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Oceanic eddies have a non-negligible impact on ocean energy transfer,

nutrient distribution, and biological migration in global oceans. The fine

detection of oceanic eddies is significant for the development of marine

science. Remarkable achievements of eddy recognition were achieved by

mining the satellite altimeter data and its derived data. However, due to the

limited spatial resolution of the altimeters, it is difficult to detect the

submesoscale oceanic eddies with radial dimensions less than 10 km.

Different from the previous works, the context and edge association network

(CEA-Net) is proposed to identify submesoscale oceanic eddies with high

spatial resolution Sentinel-1 data. The edge information fusion module (EIFM)

is designed to associate the context and edge feature more accurately and

efficiently. Furthermore, a multi-scale eddy detection strategy is proposed and

applied to Sentinel-1 interferometric wide swath data to solve the scale

problem of oceanic eddy detection. Specifically, a manually interpreted

dataset, SAR-Eddy 2019, was constructed to address the dilemma of

insufficient datasets for submesoscale oceanic eddy detection. The

experimental results demonstrate that CEA-Net can outperform other

mainstream models with the highest mAP reaching 85.47% with SAR-Eddy

2019 dataset. The CEA-Net proposed in this research provides important

significance for the study of submesoscale oceanic eddies.
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1 Introduction

Oceanic eddies with irregular spiral structures maintain

high-speed rotational and horizontal motion over days to

years (D’Alimonte, 2009). They also have various spatial scales

ranging from several kilometers to hundreds of kilometers and

vertical scales ranging from several meters to thousands of

meters (Chen and Ezraty, 1997). Due to the structure-specific

and widespread distribution, oceanic eddies become an ideal

carrier for material transport and energy circulatory, thus

influencing the migration and distribution of biological

communities and the dynamic weather adjustment (Chelton

et al., 2007; Marcello et al., 2015). Consequently, the automatic

detection of oceanic eddies has been the most popular research

topic in ocean science.

Remote sensing technology makes it possible to monitor

and analyze global oceanic eddies. As early as 1990, satellite

altimeter and its derived data (sea surface altitude or anomaly)

were used for building interdecadal eddy datasets with their

wide coverage, short revisit period, and stereoscopic

observation advantages (Le Traon et al., 1998; Dong et al.,

2018; Taburet et al., 2019). Given the intrinsic limitation of its

spatial resolution, the satellite altimeter cannot detect

submesoscale eddies and their refined structures (Ni et al.,

2021). In contrast to the satellite altimeter, the synthetic

aperture radar (SAR) has become an irreplaceable tool in

oceanic eddies monitoring by its all-weather, all-time, and

high spatial resolution superiorities (Konik and Bradtke, 2016;

Lee et al., 2016; Espeseth et al., 2020). The oceanic eddies change

the roughness of the sea surface by carrying tracers (sea ice, bio-

oil film, etc.) or influencing the surface flow field. This

phenomenon generates unique elliptic patches or bands,
Frontiers in Marine Science 02
known as ocean eddies, on SAR images. Figure 1 shows

different categories of eddies in Sentinel-1 SAR images,

including anticyclonic eddies (AEs) and cyclonic eddies

(CEs). The oceanic eddies in SAR images appear in various

forms of elliptical structures (eccentricity, diameter, and

centers) as well as in pixel interference caused by speckle

noise and thermal noise. As these pictures show, the eddies

are all elongated, curvilinear, inwardly rotating concentric

bands. However, the backscatter distribution of oceanic eddies

is highly scattered, such that some eddies are dark (i.e., weaker

backscatter coefficient), while others are bright (i.e., stronger

backscatter coefficient) (Karimova, 2012). Therefore, it is

challenging to detect oceanic eddies based on these

heterogeneous features.

The study of mesoscale or submesoscale oceanic eddies

based on SAR images can be traced back to 2000 (Munk et al.,

2000). However, numerous studies confirm the location,

diameter, vorticity, and manifestation types of oceanic eddies

by visually inspecting at full resolution, and further analyzing

them from the oceanographic point of view (Munk et al., 2000;

Kozlov et al., 2019; Stuhlmacher and Gade, 2020; Ji et al., 2021).

Apart from manual interpretation, the algorithms of eddy

detection are mainly divided into image transformation-based

(Karimova, 2017), handcrafted feature-based (Chen et al., 2019;

Du et al., 2019a), and machine learning-based (Du et al., 2019a).

Karimova (Karimova, 2017) proposed an algorithm

incorporating various image transformations to detect black

eddies, which are reflected by surfactant films. Du et al. (Du

et al., 2019a) designed an adaptive weighted multi-feature fusion

algorithm for automatic mesoscale ocean eddies recognition.

The recognition method can meet the requirements of marine

complex and changeable environment, with the optimal
FIGURE 1

Oceanic eddies in Sentinel-1 SAR images. (A-D) Anticyclonic eddies. (E-H) Cyclonic eddies.
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accuracy reaching 93.42%. In recent years, deep learning, as an

essential technical tool in the field of image recognition, has also

been widely used in the remote sensing field and has yielded

fruitful achievements (Ma et al., 2019; Cheng et al., 2020).

Convolutional neural networks (CNNs) with some plug-and-

play modules have been reported for detecting oceanic eddies

(Du et al., 2019b; Yan et al., 2019; Zhang et al., 2020). Du et al.

(Du et al., 2019b) proposed a workflow combining machine

learning and deep learning to identify eddies automatically. The

principal component analysis (PCA) convolution and spatial

pyramid pooling (SPP) are embedded to learn object features

and fuse multi-scale information. Finally, a linear classifier

distinguishes the oceanic eddies and other phenomena. Yan

et al. (Yan et al., 2019) utilized the encoder-decoder architecture

to classify five types of oceanic phenomena (including eddies)

based on the augmented Sentinel-1 dataset. The architecture

contains the backbone ResNet-50 network, followed by the

Atrous Spatial Pyramid Pooling (ASPP). Zhang et al. (Zhang

et al., 2020) set the Canny edge detection result and the original

image as input to mask region-based convolutional networks,

further improving the detection accuracy of oceanic eddies.

Although the methods mentioned above have powerful

performance in oceanic eddies detection or segmentation

tasks, they still have significant limitations. Previous research

used powerful deep learning models to implement image-level

classification, while more valuable attributes of oceanic eddies

were ignored, such as location and diameter. On the other hand,

the benchmarking datasets of SAR oceanic eddies are scarce, but

the deep learning model requires massive amounts of labeled

data resources. Under this background, this study explores the

ability of object detection networks framework in eddy detection

for SAR images. Meanwhile, a robust and practice network

framework called CEA-Net is proposed to effectively detect

submesoscale eddies in Sentinel-1 interferometric wide swath

(IW) data. The max pooling, dilated convolution, and attention

mechanisms are incorporated into CEA-Net to extract features

of oceanic eddies. The max pooling and dilated convolution with

different coefficients enable the networkto focus on global and

multi-scale contextual information. The spatial and channel

attention mechanisms are reasonably used to collect favorable

information and enhance feature representation. Compared to

other plug-and-play modules, these two mechanismshave lower

computational complexity and, thus, benefit submesoscale

oceanic eddies detection from SAR images. The main

contributions and innovations of our research are

summarized below.
Fron
1. To improve the feature representation capability, the

one-stage network called CEA-Net is built for

submesoscale eddies detection from Sentinel-1 SAR

images. The max pooling and multi-parallel dilated

convolutions are embedded behind the backbone
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network to fuse multi-scale contextual information.

The edge information fusion module is assembled to

extract available edge information by integrating

channel and spatial attention.

2. A multi-scale eddy detection strategy is proposed for

complex and large-scale panoramic SAR remote sensing

scenes. The strategy can filter out incorrect anchor boxes

by calculating the IoU matrix and designing the

corresponding constraint rules. It improves the

application ability of the deep learning model in real-

world scenarios.

3. A novel SAR eddies detection dataset, SAR-Eddy 2019

Dataset, is constructed to facilitate the submesoscale

oceanic eddies detection study further. The eddy dataset

can be used as a benchmark resource for developing

state-of-the-art (SOTA) models for submesoscale

oceanic eddies detection.
The dataset and code in this paper will be updated to

GitHub: https://github.com/LinghuiXia/SAR-Eddy-Detection.

The rest of this article is organized as follows. In Preliminaries,

we describe the problem formulation and the details of the SAR-

Eddy 2019 dataset used in this research. The proposed CEA-Net

and multi-scale eddy detection strategy are introduced in

methodology. Results demonstrates the effectiveness of CEA-

Net, including comparison with other SOTA methods, ablation

study, and the complexity and speed analysis of networks.

Finally, Conclusions condenses our research.
2 Preliminaries

2.1 Problem formulations

The task of our problem is to find all submesoscale oceanic

eddies in the image and determine their types and location. The

object detection model that incorporates detection and

classification can meet this need. Inspired by the YOLO series

(Redmon et al., 2016; Redmon and Farhadi, 2017; Redmon and

Farhadi, 2018; Bochkovskiy et al., 2020; Ge et al., 2021), the one-

stage detector will be used in this research, which formulates

the detection problem as a regression problem. To better

understand this question, the process is described using

mathematical language.

Let X∈RC×H×W as an input SAR image of heightH, widthW,

and channel C. Then, the image X is divided into a S×S grid, and

each grid cell is responsible for predicting the corresponding

area. By feature extraction and head prediction, each grid cell

will be associated with a feature vector to estimate the center

coordinates, overall dimensions, and class probability of the

object detected. The feature vector can be expressed as:
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Y = B� confidence, x, yð Þ, h,w, class _ probabilityf g (1)

where B represents the number of prior anchor boxes,

confidence is a signal to judge whether the prior anchor box

contains objects, (x,y),h,w are the center coordinates, height, and

width of prior anchor boxes predicted, respectively, and

class_probability is a vector of length n, representing the

probability that the prior anchor box belongs to each category.

The class_probability should satisfy the following constraint

condition:

class _ probability = c1, c2,…, cnf g

s : t :o
n

i=0
ci = 1

8><
>: (2)

Thus, these variables that can represent the accuracy of

detection results should be optimized by the loss function. The

loss function of object detection is defined by the following

equation:

Losstotal = Lossshape + Lossconfidence + Lossclass (3)

Where Lossshape, Lossconfidence, Lossclass denote the shape loss,

confidence loss, and classification loss of the predicted anchor

box, respectively. Their basic components are binary cross-

entropy (BCE) loss and mean squared error (MSE) loss.

Specific descriptions of the loss function can be found in the

published literature (Redmon and Farhadi, 2018; Bochkovskiy

et al., 2020; Ge et al., 2021).
2.2 SAR-Eddy 2019 dataset

The SAR-Eddy 2019 dataset is derived from Sentinel-1

images gathered between January and December 2019 (by ASF

Data Search: https://search.asf.alaska.edu). The Sentinel-1 is

equipped with a C-band (5.405 GHz) synthetic aperture radar,
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which acquires images regardless of the weather. It also is the

only satellite in orbit with publicly accessible data, providing

data support for big data research. In this article, the Sentinel-1

Interferometric Wide (IW) Swath GRD Product (20 m × 22 m

spatial resolution, 10 m pixel spacing, and 250 km bandwidth) is

selected as raw data. The polarization modes of IW data are VH

and VV. According to previous research (Du et al., 2019a; Du

et al., 2019b; Yan et al., 2019; Zhang et al., 2020), the VV

polarization image is used for oceanic eddies recognition. Then,

some indispensable preprocessing is performed on raw data,

such as the application of orbit file, noise removal, terrain

correction, and dB transformation. In the initial data

collection stage, the China Sea was the primary study area,

which mainly includes the Bohai Sea, Yellow Sea, East China Sea,

South China Sea, and Taiwan Strait. We note, however, that the

number of anticyclonic eddies interpreted from SAR images is

much less than the number of cyclonic eddies. The possible

reasons for this phenomenon have been explained in the

published research (Xu et al., 2015). Thus, the Japan Sea,

Okhotsk Sea, Tokyo Bay, and other waters are included in the

research area for increasing the number of anticyclonic eddies.

The final study area is situated between 2.82°N and 55.59°N,

102.87°E and 162.74°E (Figure 2A).

In this study, 239 SAR images containing eddies were

obtained by manual interpretation. Each image contains at

least one oceanic eddy. The minimum circumscribed rectangle

of the eddy is the ground truth bounding box. Figure 2B counts

the number of cyclonic and anticyclonic in the different seasons.

Additionally, the radius of screened oceanic eddies ranges from

about 2 km to 65 km. Consequently, these eddies differ

significantly not only in season, location, scale, radius, and

vorticity, butalso in visual characteristics, space features, and

texture information (Figure 1). According to the ratio of 7:2:1,

the datasets were divided into the training set, validation set and

test set, which respectively contained 172 images, 43 images, and
A B

FIGURE 2

(A) Geographic distribution and (B) seasonal statistics of anticyclonic eddies (red dots) and cyclonic eddies (blue dots) in the SAR-Eddy 2019 dataset.
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24 images. Meanwhile, 11 large-scale (>50,000 km2) images were

used to validate the effectiveness of multi-scale eddy detection

strategy. The generalization and robustness of the object

detection network are limited by the diversity and volume of

the dataset. Because of the above reason, the data augmentation

strategy was adopted to expand the original dataset. Scaling with

random coefficient, flipping, adding noise, and transforming in

color gamut are taken on the original eddy images and their

corresponding annotations.
3 Methodology

3.1 Overview of the proposed
model framework

Inspired by the traditional one-stage object detection

networks, the CEA-Net, which is a context and edge

information association network, is proposed for submesoscale

eddy detection tasks from Sentinel-1 image. The overview of the

network framework is shown in Figure 3. The proposed network

takes Darknet-53, which incorporates the residual structure, as a

backbone to extract multilevel features. Feature maps of different

levels or sizes {52×52,26×26,13×13} areselected from the

hierarchical feature maps to detect multi-scale submesoscale

oceanic eddies. Among, the low-level features include

information on the edges and contours of the eddies. In

contrast, the high-level features are shown as oceanic eddy-like

targets visible to human eyes. To further enhance the contextual

representation of the network for oceanic eddies, the feature

spatial pyramid module is plugged into the backbone network.

In addition, based on the attention mechanism, the information
Frontiers in Marine Science 05
fusion module that can associate the contextual information and

edge information is designed to ensure the integrity of detection

results. Ultimately, the proposed multi-scale eddy detection

strategy is used to promote the application of the model on

large-scale remote sensing images. These parts will be elaborated

in following subsection.
3.2 Feature spatial pyramid module

Appending additional parallel architecture after the

backbone network is one of the most effective ways to extract

multi-scale contextual information. Currently, many

representative works have been proposed and are widely used.

The spatial pyramid pooling (SPP) from SPPNet (He et al.,

2015), the pyramid pooling module (PPM) from PSPNet (Zhao

et al., 2017), and the atrous spatial pyramid pooling (ASPP) from

DeepLab (Chen et al., 2017) are state-of-the-art parallel

architectures for extracting the enhanced context information

further. SPP module solves the problem that CNN needs to fix

the dimensions of the input image, which leads to loss of

accuracy, by carrying out max pooling on different scale grids.

PPM collects global information at different scales by the average

pooling with different kernels. ASPP uses atrous convolution

with different rates to capture the context feature of the image at

multi-scale without loss of resolution.

Inspired by the above methods, the feature spatial pyramid

module (FSPM) was designed to obtain enhanced contextual

information by merging max pooling and multiple dilated

convolutions with different receptive fields. The FSPM consists

of five parallel branches. The residual structure is added to

maintain original features in the first branch. Then, the next
FIGURE 3

The overall flowchart of the proposed algorithm. A large-scale SAR image is first cropped into patches and then orderly fed to CEA-Net to
predict preliminary results. The multi-scale eddy detection strategy reasonably filters the preliminary boxes to obtain submesoscale eddies
detection results accurately.
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branch adopts global max pooling to generate global feature

information. The following three branches applied three dilated

convolutions with rates of 1, 2, and 4 for producing features with

greater receptive fields. In the end, the output features of the

individual branches are further integrated by convolutional

blocks as the output of FSPM. The detailed structure of FSPM

and convolution block are shown in Figure 4. The parallel

pyramid architecture extracts different scale information,

while the concatenate operation allows for the better

integration of global and local semantic context information

for eddy detection.
3.3 Edge information fusion module

With the aim to enhance the ability of the network to detect

ocean eddy integrity, EIFM is proposed. The EIFM is used to

selectively collect edge information from low-level features and

contextual information from high-level features, and then

associate the filtered information to form high-level features

that contain edge information. The channel attention

mechanism and spatial attention mechanism are the basic

components of the EIFM.

3.3.1 Channel attention mechanism
The channel attention produces a channel attention map by

exploiting the interchannel relationship of features (Woo et al.,

2018). As shown in Figure 5A, assuming an input feature map

F=[f1,f2,…,fC]∈RC×H×W as input to the channel attention

module. First, the global average pooling and global max

pooling are used to aggregate the spatial information of the

feature map F, generating average-pooled feature and max-

pooled feature: Fc
avg , F

c
max ∈ RC�1�1. Its cth element is
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calculated:

Fc
avg =

1
H �Wo

H

i=0
o
W

j=0
fc i, jð Þ (4)

Fc
max = max fcð Þ (5)

Subsequently, both features are fed into a shared multi-layer

perceptron (MLP) to create feature maps for channel attention,

in which the shared MLP is constituted by two fully connected

layers. The shared MLP can be formulated as follows:

MLP •ð Þ = W1 dReLU W0 •ð Þð Þð Þ (6)

Where W0 and W1 are the relevant weights of the shared

MLP, dReLU(•) denotes the ReLU function.

The output feature vectors after shared MLP are fused by

using element-wise summation operation. In the end, the

weights for each feature channel are generated by the

excitation operation. In brief, the calculation of channel

attention is expressed by a mathematical formula as follows:

Mc Fð Þ = dsigmoid MLP AvgPool Fð Þð Þ⊕MLP MaxPool Fð Þð Þð Þ
= dsigmoid W1 W0 Fc

avg

� �� �
⊕W1 W0 Fc

maxð Þð Þ� �
(7)

Where dsigmoid(•) denotes the sigmoid function, ⊕ is the

element-wise summation.
3.3.2 Spatial attention mechanism
The structure of spatial attention is illustrated in Figure 5B.

As a complement to channel attention, the spatial attention

mechanism centers on mining the inter-spatial relationships of

feature maps (Woo et al., 2018). The input data are thefeature
FIGURE 4

The framework of feature spatial pyramid module (FSPM).
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map, F=[f1,f2,…,fC]∈RC×H×W , which is the same as the input

data in channel attention. First, the global average pooling and

global max pooling aggregate the feature information along the

channel axis and concatenate them into a combined feature

operator: ½Fc
avg , F

c
max� ∈ R2�H�W . And then, a convolution layer

and excitation operation are used on the concatenated feature

descriptor to generate spatial attention weights Ms(F). The

detailed process is as follows:

Ms Fð Þ = dsigmoid Conv7�7 AvgPool Fð Þ;MaxPool Fð Þ½ �ð Þð Þ
= dsigmoid Conv7�7 Fs

avg ; F
s
max

� �� �� � (8)

where Conv7×7(•) is a 2D convolution operation with the

kernel size of 7 × 7.
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3.3.3 Integration of channel and
spatial attention

The EIFM includes channel and spatial attention

mechanisms to selectively highlight important information in

the spatial and channel domains, respectively. As shown in

Figure 6, the spatial and channel attention are linked by

parallelism with features at different levels.

Firstly, the channel attention weights Mc(F) have been used

for the low-level feature Flow ∈ RC�(H4 )�(W4 ) to make the model

more discriminative for each channel. Then, the original low-

level feature is introduced to sum with the transformed feature of

the weights multiplication. The final edge information is

obtained by multiplying the above result and spatial attention

weights of the high-level feature. The calculation of the edge
FIGURE 6

The framework of edge information fusion module (EIFM).
A

B

FIGURE 5

The attention mechanism. (A) Channel attention. (B) Spatial attention.
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information can be summarized as follows:

Fedge = Ms Fhigh
� �

⊗ Flow ⊕ Flow ⊗Mc Flowð Þð Þð Þ (9)

Where ⊕ and ⊗ denote element-wise summation and

multiplication, respectively. The high-level feature Fhigh ∈ RC�(H32)�(W32 )

is first transformed through the spatial attention weights Ms

(F). To preserve the original contextual information, the initial

high-level feature is introduced after the feature has been

transformed. The formulation of the contextual information is defined as:

Fcontext = Fhigh ⊕ Fhigh ⊗Ms Fhigh
� �� �

(10)

Finally, the three different levels of features are concatenated,

including the high-level feature, contextual information feature,

and edge information feature.

Ffusion = Fhigh; Fcontext ; Fedge
� �

(11)

This module can selectively fuse edge and contextual

information from multilevel features, fully exploiting the edge

feature of eddies while suppressing less critical information. It

should be emphasized that the EIFM module does not

significantly increase network parameters and computational

load, but it can prominently improve network performance.
3.4 Multi-scale eddy detection strategy

Considering the practical application of CEA-Net on large-

scale remote sensing images, the proposed method was tested on

several complete Sentinel-1 interferometric wide swath images.

However, different from identifying eddies on data sets,

complete remote sensing images cover a wider range and

contain ocean eddies of different scales, which is an enormous

challenge for applying deep learning models. The multi-scale

ocean eddy detection strategy is proposed to solve the above

question. The proposed multi-scale eddy detection strategy

dealing process is summarized in Algorithm 1.
Fron
Input: SAR image I∈R3×H×W , Multi-scale parameter

MS={ms1,…,msn,…,msN}∈RN×1 , Trained CEA-Net model

ModelCEA
Output: Eddy Detection Results

// Define variable of detection results

RR f
for i = 0; i<N; i++ do

// SAR image I is cropped by ith scale msi
Sub={subi,1,…,subi,m,…,subi,M}∈RM×1

for j = 0; j<M; j++ do

// Detection each subimage by trained model ModelCEA
Ri,j ModelCEA(subi,j)

// Each subimage has numi,j predicted box(es) Ri,j⊃numi,

j×{scale,polarity,(x,y),h,w,confidence}
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end for

end for

The total number of predicted box Nbox is

oN
i=1oM

j=1num(i, j)

// Calculate intersection over the union (IoU) matrix

IoUM∈RNbox×Nbox

for i = 0; i<Nbox; i++ do

for j = 0; j<Nbox; j++ do

IoUMi,j CalculateIoU(boxi,boxj)

end for

end for

Get the finally results(boxes) by designed criterion

return Results
ALGORITHM 1 MULTI-SCALE EDDY DETECTION STRATEGY METHOD.

Firstly, the multi-scale parameter MS = {ms1,…, msn,…,

msN} with N scales was predefined for a full Sentinel-1 image I.

For scale ms1, the image I is cropped as a series of sub-images

with side length ms1, after which all cropped subimages are

summarized according to different scales and then detected by

CEA-Net. It is worth noting that the detection result is

represented by anchor box. The detection results of subimage

sets Sub={subi,1,…,subi,m,…,subi,M}∈RM×1 on ith scales are

represented as follows:

Ri,j =  Model CEA  sub i,j

� �
Ri,j ⊃ num i,j �  scale, polarity , x, yð Þ, h,w, confidence ð Þ

(
(12)

where subi,j represents the jth subimage in the ith scale;

ModelCEA is the trained CEA-Net; Ri,j is the predicted

information of subi,j; numi,j denotes the number of box

predicted by CEA-Net in subi,j; and scale, polarity, (x, y), h, w,

confidence represent the scale information, eddy polarity, center

coordinates, height, width, and confidence of each anchor box

predicted, respectively.

Therefore, the total num of prior anchor boxes predicted can

be calculated as follows:

Nbox =o
N

i=1
o
M

j=1
num (i, j) (13)

Then, for each detected result, one intersection over the

union (IoU) matrix IoUM∈RNbox×Nbox will be calculated

between each detected result and other results. The IoU is the

overlap ratio between the detected box (DT) and the

corresponding ground truth box (GT). In this experiment,

each detection result is used successively as GT to calculate

IoU with other boxes. The other boxes here are seen as DT. The

IoU can be calculated by the following equation (14):

IoU =
SDT ∩ SGT
SDT ∪ SGT

(14)
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where IoU constitutes the IoU matrix IoUM, S represents the

pixel areas of the anchor box, SDT∩SGT is the intersection area of

DT and GT, and SDT∪SGT denotes their union area.

In the following, the finally detected results must conform to

the following criteria: (1) the threshold value of IoU is given as

0.65; (2) the same eddy must be detected by detection boxes of at

least two different scales; (3) the detection box with the

maximum confidence is the final result of the same eddy.

After the above rules, the final detection results of ocean

eddy are obtained on large-scale remote sensing images.
4 Experiments

In this section, the effectiveness of the CEA-Net network is

evaluated on the SAR-Eddy 2019 dataset from Sentinel-1. First,

the CEA-Net is compared with prevalent and progressive object

detection methods to prominent its superiority. Beyond

comparison, weconduct experiments on large-scale Sentinel-1

IW images to further demonstrate the practical application

ability of CEA-Net and the effectiveness of the multi-scale

eddy detection strategy. Finally, the MODIS chlorophyll-a and

sea surface temperatures (SST) are employed to verify the

correctness of detection results.
4.1 Implementation details

In this paper, all models were implemented on the Pytorch

1.9.0 of the deep learning framework. These experiments were

performed on an NVIDIA GeForce RTX 2080 GPU with CUDA

11.3. In order to accelerate the model convergence and reduce

memory consumption, the Adam optimizer is selected to learn

the parameters of all models automatically. The initial value of

the learning rate is pre-set to 0.0001 and is automatically decayed

by a factor of 0.92 in each epoch. All networks have been trained

for 100 epochs. The batch sizes of the first 50 epochs and the last

50 epochs were fixed to 8 and 4, respectively. The loss function of

our model inherits the loss function of the YOLO series, which

mainly includes shape loss, confidence loss, and classification

loss of the predicted box.
4.2 Evaluation metrics

To evaluate the detection performance of the CEA-Net,

some evaluation metrics were used: precision, recall, F1-score,

average precision (AP), and mean average precision (mAP). The

precision and recall are defined successively using equations (15)

and (16):

Precision =
TP

TP + FP
(15)
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Recall =
TP

TP + FN
(16)

where TP, FP, and FN denote the number of true positive,

true negative, and false positive anchor boxes, respectively. In

our experiment, the TP means the number of boxes whose IoU is

greater than 0.5 between the predicted and ground truth box.

Besides, F1-score measures the comprehensive performance

of the network, which can be calculated based on precision and

recall.

F1 − score =
2� Precision� Recall
Precision + Recall

(17)

The precision and recall of a specific category are used to

draw curves in the 2-D coordinate system, and the area under

the curve is AP of this category.

AP =
Z 1

0
P Rð ÞdR (18)

According to equation (19), mAP can be furnished, which

represents the average of all categories of AP:

mAP = o
n
i=1APi
n

(19)

The AP and mAP are commonly considered indicators of

model quality. Generally speaking, the two indicators and model

quality are positively correlated.
4.3 Result and analysis

In this section, the CEA-Net was compared with SSD (Liu

et al., 2016), Faster RCNN (Ren et al., 2015), Retinanet (Lin et al.,

2017), YOLOv3 (Redmon and Farhadi, 2018), YOLOv4

(Bochkovskiy et al., 2020), and YOLOx (Ge et al., 2021) in the

specific study area of the SAR-Eddy 2019 Dataset. Meanwhile,

the detection performances of different networks were also

compared from both qualitative and quantitative analyses.

Figure 7 shows the visualization comparison of the eddy

detection result by different networks in five representative SAR

eddy images. From these complicated images, it can be observed

that the conspicuous obstacle of eddy detection is the clutter,

intense speckle effect, and easily-confused sea surface

phenomena (oil film and ship tracks). The eddy scenarios are

provided for five different sea states. The eddy images in the first

column have a low backscattering coefficient as a whole, while

the second column images are opposite distribution. The third

column images illustrate the performance of different networks

under oceanic eddies, where the seawater is mixed with large

amounts of sea ice. Unlike other eddies with continuous wake,

the eddies of the fourth and fifth column images are not

visually complete.
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FIGURE 7

Visualization comparison results of different networks. (A) Ground truths. (B-H) Results of SSD, Faster RCNN, Retinanet, YOLOv3, YOLOv4,
YOLOx, and CEA-Net. The confidence score of the displayed boxes is all greater than 0.5.
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It is worth mentioning that the prediction boxes of cyclone

eddies (CEs) and anticyclone eddies (AEs) are marked with red

and green, respectively. After prediction by different networks,

and comparative observation of the visualization results, it is

found that the detected results of the CEA-Net are closer to the

ground truth. Compared with other methods, the results of

Retinanet, YOLOv3, YOLOv4, and YOLOx have missed

detections, such as the first, third and last column. Meanwhile,

according to the experimental results in the second column,

these models cannot separate multiple symbiotic eddies

effectively. The false positive result was presented in the third

column from SSD. Although YOLOv3 can correctly identify

most eddies compared with other detection networks, the

predicted anchor boxes of YOLOv3 have a poor ability to

describe the range of oceanic eddies compared to CEA-Net. It

can be seen that, in the first column, the predicted anchor box of

CEA-Net is closer to the edge of eddies because EIFM selectively

takes into consideration the edge information. Additionally, the

results detected by CEA-Net are more consistent with the

ground truth. This result indicates that CEA-Net can

effectively obtain enhanced contextual information and further

suppress noise. Therefore, according to the above discussion, the

proposed CEA-Net has good robustness and distinct advantages

in terms of visuals.

To further validate our proposed method, the five widely

evaluation metrics are used for quantitative analysis. The highest

value of indicators is marked in bold. Table 1 shows the

precision, recall, and F1-score for our proposed CEA-Net and

other mainstream object detection methods. The quantitative

metrics from Table 1 show that the CEA-Net has the highest

recall and lowest precision standard deviation. Table 2 compares

seven SOTA networks of AP and mAPon the eddy dataset,

further indicating that our method surpasses other comparison

methods. There are significant differences in accuracy between

the two-stage (SSD) and single-stage (YOLO) algorithms from

Tables 1 and 2. Therefore, the single-stage algorithm is more

suitable for unique elliptic or banded objects. From these tables,

our CEA-Net achieves the best precision, recall, and F1-score AP

for anticyclonic, reaching 85.7%, 85.71%, 85.71%, and 92.76%,
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respectively. However, cyclonic quantification results do not

have the same excellent performance as anticyclones. This

situation is caused by the sample imbalance of the SAR-Eddy

2019 dataset. Except these, our CEA-Net achieves 85.47% mAP

for oceanic detection task, which is significantly better than

other methods, representing improvements of 9.38%, 12.25%,

5.2%, 5.05%, 2.36%, and 3.21% over SSD, Faster RCNN,

Retinanet, YOLOv3, v4, and x. These improvements may be

primarily due to the fact that, by simultaneously considering

global contextual information and preferred edge information,

the eddy polarity can be well captured during the category

prediction stage. Through the above quantitative evaluation

and qualitative analysis, the proposed method of CEA-Net has

an outstanding advantage over the current mainstream object

detection networks.

To further demonstrate how the CEA-Net works in SAR-

Eddy 2019 Dataset, we visualize some feature maps at different

positions of the proposed CEA-Net by Grad-CAM (Selvaraju

et al., 2017) in Figure 8. Clearly, the proposed EIFM can more

effectively collect edge information. For example, the feature

map output after EIFM in the last column of Figure 8 can

accurately capture the wake feature of oceanic eddies. However,

the backbone network (DarkNet-53) and FSPM cannot do this

because they lost edge information.
4.4 Detection results on large
Sentinel-1 image

The multi-scale eddy detection strategy combined with

CEA-Net is applied to large-scale panoramic Sentinel-1 IW

SAR images, and the practicality of the eddy detection model

was verified. Raw images were preprocessed first by the

described Sentinel-1 preprocessing flow in Section 2.2. And

then, the linear stretch with 2% is adopted to facilitate the

visualization of SAR images. In the following, a series of sub-

images by cropping panoramic images were fed into the CEA-

Net in batches to achieve the preliminary detection results.

Finally, the preliminary detection results can be further filtered
TABLE 1 Comparison with the different networks in precision, recall, and F1-score.

Precision(%) Recall(%) F1-score(%)

AE CE AE CE AE CE

SSD 85.71 77.78 85.71 73.68 85.71 75.67

Faster RCNN 55.56 40.00 71.43 73.68 62.50 51.85

Retinanet 75.00 72.22 85.71 68.42 80.00 70.27

YOLOv3 85.71 73.68 85.71 73.68 85.71 73.67

YOLOv4 83.33 87.50 71.43 73.68 76.92 80.00

YOLOvx 83.33 85.71 71.43 63.16 76.92 72.72

CEA-Net 85.71 82.35 85.71 73.68 85.71 77.77
frontiers
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based on multi-scale eddy detection strategy, thereby yielding

the final precise detection result.

The ability of ocean eddies to transport heat, salinity, tracers,

nutrients, and chlorophyll is due to their nonlinear structure.

The cyclonic eddy (anticyclonic eddy) causes seawater

divergence (convergence) to push the lower (upper) layer of

seawater torise (fall) by the geostrophic effect, causing the sea

surface to exhibit SST with local minimum (high) values.

Meanwhile, the eddy-induced pumping (Falkowski et al.,

1991) points out that upwelling within cyclonic eddies

enriches the upper ocean withnutrients, significantly increasing

chlorophyll-a concentrations in the surface layer. Anticyclonic

eddies do the opposite. Thus, the MODIS chlorophyll-a data and

SST data are contrasted with the Sentinel-1 image for the same

spatio-temporal for verifying the eddies detected.

As an example, the scene name of images selected

for display and analysis is S1A_IW_GRDH_1SDV_2019

−0805T224332_20190805T224401_028440_0336C6_DCF4,

located between 16.33°N and 18.44°N, 105.53°E and 108.33°E.
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The image was acquired from the South China Sea on August 5,

2019. And it has 24276×29828 pixels covering an area of about

72,116 km2. It is worth mentioning that the multi-scale

parameter (MS) includes five scales, which are 1000 pixels,

3000 pixels, 5000 pixels, 7000 pixels, and 9000 pixels,

respectively, in the experiment. Figures 9A–C show the

detection and comparative results. The red dot is the center of

the cyclonic eddy. The significant backscatter, high chlorophyll,

and cold SST appeared in the corresponding region. This

phenomenon thus demonstrates that the eddies detected from

SAR are confirmed in the MODIS chlorophyll-a and SST data.

Because of the limited spatial resolution of MODIS data

and derivative product (chlorophyll-a and SST), the

submesoscale oceanic eddies with radial less than 5 km

cannot be detected (the left bottom of Figure 9A). Cloud

and fog also represent a severe obstacle for optical data to

detect eddies. In another set of experiments, an abnormal

anticyclonic eddy (Liu et al., 2021) was detected in Sentinel-1

image collected from the Sea of Okhotsk (Sentinel-1 ID:
FIGURE 8

Visualization of selected feature maps at different positions of the proposed CEA-Net. (A, D) After backbone, (B, E) After FSPM, (C, F) After EIFM.
TABLE 2 Comparison with the different networks in AP and mAP.

Backbone AP(AE, %) AP(CE, %) mAP(%)

SSD VGG 85.71 66.46 76.09

Faster RCNN ResNet 50 77.33 69.11 73.22

Retinanet ResNet 50 86.69 73.86 80.27

YOLOv3 DarkNet 53 85.71 75.12 80.42

YOLOv4 CSPDarkNet 83.67 82.54 83.11

YOLOx CSPDarkNet 81.63 82.88 82.26

CEA-Net DarkNet 53 92.76 78.18 85.47
fron
The bold values represent the best performance.
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S1A_IW_GRDH_1SDV_20190728T202431_20190728T202500

_028322_03333D_0499). The anticyclonic eddy has high

chlorophyll and low SST in the corresponding region of

MODIS data, which is inconsistent with the chlorophyll and

SST distribution of the normal anticyclonic eddy (see

Figures 9D–F).

Actually, the identified eddies by merged altimeter data

(Tian et al., 2020) were also used to match and compare with

the SAR image identification results. However, the matching

results are overwhelmingly negative. One of the reasonsis that

the interesting area of Sentinel-1 is the coastal waters in the

study area, while the altimeter focuses on the deep-sea region.

Moreover, the data resolution (about 25 km) of existing

altimeters is not suitable to detection submesoscale eddies

which horizonal scale are about 10 km, which may result in

the negative comparison. Therefore, the detection results of

Sentinel-1 SAR data are recommended as a supplement to the

altimeter eddies dataset.

The comparison experiment that CEA-Net combined with

and without multi-scale eddy detection strategy was designed for

better verification the necessity of multi-scale eddy detection

strategy. Figure 10 shows the experimental results of thelarge

Sentinel-1 images in the study area. It can be seen from Figure 10

that the multi-scale detection strategy proposed in this article

improves detection capabilities in capturing small-scale eddies

(see Figures 10A, C). If a large-scale image is fed directly into the

CEA-Net model, the useful spatial information of small-scale
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eddies will be lost due to convolution and pooling. Thus, the

CEA-Net without multi-scale strategy performs poorly in terms

of correctness of small-scale eddies detection (see Figures 10B,

D). These illustrate the importance of multi-scale eddy detection

strategy for detecting different scale oceanic eddy.

The experimental results indicate not only the effectiveness

and practicability of the proposed model and strategy in real

scenarios but also embody the superiority of high-resolution

SAR data in submesoscale eddy detection.
4.5 Ablation study

In this subsection, the ablation study was designed to remove

some modules from the network and thus analyze the

contribution of each module, i.e., the feature spatial pyramid

module (FSPM), edge information fusion module (EIFM), and

the data augmentation strategy (DAAS). The YOLOv3 is

selected as the baseline network. Next, the FSPM module and

EIFMmodule are successively introduced into the baseline. Data

augmentation is applied online to expand the diversity of data,

which does not require an additional training burden. It should

be noted that the multi-scale eddy detection strategy was not

systematically assessed in the ablation study. The primary

function of the strategy is better to apply deep learning models

to large remote sensing images, rather than to improve the

performance of the models on the dataset.
A B

D E F

C

FIGURE 9

(A, D) Oceanic eddies detected by Sentinel-1 images. (B, E) MODIS chlorophyll-a data. (C, F) MODIS SST data. The dot and outline represent the center
and the range of eddies on chlorophyll-a and SST data. Furthermore, the red and green anchor boxes are the cyclone and anticyclone, respectively.
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Table 3 shows the accuracy indicator of ablation

experiments, including the AP scores per class and the mAP

of each submodel. Without FSMP block, EIFM block, and DAAS

strategy, the YOLOv3 obtains the baseline mAP of 77.32%.

When the FSPM block was introduced into the baseline

model, mAP was improved by 5.28%. Meanwhile, the baseline

network with EIFM further improves the mAP and obtains the

best AP of CE. With EIFM, the AP of CE was improved by

14.5%, and mAP was improved by 6.23%, indicating that the

selective association of edge and contextual features can

effectively improve the detection precision of the network. The

DAAS enhances the richness of train samples, improves

robustness and generalization of the network, and thus

improves the prediction effect in the test stage. As can be seen

from the metrics in the last row of Table 3, the union of multi-

modules furthest optimizes the detection capability of the

baseline network. The AP of AE and CE are 92.76% and

78.18%, corresponding to the increase of 7.05% and 9.25%,

respectively. In addition, mAP also improved significantly,

reaching 85.47%. With the proposed two modules of feature

enhancement, the representative eddy information can be well
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characterized, and the CEA-Net is thus promoted to focus on the

object area in the multilevel feature maps.
4.6 Complexity and speed analysis

Apart from the accuracy of object detection, runtime

efficiency and memory consumption are extremely important

for applying the model. Thus, this part summarizes and analyses

the number of parameters and inference speed of the proposed

CEA-Net, SOTA, and ablation models. Table 4 shows the most

SOTA models. Considering the excellent detection performance

of the model, the reasoning efficiency and memory consumption

are acceptable.
5 Conclusion

In this paper, an effective and robust model, namely CEA-

Net, for submesoscale oceanic eddies detection from SAR

images. The CEA-Net integrates both contextual and edge
A B DC

FIGURE 10

Visualization comparison results of CEA-Net combine with and without multi-scale eddy detection strategy. (A, C) With multi-scale strategy,
(B, D) Without multi-scale strategy.
TABLE 3 Ablation study on SAR-Eddy 2019 dataset.

Baseline FSPM EIFM DAAS AP(%) mAP(%)

AE CE

✓ 85.71 68.93 77.32

✓ ✓ 83.67 81.52 82.60

✓ ✓ 83.67 83.43 83.55

✓ ✓ 85.71 75.12 80.42

✓ ✓ ✓ ✓ 92.76 78.18 85.47
fron
The bold values represent the best performance.
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information of submesoscale eddy into the backbone network. It

can provide a solution to the difficulties of identifying

submesoscale oceanic eddies in fine-resolution SAR imagery as

well as the inadequacy of scene-level edge features. A new

oceanic eddy dataset, SAR-Eddy 2019 dataset, is established

for evaluating the proposed method. The detection results

demonstrate the superiority of our proposed CEA-Net in

terms of quantitative assessment and visual performance. The

multi-scale eddy detection strategy provides a bridge for the

application of CEA-Net in large-scale Sentinel-1 images. These

results in this research provide some insights for future work.

Lightweight and class-imbalance issues will be addressed.

Besides, the expansion of the submesoscale oceanic eddies

dataset is also on our schedule.
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