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Variational parameter estimation
in a two-equation turbulence
model: A case study with a 3D
primitive-equation ocean model

Yan Hu, Xuefeng Zhang* and Wei Li*

School of Marine Science and Technology, Tianjin University, Tianjin, China
A three-dimensional and complete adjoint model of the Princeton Ocean

Model with a generalized coordinate system (POMgcs) is developed to

construct the 4D-Variational data assimilation (4D-Var) algorithm in this

study. Uncertain parameters in the Mellor-Yamada 2.5 turbulence submodel

(MY-2.5) which is enclosed in POMgcs, are tentatively estimated via the 4D-

VAR algorithm within a biased model framework. Here, the control variables in

the biased model are set to two uncertain wave-affected parameters (wave

energy factor a and Charnock coefficient b ) in the MY-2.5 turbulence model,

which play a crucial role in modulating the heat content distribution in the

upper coastal sea. First of all, the ocean temperature and salinity in a typical

coastal sea, Bohai Sea, are simulated by the model to validate the rationally of

the MY-2.5 parameterization scheme for both constructing the “truth model”

and generating the “pseudo-observations” in the data assimilation studies.

Then, after thoroughly testing the ability of the 4D-Var to optimize the initial

state fields of the POMgcs model, a series of parameter estimation experiments

are carried out to investigate whether and to what degree the parameters

embedded in high-order turbulence models can be significantly optimized.

Results of parameter estimation with perfect initial fields show the two

estimated parameters in the MY-2.5 submodel can successfully converge to

the “truth” value. The local minimum of the cost function can be effectively and

efficiently jumped out once two kinds of optimization algorithms, LBFGS and

LMBM, are jointly used. In addition, the estimated parameter will converge to

the optimal value rather than the truth one to compensate for the initial field

error when the state-parameter are estimated simultaneously. Further, the

performance of the parameter estimation is also deeply discussed when the

observation samples are noised. Finally, prescribing the initial field and

parameter as error source, a forecasting experiment for sea temperature is

performed. The experiment results indicate that assimilating “pseudo-

observations” to the model based on 4D-Var can significantly improve the

sea temperature simulation. Moreover, adjusting the initial field and parameter

leads to a better result than the only initial field, and this conclusion is more

evident at the surface than in the deeper ocean.
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Introduction

The purpose of data assimilation is to provide a better

estimation of the ocean (atmosphere) states by combining the

numerical model and observations. With the deployment of

ocean observing systems and remote sensing techniques, an

increasing number of oceanic data is becoming available.

These data provide a promising prospect for initial field

optimization and parameters estimated through data

assimilation. In the last few decades, enormous progress has

been made in improving the data assimilation method. Until

now, variational methods and the Kalman filter have been widely

used in numerical prediction and reanalysis.

The four-dimensional variational (4D-Var) method is one of

the most influential and robust schemes among all the data

assimilation methods. It has the advantage of assimilating

various observations distributed in time and space into the

model and maintaining the dynamical and physical

consistency with the model. More critically, 4D-Var applies

the adjoint technique to get the complicated gradient of the

cost function. The adjoint method was proposed with the

prognostic equation as the strong constraint at the earliest

(Sasaki, 1970), and then LeDimet and Talagrand (1986) first

applied this approach for analysis and assimilation of the

meteorological observations. In the following years, the

application of the adjoint method became more and more

common for improving weather forecasts (Talagrand and

Courtier, 1987; Thepaut and Courtier, 1991; Navon et al.,

1992; Rabier and Courtier, 1992; Courtier et al., 1994;

Andersson et al., 1994; Zou and Xiao, 1999; Peng and Zou,

2002; Peng and Zou, 2004). Although the adjoint method is

implemented in oceanographic studies later than in

atmospheric, its development is also remarkable in the former

as in the latter (Bennett and McIntosh, 1982; Yu and O’Brien,

1991; Das and Lardner, 1991; Yu and O’Brien, 1992; Seiler, 1993;

Lardner and Song, 1995; Lu and Hsieh, 1997; Lu and Hsieh,

1998a; Lu and Hsieh, 1998b; Heemink et al., 2002 and Zhang

et al., 2002; Zhang et al., 2003). It is worth noting that if the

numerical model is complex, developing the adjoint code needs a

great deal of effort, and the portability of the adjoint model is

poor. Therefore, most of the research mainly focused on

investigating the feasibility of the adjoint approach under a

simplified model based on one-dimensional or two-

dimensional assumptions (Bennett and McIntosh, 1982; Yu

and O’Brien, 1991; Das and Lardner, 1991; Yu and O’Brien,

1992). Zhang et al. (2002); Zhang et al. (2003) assimilate

predicted coastal tidal elevation and coastal subtidal water

level data into a linear two-dimensional Princeton Ocean
Frontiers in Marine Science 02
Model (POM) to estimate the lateral tidal open boundary

conditions and wind drag coefficient using the adjoint data

assimilation method. With the advent of more powerful

supercomputing capabilities, Peng and Xie, (2006) developed

the adjoint model of the three-dimensional, time-dependent,

nonlinear POM to build the 4D-Var method for storm surge

forecast. In the subsequent studies, Peng et al. (2007), Peng et al.

(2013) corrected the error of the initial conditions and estimated

the parameters of wind stress and drag coefficient in the storm

surge forecast using the adjoint technique based on the three-

dimension POM again. It is worth noting that Mellor Yamada

2.5 order (MY-2.5) turbulent closed scheme is enclosed in POM.

Due to the high nonlinear and discontinuity of the vertical

turbulence, the nonphysical noise might be produced, and thus

result in numerical instability during linearizing the MY-2.5. To

avoid the problem, Peng and Xie (2006) neglects the variation of

the vertical diffusion coefficients in the linearization of the

vertical turbulence scheme replaced by a pre-run of POM with

MY-2.5 to determine the value of the diffusion coefficient. In that

study, the noise generated by the linear approximation of the

turbulence closure scheme has a negligible impact on the storm

surge. However, research about using the whole adjoint model of

the three-dimensional POM to construct 4D-Var for

investigating the feasibility of the adjoint model of MY-2.5

is scarce.

In this study, we developed the three-dimensional and

complete adjoint model of the Princeton Ocean Model with the

generalized coordinate system (POMgcs). On this basis,

constructing the 4D-Var method to estimate the uncertain

parameter used in the MY-2.5 turbulence enclosed scheme. The

enhanced-turbulent kinetic energy is an important factor in

controlling the profile pattern of surface layer circulation and

temperature field. Several vertical mixing parameterization

schemes can be used to model the coastal circulation and

thermohaline structure (Qiao et al., 2004). The appropriate

parameterization scheme contributes to simulating the surface

layer structure of the ocean temperature. Craig and Banner (1994)

and Craig (1996) proposed a scheme to model wave-enhanced

turbulence, which imposed a surface diffusion boundary condition

(CB boundary condition) into a two-equation turbulence model.

It is worth noting that the CB boundary condition introduced two

uncertain parameters, the wave energy factor a and the Charnock

coefficient b. It is essential to estimate the two parameters

accurately for modulating the heat content distribution in the

upper coastal sea.

The paper is organized as follows: the following section

describes the 4D-Var, POMgcs, and its adjoint model. In section

3, a series of correctness test is performed to evaluate the adjoint
frontiersin.org
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model of POMgcs. Secondly, the truth simulation and biased

simulation are conducted, and then a biased assimilation

experiment is performed to identify the capability of 4D-Var

to optimize the initial field. Moreover, the sensitivity of

simulated temperature to parameters is investigated. Then, a

series of parameter estimation experiments are performed, and

the corresponding results are discussed. Finally, the forecast

experiments of sea temperature are evaluated by prescribing the

initial field and parameter as error sources. Discussion and

summary are presented in section 4.
4D-Var, the nonlinear POMgcs, and
its adjoint model

In general, the 4D-Var can be attributed to the minimization

of the cost function as follow (Bouttier and Courtier, 1999):

J(x) =
1
2
(x − xb)

TB−1(x − xb) +
1
2o

n

i=0

(yi −Hi½xi�)TR−1
i (yi −Hi½xi�) :

(1)

It can be found that the 4D-Var is a simple generalization of

3D-Var for observations that are distributed in time. Where x is

the analysis variable. xb and B represent the background value

and background error covariance matrix, respectively. In the

given assimilation window, the observations are distributed over

n intervals, and the subscript i denotes the series of time levels.

For ∀i, xi=M0!i(x), and M0!i is the model forecast operator

from the initial time to i th time level, the 4D-Var is a nonlinearly

constrained optimization problem that is difficult to solve in the

general case. yi, Hi, and R−1
i represent the observation, linear

interpolation operator, and the inversion of the observation

error covariance matrix at the time i, respectively. The

implementation of the optimization algorithm requires the

participation of the gradient of the cost function. The gradient

of the cost function can be deduced:

∇ J(x) = B−1(x − xb) +o
N

i=0
MT

i!0H
T
i R

−1
i (HiM0!i(x) − yi), (2)

where M is the tangent linear model (TLM), i.e. the

differential of M, MT is the adjoint model (ADM) of M.

Similarly, HT is the adjoint of H . The development of the

ADM is difficult, especially for the complicated forward model.

In this study, the forward model used in the 4D-Var

algorithm is POMgcs, which incorporates the MY-2.5

turbulence closure scheme for vertical mixing. More detail has

been discussed in Mellor and Yamada (1982); Galperin et al.

(1988), and Mellor (1989). The generalized coordinate system in

which sigma-and/or z-level coordinates can be chosen (Ezer and

Mellor, 2004) is employed on the vertical level. The governing

equation of the POMgcs can be written as follows:
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ℑ (1) = 0

ℑ (U) − fVsk + gsk
∂h
∂ x + g sk

ro

Z 0

k
½sk

∂ r
0

∂ x
− (sx + hx)

∂ r
0

∂ k
0 �dk

0
=

∂

∂ k
½KM

sk

∂U
∂ k

� + Fx

ℑ (V) − fUsk + gsk
∂h
∂ y + g sk

ro

Z 0

k
½sk

∂ r
0

∂ y
− (sy + hy)

∂ r
0

∂ k
0 �dk

0
=

∂

∂ k
½KM

sk

∂V
∂ k

� + Fy

ℑ (T) = ∂
∂ k ½KH

sk
∂T
∂ k � + FT − ∂R

∂ k

ℑ (S) = ∂
∂ k ½KH

sk
∂ S
∂ k� + FS

ℑ (q2) = ∂
∂ k ½

Kq

sk

∂ q2

∂ k � + 2KM
sk

½( ∂U
∂ k )

2 + ( ∂V
∂ k )

2� + 2g
r0
KH

∂ r
∂ k −

2skq
3

B1 l
+ Fq

ℑ (q2l) = ∂
∂ k ½

Kq

sk

∂ q2 l
∂ k � + E1l(

KM
sk
½( ∂U∂ k )2 + ( ∂V∂ k )

2� + E3
g
r0
KH

∂ r2
∂ k )W − q3sk

B1
+ Fl :

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(3)

These equations are called continuity equation, momentum

equation, temperature equation, salinity equation, and MY-2.5

turbulent closure equation (from top to bottom) respectively.

Where

ℑ (j) ≡
∂ skj
∂ t

+
∂Uskj
∂ x

+
∂Vskj
∂ y

+
∂wj
∂ k

, (4)

w ≡ W − (sx + hx)U − (sy + hy)V − (st + ht) = sk
dk
dt

: (5)

W is the wall proximity function, which can be prescribed

according to W=1+E2(l/kL)2, L−1=(h−z)−1+(H+z)−1, where k
=0.41 is the von Kármán constant. E1, E2, and E3 are empirical

constants. ∂ r= ∂ k ≡ ∂ r= ∂ k − c−2s ∂ p= ∂ k, where cs is the speed

of sound, p is pressure. r and r0 are the density and reference

density, respectively. s represents the generalized coordinate

system. x, y, and k are the horizontal and vertical coordinates,

respectively. f is the Coriolis parameter, and g is the gravitational

acceleration. h, u, v, T, S, q2, and q2l are surface elevation,

velocity, temperature, salinity, turbulent kinetic energy, and

macroscale, respectively, and Fx, Fy, FT, FS, Fq and Fl represent

the horizontal diffusion of them except for surface elevation.

They are defined according to:

Fx ≡
∂

∂ x
(sktxx) +

∂

∂ y
(sktxy), (6)

Fy ≡
∂

∂ x
(sktxy) +

∂

∂ y
(sktyy), (7)

where

txx = 2AM
∂U
∂ x

txy,tyy = 2AM
∂V
∂ x

, = AM(
∂U
∂ y

+
∂V
∂ x

) : (8)

Also,

Fj ≡
∂

∂ x
(skAH

∂j
∂ x

) +
∂

∂ y
(skAH

∂j
∂ y

) : (9)

j represents T, S, q2, q2l. AM, AH are the horizontal kinematic

viscosity and horizontal heat diffusivity coefficient, respectively.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1023694
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Hu et al. 10.3389/fmars.2022.1023694
KM, KH, and Kq are the vertical kinematic viscosity, the vertical

diffusivity, and the vertical mixing coefficient for turbulence,

respectively, and they can be defined by

KM = lqSM ,KH = lqSH ,Kq = lqSq : (10)

SM and SH are functions of a Richardson number, given by

SM(6A1A2GM) + SH(1 − 2A2B2GH − 12A1A2GH) = A2, (11)

SM(1 + 6A2
1GM − 9A1A2GH) − SH(12A

2
1GH + 9A1A2GH)

= A1(1 − 3C1), (12)

GM and GH can be defined as

GM =
l2

q2
((
∂ u
∂ z

)2 + (
∂ v
∂ z

)2)1=2, (13)

GH =
l2

q2
g
ro

∂ r
∂ z

: (14)

The five empirical constants are assigned (A1,A2,B1,B2,C1)=

(0.92,0.74.16.6,10.1,0.08) (Blumberg and Mellor 1987). A

complete description of POM can be found in Blumberg and

Mellor, 1987 and Mellor, 2002.

To model the wave-breaking-enhanced turbulence, the input

of turbulence kinetic energy and surface roughness length to the

surface boundary condition (CB boundary condition) of the

MY-2.5 turbulent closure equation should be introduced

respectively. They reflect breaking waves’ impact on the

magnitude of turbulent kinetic energy and the influence depth,

respectively. The CB boundary condition for q2 is (Craig and

Banner, 1994):

Kq
∂ q2

∂ z
= 2au3t ,  z = 0, (15)

where ut is the friction velocity; a is the wave energy factor,

which has O(102) magnitude. The second one is for l (Terray

et al., 1996, Terray et al., 1999):

l = max (k zw, lz), (16)

where lz is the conventional empirical length scale, which is

calculated prognostically by the MY-2.5 turbulence closure

scheme, and zw is the surface roughness length, and denotes it as:

zw = (b � 105)
u2t
g
, (17)

where b is Charnock coefficient, g is gravitation acceleration.

Both a and zw are set as 0 in the absence of a surface wave

(Blumberg and Mellor, 1987). In contrast, when the effect of the

surface wave is considered, both a and zw are defined as a

constant and vary with the state of the surface wave. The surface

boundary conditions for q2 and l are given by Eq. (15) and Eq.
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(16), and the bottom boundary conditions are q2 = B2=3
1 u2tb and

l=kz0 respectively. Where B1=16.6 (Blumberg and Mellor, 1987)

and utb is the friction velocity associated with the bottom

frictional stress; z0 is taken as 0.1, representing the bottom

roughness parameter.

The TLM of the POMgcs can be obtained by linearizing the

POMgcs forecast model Eq. (3) about the state variable and the

boundary condition:

∂ x
0

∂ t
=
∂ F(x)
∂ x

x
0
,  (18)

x
0 jt=0 = x

0
0, (19)

x
0
(t)jG = y

0
(t), (20)

where x represents the state variable of the model, x0 defines

the initial condition at the initial time t0, y(t) represents the

boundary condition on G, and the prime represents the

perturbations of the variables.

For the variables w and z in a linear space, the linear operator

M and its adjoint operator M* can be defined as:

〈 z,Mw 〉 = 〈M*z,w 〉 : (21)

The adjoint operatorM* is equivalent to the transpose ofM ,

i. e. M*=MT . Thus, the ADM of the POMgcs can be written as:

∂ �x
∂ t

= −(
∂ F(x)
∂ x

)T�x, (22)

�xjt=S = 0, (23)

x(t)jG = 0, (24)

The �x represents an adjoint variable, S is the terminal time of

the forward integration of the POMgcs model. The negative sign

on the right side of Eq. (22) indicates that the ADM integrates

backward in time.

The ADM can be constructed by discretizing the continuous

adjoint equation. However, this method to derive the ADM is

feasible for simple models rather than a complex three-

dimensional POM (Zou, 1997). On the one hand, POM is

tedious, and the various physics options with more than one

expression are included. On the other hand, the accuracy of the

gradient will be limited by the accuracy of the difference scheme

used in the discretize procedure. In practical application, the

Tangent and Adjoint Model Compiler (TAMC) (Giering and

Kaminski, 1998) combined with a hand-coding correction was

used to construct the ADM. TAMC can simplify the

construction procedure and avoid human errors, which always

occur during direct coding. To avoid some errors induced by

some irregular expressions of the forward numerical model

hand-coding correction is essential, for example, the iterative

use of intermediate arrays and the partial array assignment.
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In addition, the run time of the ADM can be shortened due to

recording the values of the intermediate results into memory in

place of recomputed, and transferring the local variables and

arrays into global can improve the computational efficiency of

the ADM (Zhang et al., 2014).

In this study, the cost function is defined as:

J(T1,T2,a , b) = 1
2o

2

i=1
(Ti − Ti

b)
TB−1

i (Ti − Ti
b)

+ 1
2o

N

i=3
½Ti(T1,T2,a , b) − Ti

obs�R−1
i ½Ti(T1,T2,a , b) − Ti

obs�,  

(25)

where Ti is the initial temperature field at the i th time step,

respectively. Ti
b is the background temperature filed at i th time

step. Due to the variety of sources of temperature observation, it is

more sufficient and easier to obtain than other state variables. In

addition, the temperature is sensitive to a and b, so sea

temperature is used as the initial field in this study. Bi represent

the background error covariance matrix of the Ti
b. It determines

to what extent the background fields will be corrected to match

the observations. In an ideal experiment, the perfect observation

distribution can make up for the role of the background field, so

Bi is set to an identity matrix, rather than a sophisticated matrix.

Ti(T1,T2,a,b) denotes Ti as a function of the control variables, and
Ti(T1,T2,a,b)=M0!i(T

1(a,b),T2(a,b)). The background values

will derive from the model run, and the initial values at the two

consecutive time steps are considered as the control variables to

be estimated optimally. Otherwise, the inconsistency of the initial

value at the two-time steps may induce initial shocks of the model

states during the variational estimation. (Robert, 1966). The third

term of Eq. (25) measures the misfit between the control variables

and the observation at certain time intervals within the

assimilation window, where the subscript i and N are the time

level of observation and the total of them, respectively. Ri is the

observation error covariance matrix, which is set to a diagonal

matrix with diagonal elements 10-4 if only one parameter is

optimized, otherwise, it is also set to an identity matrix. The

wave-affect parameters a and b are implicitly expressed in the

above equation. In theory, the cost function has the following

form if the wave-affect parameters have the background value:

J(T1,T2,a , b) = 1
2o

2

i=1
(Ti − Ti

b)
TB−1

i (Ti − Ti
b)

+ 1
2o

N

i=3
½Ti(T1,T2,a , b) − Ti

obs�R−1
i ½Ti(T1,T2,a , b) − Ti

obs�

+
1
2
Ka (a − ab)

2 +
1
2
Kb (b − bb)

2

; (26)

where ab and bb are the background values of a and b ,

respectively. Ka and Kb are the coefficients controlling the best

fits for the parameter. For simplicity, Eq. (25) is used as the cost

function of this study.
Frontiers in Marine Science 05
Synthetic experiment

In this section, the feasibility of the 4D-Var based on the

complete ADM of POMgcs is evaluated thoroughly by

estimating the wave-affected parameters. Meanwhile, its ability

to optimize the initial field is simply investigated. Before doing

that, the ocean temperature and salinity in a typical coastal sea,

Bohai Sea, are simulated by the model to validate the rationally

of the MY-2.5 parameterization scheme for both constructing

the “truth model” and generating the “pseudo-observations” in

the data assimilation studies. Among all the experiments

involved in this study, the truth model is POMgcs with a

“truth” initial field and parameters, where the spin-up output

is regarded as the “truth” initial field, and the “truth” wave-

affected parameters in high-order turbulence closure are set as

a=200 and b=2. The “pseudo-observation” is generated by the

“truth model”, which is perfect and exists at every geographic

location. The model domain covers the Bohai Sea from 117.52°E

to 122.47°E and from 37.083°N to 41.033°N. The horizontal

resolution is 1/20o×1/20o. The maximum depth is set to 65m,

with 6 vertical levels. The vertical levels are 0.0, 5.0, 15.0, 25.0,

35.0, and 65.0 m. The model starts with a “cold start” (i.e.,

without initialization) at 1Z January 1, 2005, and then the model

is integrated 5/9 -h, and the output was used as the initial

condition of assimilation experiments. The control variables

include temperature variables and parameters, the total

number of them is 38990 and 2, respectively. When the

control variable is temperature, the initial temperature field is

generated by adding 1°C perturbation to the “truth” initial field.

When the control variable is the wave-affected parameter, the

initial value of a and b are set to 100 and 0.5, respectively. The

assimilation windows and the sampling frequency of

temperature observation both are 1h. Table 1 lists all the

assimilation experiments. The process of the assimilation

experiment can be outlined as follows:
(1) Integrating POMgcs 5/9 -h with cold start and perfect

parameter (a=200 and b=2 ), the output of temperature

was used as the “truth” initial field.

(2) The biased initial field is generated by adding 1°C

perturbation to the “truth” initial field, and biased

parameters are set to a=100 and b=0.5.
(3) Integrating the forward model in a fixed time window to

calculate the cost function Eq. (25).

(4) Integrating the ADM of the forward model backward in

time to obtain the gradient of the cost function with

respect to the control variables (∇J(T1,T2,a,b) ).
(5) Inputting the values of the cost function and the gradient

of it to Limited Memory Bundle Method (LMBM)

(Haarala et al., 2004) to update the control variables.
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Fron
(6) Repeating processes (3)-(5) until a quasi-equilibrium

state is reached, the cost function and the norm of the

gradient tend to be stable.

(7) Same as (5) but using Limited memory Broyden-

Fletcher-Goldfarb-Shanno (LBFGS) quasi-Newton

minimization algorithm (Liu and Nocedal, 1989).

(8) Repeating processes (3), (4), and (7) until the

convergence condition is met.
In this study, when only one optimization algorithm is used,

steps (5) and (6) or (7) and (8) are directly omitted.
Correctness test of the gradient of the
cost function, TLM, and ADM

The correctness of the gradient of the cost function and TLM

can be checked through the following formula respectively:

j(ϵ) =
J x0 +

ϵ∇J
‖∇J ‖

� �
− J x0ð Þ

ϵ ‖∇J ‖
≈ 1, (27)

j(ϵ) =
‖M(xo + ϵh) −M(xo) ‖

‖ ϵMh ‖
≈ 1 :   (28)
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Where x0 is the control variable, h is the perturbation of xo ,

the value of j shall converge to 1 as ϵ tend to zero, ‖·‖ represents
the two norm. Table 2 and Table 3 show the correctness of the

gradient of the cost function and TLM with respect to a , b , and

temperature initial field, respectively. For both of them, the j(ϵ)
convergence to around 1 as ϵ decrease from 10−2 , and with the

further reduction of ϵ , j(ϵ) is far away from 1 due to the

influence of calculation accuracy. From Table 2 and Table 3, one

can see that the gradient and TLM of the initial field at least have

a 7 digits accuracy, but two parameters in MY-2.5 turbulence

enclosed scheme only 3 or 4 digits accuracy. The decrease in

accuracy is mainly due to the direct linearization of a highly

nonlinear and discontinuous turbulent kinetic energy scheme,

which may produce nonphysical noise.

The correctness check for ADM should satisfy the criteria:

< Mh,Mh >=< MTMh, h > : (29)

Where 〈·〉 represents the inner product. Here, for the whole

POM concerning the initial field, the left-hand side is

0 . 1 44525709394330 and th e r i gh t - h and s i d e i s

0.144525709394331. Equation (29) should be held with at least

13 digits of the left-hand side being the same as those of the

right-hand side, so the accuracy satisfies the criteria. However,

due to the high nonlinear and discontinuous of MY-2.5, a and b
only 4 digits accuracy.
TABLE 1 Design of identical twin experiment, where “Truth” indicate the truth experiment, and “B_IN”, “B_ b “, “B_ a “ “B_ ab “, and “B_IN b “

indicate the bias coming from initial field, b, a, both a and b, and initial field together with b, respectively.

Name Initial field a b

Truth – 200 2

B_IN biased 200 2

B_ b perfect 200 0.5

B_ a perfect 100 2

B_ ab perfect 100 0.5

B_IN b biased 200 0.5
frontiersin.o
TABLE 2 The correctness test of the gradient of the cost function with respect to a, b, and initial field.

ϵ a b Initial field

10−2 0.999687645800464 – 1.00003593381916

10−3 0.999952870019137 – 1.000000359409132

10−4 0.999979701401808 – 1.00000036152066

10−5 0.999985011370854 – 1.00000008556950

10−6 0.999983107245816 – 0.999999936467773

10−7 1.00023174457549 – 0.999999315210570

10-8 1.00388936764555 – 1.00003433152567

10-9 – 1.02381871045560 1.00067592078292

10-10 – 0.999972446877359 1.00180547933443

10-11 – 0.999907036093396 –

10-12 – 0.999900507173298 –
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Truth simulation and biased simulation

POMgcs simulated the horizontal and profile structure of

temperature and salt in winter and summer, respectively,

based on the MY-2.5 parameterization scheme with the CB

boundary. Figures 1, 2 show the results of the truth model

simulation, where Figures 1A, B are the horizontal

d i s t r ibut ion of tempera ture and sa l t in January ,

respectively. Figures 1C, D are the same as Figures 1A, B,

but for the profile distribution in 38.5∘N . Figures 2A–D are

the same as Figures 1A–D, but in August, respectively. One

can see that the temperature and salt are uniformly mixed in

the vertical in January. In August, the temperature formed a

distinct thermocline in the area away from the coast, and the
Frontiers in Marine Science 07
thickness of the upper mixing layer is about 10m. The water

temperature at the bottom of the ocean remains cold as

winter. However, the thermocline of salt is indistinctive. In

winter, the horizontal construction of temperature shows

that the closer it gets to the coast, the colder it gets, and the

conclusion in summer is the opposite of that in winter. The

above conclusions are consistent with those obtained from

actual measured temperatures for many years (Su and Yuan,

2005). Therefore, this model is rational.

In this section, the biased simulation uses the model with

biased wave-affected parameters, and the other configurations of

the model are the same as the truth model. Comparing the

biased simulation with perfect simulation aims to test the effect

of incorrect parameters setting. Figure 3 shows the vertical
TABLE 3 The correctness test of the TLM with respect to a, b, and initial field.

ϵ a b Initial field

10−2 0.999255539669947 – 1.04806018243665

10−3 0.999592379110171 – 0.999999802687119

10−4 0.999631784976628 – 0.999999799428105

10−5 0.9996610171244403 – 0.999999799284839

10−6 1.00006899468010 1.01109567384988 0.999999796497366

10−7 1.00181297747990 1.00890917645884 0.999999794830625

10-8 1.12911093018209 1.00866255613313 1.00000000548787

10-9 – 1.00841520418398 1.00000039858141

10-10 – 1.00541927348315 1.00002627308542

10-11 – 0.999713066328589 –

10-12 – 1.03163510253935 –
FIGURE 1

Simulated temperature (°C ) (A–C) and salt (B–D) horizontal (A, B) and 38.5oN vertical (C, D) profile in January.
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structure of the difference in root-mean-square-error (RMSE) of

the simulated temperature between the perfect model and the

biased model with a=100 , b=0.5 in January. It can be seen that

the difference in the temperature between the two simulations is

pronounced at the sea surface and 10-m depth. This

phenomenon is because the values of wave-affected parameters

used in the biased model are smaller than that in the truth

model, which indicates that the turbulent kinetic energy is too

weak to mix the surface and subsurface water well in the biased

simulation. Below 20m, the difference is tiny, suggesting that the

turbulent kinetic energy generated by the breaking wave only

affects near the sea surface and cannot penetrate the deeper sea.
Frontiers in Marine Science 08
However, the wave-affected parameters play a vital role in the

simulated upper layer structure of temperature. It is necessary to

estimate the two parameters accurately.
Initial field optimization

Figure 4 shows the variation of the cost function and norm

of the gradient with several iterations for B_IN experiment. The

value of the cost function decreases rapidly from 2810 to 0.045

within two iterations, and it keeps the low value (0.045) steadily

after the second iteration (Figure 4A). Moreover, the norm of the
FIGURE 2

Simulated temperature (°C ) (A, C) and salt (B, D) horizontal (A, B)) and 38.5oN vertical (C, D) profile in August.
FIGURE 3

The vertical structure of the difference in RMSE of the temperature between the B_ab and “truth” model simulation in January.
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gradient declines rapidly and then slightly oscillates to search for

the optimal declining direction. The norm of the gradient nearly

becomes stable after the 4th iteration (Figure 4B), and the

minimization process stops after 11 iterations, indicating the

local minima of the initial field for that day.

Figure 5 depicts the difference in temperature between the

“truth” model simulation and biased initial field simulation

without assimilation, and optimal initial field simulation with

4D-Var assimilation, respectively. It is evident that the

temperature from the optimal initial field is closer to

the “truth” simulation than that from a biased simulation. The

above results show the usefulness of 4D-Var based on POMgcs

for optimizing the initial field.
Sensitivity check

It is essential to investigate temperature sensitivities with

respect to parameters being optimized before parameter

estimation. Otherwise, if the insensitive physical variable to the

parameter were used to perform parameter estimation, it would be
Frontiers in Marine Science 09
hard to obtain an optimal solution. Figure 6 shows the distribution

of the cost function with different a and b . One can see that it is

increased with increasing parameters in general. However, the

local minimum of the cost function is located in the region where

a and b are closed to “truth” values (200 and 2). The existence of a
local minimum indicates that it will probably estimate the optimal

value of a and b if the gradient of the cost function can be

calculated correctly through the ADM. However, a and b are not

independent variables, the former represents the turbulence

strength induced by the breaking-wave, and the latter is the

influence range of turbulence, so the two parameters cannot be

determined independently.

The gradient of the cost function with a and b can be used to

investigate the model sensitivities with respect to the two

parameters. Table 4 shows the value of the gradient with

different parameters. The closer the value is to zero, the more

sensitive it is to the corresponding parameter value. When the

wave-affected parameters are exactly set to 200 and 2,

respectively, both gradient values are the closest to zero. It can

be found that the sensitivities value of b is several orders of

magnitude greater than a. It indicates that a is more vulnerable
BA

FIGURE 4

The variation of (A) the cost function and (B) the norm of the gradient with the number of iterations for B_IN experiment.
BA

FIGURE 5

Temperature fields from the differences between (A) Truth and B_ IN, (B) Truth and optimal initial field simulation.
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to being disturbed by the error that arises from observation and

initial field during parameter estimation.
Parameters estimation

In this section, B_a and B_b experiments are conducted to

determine whether the wave-affect parameters can be estimated

correctly or not, where the initial field is perfect. Figure 7 depicts

the iteration variations of the cost function, norm of the gradient,

and the value of the parameter when the control variable is a or b.
Where the left side of Figure 7 shows B_a experiment result, and

the other side is B_b . When the control variable is only a, both
the cost function and the norm of the gradient decrease

dramatically in the first four iterations and keep stable after the

5th iteration, the wave-affected parameter a from the initial value

of 0.5 converges to the “truth” value within 6 times iterations with

the 4D-Var method, while b from the initial value of 100

converges to its “truth” value after about 4 times iterations.

Figure 8 shows the variation of the cost function, the norm of

the gradient, and two wave-affected parameters with the number
Frontiers in Marine Science 10
of the iterations for B_ab experiment, where only LBFGS

algorithms is used. Due to the nonlinearity of the model, the

cost function is not strictly convex, and a nonconvex cost

function may have many local minimums. The parameter

estimation strongly relies on the initial value of the parameter.

Under this condition, when both wave-affected parameters are

selected as the control variables, neither a nor b reaches their

“truth” value. In this study, the two optimization algorithms

LBFGS and LMBM, are applied to enhance the estimation of the

double parameters. LBFGS is suitable for solving large-scale

optimization problems but has not been proved to be globally

convergent for nonconvex or nonsmooth cost functions (Haarala

et al., 2007). LMBM combines the variable metric bundle method

and the limited memory variable metric method. It is not only

suitable for solving large-scale nonsmooth but also globally

convergent for nonconvex unconstrained optimization

problems. The utilization of the two optimization algorithms

speeds up the convergence as well as probably jumps out the

local extremum near the initial value of the parameters, thus the

parameters are more likely to converge to the “truth” value.

Figures 9A, B shows the iteration series of the cost function with
FIGURE 6

The value of the cost function on a and b for (A) 10≥b≥0 and (B) 3≥b≥0.
TABLE 4 Dependence of the sensitivity on the initial values of the parameters a and b.

Initial values of (a, b) a b

(100,1) -0.39 1642.11

(100,2) 1.39 -117,22

(100,3) -2.60 -594.09

(200,1) -0.17 -1717.57

(200,2) 2.25×10-2 3.71

(200,3) 1.05 -392.61

(300,1) -0.61 1630.66

(300,2) -0.45 133.41

(300,3) 0.30 -290.85
frontie
rsin.org

https://doi.org/10.3389/fmars.2022.1023694
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Hu et al. 10.3389/fmars.2022.1023694
the LMBM and LBFGS, respectively. It can be found that the cost

function dramatically oscillates in the beginning and becomes

stable from the ninth cycle with LMBM method, and then, with

LBFGS, it continues decreasing until converging to 0.

Figures 9C–F depicts the variation of the wave-affected

parameters with LMBM and LBFGS algorithms. One can see

that a remarkably boost from the 5th to 9th iteration, then

decrease and tend to be stable. However, the parameter failed

to converge to the “truth” value with a single optimization

algorithm. As shown in Figure 9D, optimizing the cost

function with the LBFGS algorithm, a gradually reaches the
Frontiers in Marine Science 11
truth value. The evolution of the value of b with the number of

iterations is similar to that of a.
When the initial condition and parameter are regarded as

control variables simultaneously, the accuracy of the parameter

estimation is restricted by that of the state estimated. In this case,

the parameter hardly reaches the “truth” value and merely

attains the optimal value of the parameter to compensate for

the error derived from the state variable. Figure 10 shows the

B_INb experiment result. It can be found that b does not

converge to the “truth” value even though two optimal

algorithms are used. However, b has almost reached the
B

C D

E F

A

FIGURE 7

The variation of the cost function, the norm of the gradient, and the value of the wave-affected parameter with the number of iterations for B_
a (A, C, E) and B_ b (B, D, F) experiment, respectively.
FIGURE 8

The variation of (A) the cost function, (B) the norm of the gradient, and wave-affected parameters (C) a and (D) b with LBFGS for B_ab experiment.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1023694
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Hu et al. 10.3389/fmars.2022.1023694
optimal value close to the truth value from the eighth iteration

with LMBM.

Figure 11 depicts the evolution of parameters a and b based

on B_a and B_b with the number of iterations when their initial

values are set to (50, 150, 250, 300) and (1, 1.5, 2.5, 3),

respectively. It clearly shows that the parameters converge to

the “truth” value no matter what the initial values are. Therefore,

the 4D-Var based on 3D-POMgcs is feasible for one wave-

affected parameter estimated with different initial parameter

values and the perfect initial field.

To investigate the impact of the temperature observation

noise on wave-affected parameters, the next experiment is
Frontiers in Marine Science 12
designed based on B_b and B_a, and adds different standard

deviation noises into temperature observation. Table 5 shows the

dependence of parameter estimation on the standard deviation of

temperature observation. The relative error is obtained by the

absolute error divided by the true value (i.e. the greater the relative

error, the lower the reliability). One can see from the table that the

relative error increases with increasing the standard deviation.

When the standard deviation exceeds 0.5, both reliabilities of a
and b are quite low, which indicates the noise level is not

acceptable for assimilation purposes. However, the variation of

the relative error of b is more slowly than that of a as the standard

deviation goes up. In other words, the effect of observational noise
FIGURE 9

The evolution of the cost function, a, and b with LMBM (A, C, E) and LBFGS (B, D, F) for B_ab experiment, respectively.
B

C D

A

FIGURE 10

The evolution of (A, B) the cost function and (C, D) b value with LMBM and LBFGS algorithms for B_IN b experiment, respectively.
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on the estimation is more severe on a than on b, which means the

positive signal of a is difficult to capture during the optimization

process, when the noise dominates the model and observation.
Forecast experiment

A 72-h forecast of the upper 35m level temperature is

performed with the optimal initial field and parameter from

the 4D-Var algorithms. In the forecast experiment, the error

source is the initial field and b parameter, where the initial field

is obtained by adding 0.35 perturbation to “truth” value, and b
parameter is set as 0.3. Since a is more susceptible than b to

error from observation or initial field, when both a and b are

taken as control variables, there is almost no improvement in a,
so only parameter b is involved in this experiment. The control

variable is the initial temperature field for the first forecast

experiment (EINP-IN). For another forecast experiment

(EINP-INP), the initial temperature field and b parameter are

optimized simultaneously. A control run with a biased initial

field and b parameter without assimilation is called control

(CTRL). In these forecast experiments, the assimilation

window, assimilation period, and observation source are the
Frontiers in Marine Science 13
same as the assimilation experiments mentioned in the above

section. The analysis result of assimilation is used as the initial

field and parameter for the 72-h sea temperature forecast.

The RMSE of the 72-h forecast of the sea temperature with

respect to the corresponding “truth” value for CTRL, EINP-IN,

and EINP-INP is shown in Figures 12, 13. Figure 12 depicts the

time series of RMSE of sea surface temperature (SST) starting

from 01Z January 01 to 02Z January 04 for three experiments.

Compared to CTRL, significant improvements can be seen in

EINP-IN and EINP-INP, with EINP-INP outperforming EINP-

IN because b reached 2.09 in EINP-INP, which is more close to

the truth value. Figure 13 is the same as Figure 12, but for the

35m level. Similar results are found at the 35m level, but in the

first few hours, the advantage of the EINP-INP over EINP-IN is

not obvious. In the 35m depth, the RMSE of the initial field for

the 72-h forecast is 0.1488 and 0.1486 for EINP-IN and EINP-

INP, respectively. However, that is 0.2233 and 0.1531 on the sea

surface, respectively. This is due to the fact that the breaking

wave has a more significant impact on the sea surface than on

the deep sea, and the biased parameter leads to larger RMSE of

analysis results on the sea surface than at the 35m levels. With

the accumulation of initial field and parameter error, the

advantage of EINP-INP is shown after three hours at the 35m
BA

FIGURE 11

The evolution of the estimated wave-affected parameters (A) a and (B) b for different initial values with the number of iterations.
TABLE 5 Dependence of the optimally estimated on the standard deviation of the temperature observation.

Std dev of temperature observation Estimated value of a Estimated value of b Relative error of a Relative error of b

10−3 199.976 1.991 0.02% 0.45%

10-2 201.291 1.981 0.65% 0.95%

0.05 175.779 1.819 12.12% 9.05%

0.1 101.214 2.292 49.39% 14.6%

0.5 99.809 6.089 50.10% –
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level. Figure 14 shows the vertical structure of the vertical mixed

coefficient KH for EINP-IN and EINP-INP. The simulated

averaged vertical mixing coefficient for temperature are much

larger for the upper-15-m layer in EINP-INP than in EINP-IN.

Below 15m, KH obtained by EINP-INP is still slightly larger than

that obtained by EINP-IN, due to too low turbulent mixing

strength, the improvement is not shown in Figure 14. The

increased KH indicate the enhanced of turbulent mixing

strength, which make the seawater of upper layer more

vertically homogeneous, so the model performance can be

effectively improved by EINP-INP.
Summary and discussion

In this study, the three-dimensional and complete ADM of

POMgcs is developed to build 4D-Var. Due to the high

nonlinear and discontinuity of the vertical of the MY-2.5

turbulence enclosed scheme, nonphysical noise might be

produced and then lead to the numerical oscillation during

linearizing it. Although developing the adjoint code is complex,

the effective and robust ADM has been obtained by TAMC and

hand-coding correction. To evaluate the feasibility of the 4D-Var
Frontiers in Marine Science 14
based on POMgcs with the MY-2.5, the two uncertain

parameters in the MY-2.5 parameterization scheme, wave

energy factor a and Charnock coefficient b, are tentatively

estimated via the 4D-VAR algorithm. The two wave-affected

parameters determine the magnitude and effective depth of

turbulent kinetic energy, respectively. The turbulence kinetic

energy can modulate the vertical structure distinctly in the upper

ocean, the dissipation of which is adjusted by surface gravity

waves under breaking waves. In order to investigate the upper

ocean mixed layer, it is essential to obtain the optimal value of

the wave-affect parameters in the turbulence-closed scheme.

First of all, the distribution of the temperature and salinity in

Bohai is simulated by POMgcs for evaluating the rationally of the

MY-2.5 turbulence enclose scheme. Based on that, the “truth

model” and “pseudo-observations” are constructed for the

following identical twin experiment. After thoroughly testing the

capability of the 4D-Var for optimizing the initial field, a suite of

parameter estimation experiments is performed. Within an

identical twin experiment framework, when the single parameter

is being optimized, the “truth” value of the wave-affected mixing

parameters can be estimated successfully, no matter what the value

of the initial parameter is. However, when the two parameters are

used as the control variable simultaneously, the parameters fail to
FIGURE 12

The RMSE of 72-h forecast of surface temperature with respect to “truth” value for CTRL, EINP-IN, and EINP-INP.
FIGURE 13

As in Figure 12, but for 35m levels.
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reach the “truth” value with the LBFGS optimization algorithm. In

this study, both LMBM and LBFGS optimization algorithms are

used within one assimilation period, which can speed up the

convergence and jump out the local minimum of the cost

function. When both the initial field and wave-affected are set to

the control variable, parameter estimation is limited by the

accuracy of the initial field. In that case, the parameter cannot

converge to the “truth” value. However, 4D-Var can fit the model

results to the observations, and the optimal value of the parameter

can be estimated to compensate for part of the error arising from

the initial field of the numerical model. Furthermore, the wave-

affected parameter can also reach the optimal value when the

observation error is acceptable. It is worth noting that a is more

susceptible than b to error from observation or initial field. When

a and the initial field are optimized, the parameter cannot

converge to an optimal value, even if LMBM and LBFGS

algorithms are used simultaneously. The 4D-Var algorithm aims

to obtain an ‘optimal’ initial field or parameter for a better forecast.

Therefore, the forecast experiment is performed to further

demonstrate 4D-Var, where the forecast errors are attributed to

incorrect initial fields and parameters. The results indicate that

optimizing both of them or the initial field by setting them as

control variables is effective for 4D-Var to improve sea temperature

simulation, whether sea surface or deep sea and adjusting the initial

field and parameter outperforms only the initial field.

The above results imply that the complete ADM of POMgcs

developed in this study is feasible. However, since the precision

of the TLM, ADM, and gradient of the cost function for the two

parameters is lower due to the high nonlinearity of the MY-2.5,

the optimization of a and b is more suitable for short integration

time. The process of parameter optimization is not only model-

dependent but also observation-dependent. It is well known that

high-frequency observations are essential for the study of

turbulence. In the real observation experiment, the ability of

parameter optimization can be improved by high-frequency
Frontiers in Marine Science 15
observations from surface drifting buoys, in situ subsurface

buoy, etc. Thus more observations can be assimilated into the

model in less integration time. In addition, reducing the initial

field error is essential for obtaining the “optimal” a, a more

comprehensively designed background error covariance based

on flow-dependent or multiscale may enhance the effectiveness

of the initial field. These will be explored in our further studies.
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FIGURE 14

Vertical profiles of the simulated averaged the vertical mixing coefficient for temperature KH (m2 s-2) from EINP-IN and EINP-INP.
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