the mean ± SEM (n = 4). Different superscript letters in the same row indicate significant difference between data (p < 0.05).
MC, microcrystalline cellulose; Lvs-CMC, low-viscosity carboxymethyl cellulose; Mvs-CMC, medium-viscosity CMC; Hvs-CMC, high-viscosity CMC.
TABLE 4 Effects of increasing dietary viscosity on the dietary apparent digestibility of juvenile largemouth bass.

Item Group

MC Lvs-CMC Mvs-CMC Hvs-CMC

Dry matter (%) 85.52 ± 0.32c 82.64 ± 0.26b 80.24 ± 0.14a 80.56 ± 0.41a

Crude protein (%) 91.32 ± 0.36b 86.75 ± 1.12a 86.32 ± 0.30a 85.91 ± 0.42a

Crude lipid (%) 90.88 ± 0.24b 80.25 ± 0.17a 80.39 ± 0.56a 80.01 ± 0.60a
fro
Values shown are the mean ± SEM (n = 4). Different superscript letters in the same row indicate significant difference between data (p < 0.05).
MC, microcrystalline cellulose; Lvs-CMC, low-viscosity carboxymethyl cellulose; Mvs-CMC, medium-viscosity CMC; Hvs-CMC, high-viscosity CMC.
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TABLE 6 Effects of increasing dietary viscosity on the serum biochemical indices of juvenile largemouth bass.

Item Group

MC Lvs-CMC Mvs-CMC Hvs-CMC

HDL-C (mmol/L) 5.11 ± 0.63c 4.17 ± 0.13b 3.00 ± 0.33a 3.01 ± 0.12a

LDL-C (mmol/L) 3.53 ± 0.22b 2.29 ± 0.10a 2.20 ± 0.13a 2.41 ± 0.07a

T-CHO (mmol/L) 10.75 ± 0.60b 6.56 ± 0.38a 6.20 ± 0.26a 5.75 ± 0.25a

TG (mmol/L) 10.17 ± 0.75b 7.25 ± 0.20a 7.74 ± 0.38a 7.45 ± 0.35a

TAA (mmol/L) 0.31 ± 0.03 0.31 ± 0.01 0.31 ± 0.01 0.31 ± 0.02

BUN (mmol/L) 2.05 ± 0.24a 2.08 ± 0.04a 2.34 ± 0.30ab 2.80 ± 0.14b

ALT (U/L) 3.84 ± 0.15a 4.32 ± 0.42a 6.12 ± 0.32b 5.87 ± 0.37b

AST (U/L) 15.75 ± 0.40a 18.03 ± 1.63ab 20.45 ± 1.33b 19.89 ± 0.94b

SOD (U/ml) 217.72 ± 10.52 208.04 ± 8.27 213.66 ± 6.73 209.64 ± 8.14

MDA (nmol/ml) 19.23 ± 1.20 18.92 ± 1.56 19.82 ± 1.80 18.02 ± 1.80

CAT (U/ml) 6.23 ± 0.26 6.20 ± 0.39 6.27 ± 0.11 6.67 ± 0.39

POD (U/ml) 1.31 ± 0.04 1.39 ± 0.05 1.26 ± 0.02 1.38 ± 0.09
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Values shown are the means ± SEM (n = 4). Different superscript letters in the same row indicate significant difference between data (p < 0.05).
MC, microcrystalline cellulose; Lvs-CMC, low-viscosity carboxymethyl cellulose; Mvs-CMC, medium-viscosity CMC; Hvs-CMC, high-viscosity CMC; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein cholesterol; T-CHO, total cholesterol; TG, triglyceride; TAA, total amino acid; BUN, blood urea nitrogen; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; SOD, superoxide dismutase; MDA, malondialdehyde; CAT, catalase; POD, peroxidase.
FIGURE 1

Hindgut hematoxylin–eosin (HE) staining of largemouth bass fed with the test diets (magnification, ×200). Yellow double-sided arrow, villus
width; black arrow, crypt cell proliferation; red double-sided arrow, villus height; green double-sided arrow, muscular thickness; green arrow,
goblet cell; blue double-sided arrow, crypt depth.
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largemouth bass. The differences in these results suggest that the effect

of dietary viscosity on the feeding rate of fish may be related to

fish species.

Intestinal digestive enzymes play a crucial role in the

absorption process of feed nutrients in fish, and their activity

determines the nutrient absorption efficiency and growth rate of

fish (Willora et al., 2022). On the other hand, digestive enzyme

activity is inevitably influenced by the quantities and

characteristics of feed ingredients (Zhang et al., 2021). Our

data showed that dietary CMC extremely reduced the activities

of the intestinal digestive enzymes compared to dietary MC,

suggesting that soluble SNSPs are detrimental to dietary nutrient

uptake. Moreover, the activities of intestinal protease and Na+/

K+-ATPase exhibited a decreasing trend with increasing CMC

viscosity, indicating that high-viscosity diets are more

detrimental to nutrient digestion and absorption. A previous

study indicated that dietary SNSPs bind to the enzymes in the

gut, decrease the intestinal enzyme activities (Sinha et al., 2011),

and may form some sticky granules that adhere to the intestinal

villus, thereby interfering with the digestion and absorption

processes (Nie et al., 2007). This evidence suggests that CMC

diets may reduce the digestive enzyme activity through adhesion.

Furthermore, AKP is also considered to be an important

immune enzyme in fish, and a decrease in its activity
Frontiers in Marine Science 09
represents a decreased immune status in fish (Yin et al., 2018;

Yu et al., 2021). Combined with the poor gut morphology

(epithelial cell death and increased cell intervals) (Figure 2)

observed in the CMC groups, our results suggest that high

dietary viscosity disrupts gut health.

Dietary NSPs have a large number of carboxyl and hydroxyl

units that can interact with mineral elements (Ma et al., 2017),

thereby accelerating the efflux of mineral components and

reducing their absorption efficiency, especially for Na and K

(Leenhouwers et al., 2006; Kraugerud et al., 2007; Leenhouwers

et al., 2007). It is worth noting that the activity of Na+/K+-

ATPase is affected by osmotic pressure (He et al., 2021) and is

closely associated with the concentration of substrate ion (Gal-

Garber et al., 2003). This evidence possibly explains the dramatic

decrease in intestinal Na+/K+-ATPase activity in this study since

a high-viscosity diet accelerates the excretion of Na, K, and

other minerals.

Dietary proteins and lipids need to be broken down by

protease and lipase before they can be absorbed and utilized by

fish. Therefore, it can be hypothesized that the reduced apparent

protein and lipid digestibility in the CMC groups is closely

associated with the decreased activities of protease and lipase. In

addition, endogenous nitrogen loss may also contribute to the

decrease in apparent protein digestibility (Rgensen et al., 2003).
FIGURE 2

Hindgut transmission electron microscopy observation of juvenile largemouth bass fed with the test diets (magnification, ×7,000). Black arrow,
epithelial cell death; red arrow, epithelial cell space; yellow double-sided arrow, microvillus height.
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Furthermore, the poor apparent lipid digestibility ultimately

reduced the serum TG concentration and whole-body crude

protein content in the CMC groups. Similarly, increasing dietary

viscosity significantly decreased the dietary dry matter and crude

protein digestibility in catfish (Clarias gariepinus) and striped
Frontiers in Marine Science 10
catfish (Leenhouwers et al., 2006; Tran-Tu et al., 2018; Tran-Tu

et al., 2019).

ALT and AST are amino acid metabolizing enzymes that are

mainly located in hepatocytes and enter the blood when liver

damage occurs (Chaklader et al., 2021). Hence, the activities of
FIGURE 3

Hepatic hematoxylin–eosin (HE) staining of largemouth bass fed with the test diets (magnification, ×200). Black arrow, fibrosis of liver cells.
TABLE 7 Effects of increasing dietary viscosity on the hindgut morphology of juvenile largemouth bass.

Item Group

MC Lvs-CMC Mvs-CMC Hvs-CMC

Villus height (mm) 518.35 ± 24.40b 549.44 ± 18.33b 526.37 ± 12.25b 457.92 ± 10.31a

Villus width (mm) 103.45 ± 13.28 107.71 ± 8.84 107.71 ± 8.84 104.86 ± 9.49

Crypt depth (mm) 25.59 ± 3.14 24.18 ± 2.48 23.77 ± 2.28 24.89 ± 2.01

Muscular thickness (mm) 110.06 ± 6.48a 102.48 ± 7.64a 130.50 ± 5.57b 131.80 ± 6.83b

Goblet cell relative number (per 100 mm) 17.00 ± 0.50a 14.00 ± 1.84a 25.20 ± 3.07b 24.83 ± 3.19b

Microvillus height (mm) 1.31 ± 0.03c 1.02 ± 0.04b – 0.82 ± 0.06a
Values shown are the mean ± SEM (n = 4). Different superscript letters in the same row indicate significant difference between data (p < 0.05).
MC, microcrystalline cellulose; Lvs-CMC, low-viscosity carboxymethyl cellulose; Mvs-CMC, medium-viscosity CMC; Hvs-CMC, high-viscosity CMC.
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serum ALT and AST can reveal the hepatic function status

(Hanim et al., 2015). In this study, dietary CMC increased the

activities of serum ALT and AST, with both ALT and AST

activities in the Hvs-CMC group being significantly lower than

those in the MC group; in contrast, a worse hepatic morphology

was observed in the CMC groups (Figure 3). Our results suggest

that dietary CMC disrupts hepatic health, with a highly viscous

CMC exhibiting a stronger destructive impact than the low-

viscosity CMC. Similarly, dietary SNSPs lead to hepatic damage

in yellow catfish (Cai et al., 2019).

Fish gut morphology is inevitably affected by dietary

components; hence, gut morphology is a widely used measure

to evaluate the potential physiological impacts of dietary

components on fish (Hartviksen et al., 2014; Huang et al.,

2022). Furthermore, gut morphology is closely associated with

its physiological functions (e.g., digestion and absorption) (Fang

et al., 2019). For example, variations in the height of the

intestinal villus and the number of folds and goblet cells may

affect intestinal digestion and absorption (Sang and Fotedar,

2010). Generally, factors that can increase the digestive area

promote intestinal digestion and absorption function. In this

study, fish fed with Hvs-CMC diets had the shortest intestinal

villus height, suggesting that a high-viscosity diet is unfavorable

for gut digestive function. Muscular thickness can efficiently

reveal the intestinal peristaltic capacity since it is closely related

to intestinal motility (Huang et al., 2022). As aforementioned,

dietary SNSPs increased the digesta viscosity and prolonged the

digesta transit time in the intestine (Sinha et al., 2011).

Therefore, it can be hypothesized that the increase in muscular

thickness was intended to enhance intestinal motility, as an

adaptive change to highly viscous diets. The mucin secreted by

goblet cells is a crucial part of the intestinal mucosal immune

barrier, which participates in maintaining the intestinal health of

fish (Zheng et al., 2015; Martıń et al., 2019; Tan and Sun, 2020).

Thus, an increase in the number of goblet cells is beneficial for

promoting intestinal health. Moreover, Sinha et al. (2011)

suggested that increasing the digesta viscosity decreased

intestinal oxygen tension, thereby promoting the proliferation

of anaerobic microbiota. Moreover, anaerobic microbiota is

generally detrimental to host health and even induces

infections by producing toxic metabolites such as endotoxins,

histamine, and trimethylamine N-oxide (Santos et al., 2014;

Subramaniam and Fletcher, 2018; Cobo, 2021). This evidence

suggests that the increased number of intestinal goblet cells in

largemouth bass may be a response to the adverse effects of the

high-viscosity diet, thereby maintaining intestinal health.

Overall, combined with the decrease in digestive enzyme

activity, feed utilization, and growth, as well as the unfavorable

dietary nutrient digestibility and worse intestinal morphology

aforementioned, our results demonstrated that the anti-

nutritional effect of dietary SNSPs is mainly associated with

their viscosity.
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Conclusion

In conclusion, dietary CMC increases the dietary viscosity,

decreases the digestive enzyme activities, and disrupts the intestinal

morphology, thereby inhibiting dietary nutrient digestibility and

reducing the growth of largemouth bass juveniles. Moreover, our

data showed that solubility and viscosity are the dominant anti-

nutritional features of NSPs and that the anti-nutritional effect of

dietary SNSPs comes mainly from their viscosity.
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