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High-precision DOA estimation
for underwater acoustic signals
based on sparsity adaptation

Lulu Jiao, Xinghai Yang*, Tianqi Quan and Jingjing Wang

School of Information Science and Technology, Qingdao University of Science and Technology,
Qingdao, China
The direction of arrival (DOA) estimation technique is to obtain the direction

information of the source when it reaches the array by processing and

analyzing the received signal. In recent years, the DOA estimation of an array

signal has been a research hotspot. For application scenarios with a small

number of snapshots and a low signal-to-noise ratio, the compressive sensing

theory has been commonly used to estimate the DOA of an array signal to

achieve better estimation performance. However, the DOA estimation

methods based on compressive sensing theory require information on

source sparsity. Moreover, the influence of a complex underwater acoustic

environment limits the accuracy of estimation algorithms. To address this

limitation, this study proposes a high-precision DOA estimation model for

underwater acoustic signals based on sparsity adaptation. The proposed model

includes mainly two parts. In the first part, a source sparsity adaptive model

based on a causal convolutional neural network is proposed. Themodel is used

to address the constraint that the source sparsity should be known a priori

when compressed sensing is used for DOA estimation. In the second part, a

differential combination matching pursuit (DCMP) algorithm is adopted. First, a

differentiated path filtering strategy is employed to reduce algorithm

complexity and avoid the problem of invalid filtering. In addition, the

combined optimization strategy is used to improve the prediction accuracy

of the algorithm, providing an efficient error correction idea for the

compressed sensing application to DOA estimation. The results of

simulations conducted under seven different signal-to-noise ratios and using

three different array types show that the proposed source sparsity adaptive

model can reach an average prediction accuracy of 89.6%. In addition,

compared with the other reconstruction algorithm accuracy, on the basis of

ensuring low time complexity, the proposed DCMP algorithm can achieve an

accuracy improvement of 9.99%–19.94% under seven different signal-to-noise

ratio values. Moreover, the mean absolute error of the proposed DCMP

algorithm is lower by approximately 0.05°–14° than those of the OMP and

MMP algorithms.
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1 Introduction

The direction of arrival (DOA) estimation of an underwater

acoustic array signal is a critical technique in the field of

underwater acoustic signal processing. It processes the source

signals received by an underwater acoustic array and predicts the

incoming angles of the signals. Therefore, it has been widely used

in many fields, including sonar, radar, and communication

fields. The DOA estimation was first proposed in the 1960s.

Currently, the main techniques for DOA estimation include

subspace algorithms, deep learning models, and compressed

sensing theory.

Among subspace algorithms, the multiple signal

classification (MUSIC) algorithm (Schmidt and Schmidt, 1986)

and the estimation of signal parameters via rotational invariance

techniques (ESPRIT) algorithm (Roy and Kailath, 1986) can

achieve super-resolution DOA estimation. Then, there have

been many studies on reducing the computational complexity

and running time of DOA estimation (Zhang and Ng, 2010;

Vallet et al., 2015; Kim et al., 2020). However, the existing

methods are suitable only for environments with a high signal-

to-noise ratio (SNR) and many snapshots, but such conditions

are difficult to achieve in practical engineering.

Recently, deep learning-based methods have been gradually

applied to various fields. Fu et al. (2019) proposed a blind DOA

estimation method based on the combination of deep learning

and convolutional non-negative matrix factorization, which

process the sparse characteristics of acoustic signals in the

time-frequency domain. By constructing a multi-channel non-

negative matrix factorization model, the elimination of

reverberation can improve the recognition accuracy and

reliability of the algorithm. Varanasi et al. (2020) proposed a

robust DOA estimation method based on spherical harmonic

decomposition and deep learning. The spherical harmonic

decomposition was used to extract the spherical harmonic

amplitude and phase features, which were then used to train a

convolutional neural network (CNN). The results indicated that

this method could improve the DOA estimation performance in

a noisy environment. Ahmed et al. (2021) proposed a DOA

estimation method for antenna arrays based on the MUSIC

algorithm. A deep learning method was used to learn the

mapping relationships between the received signals of two

different scale antenna arrays. And it reconstructs the received

signals of the antenna array. This method could improve the

DOA estimation resolution effectively under a small antenna

array aperture. Kase et al. (2022) proposed a deep learning-based

method to improve the DOA estimation accuracy. In this

method, batch learning and several optimization techniques

were used to analyze the DOA estimation capabilities of

DNNs with different numbers of layers and units, which

solved the problem that the DNN could frequently fail to

estimate the correct bin when the received signal had arrived

at angles near the grid border. However, the various methods
Frontiers in Marine Science 02
described above is only suitable for the scenario with fixed source

sparsity. With the change of application scenarios, the source

sparsity changes accordingly. So the model structure needs to

be readjusted.

The compressive sensing (CS) theory (Candes and Tao,

2005; Candes et al., 2006) has also been applied to DOA

estimation. This method has good estimation performance

under adverse conditions, such as complex marine

environmental conditions, sound transmission loss, natural or

artificial noise interference, and fewer snapshots. Cui et al.

(2019) developed a low-complexity DOA estimation method

for broadband off-grid sources based on dynamic dictionary

refocusing compressed sensing. In the first iteration, the coarse

grid was used for focusing. And the DOA results were obtained

using the focused off-grid model. In the following iterations, the

updated DOA estimation results were selected as extremely

sparse grids for dictionary generation to alleviate the off-grid

effect. Moreover, a grid refining strategy was used for refocusing

based on the obtained DOA results. In this way, compared with

the fixed dictionary method, the total approximation error is

minimized by gradually eliminating the off-grid effect. Jia et al.

(2020) proposed a single-shot compressed sensing-based DOA

estimation method, which used the unconstrained finite

isometric criterion. Namely, the recovery probability and the

number of targets and sensors were established based on the

finite isometric criterion. The results proved that the single-shot

compressed sensing-based DOA estimation method could

satisfy the requirements for incoherence and isotropy. Yan

et al. (2021) proposed a DOA estimation algorithm combining

compressed sensing and density space clustering, which could

effectively solve the problem of regularization parameter

selection in compressed sensing models. Wang et al. (2022)

proposed a passive bistatic radar target detection and DOA

estimation method that could operate in the presence of residual

interference. The proposed method used compressed sensing

sparse reconstruction to process the received signals after clutter

cancellation, thus improving the anti-main lobe interference and

high-resolution DOA estimation performance. Although the

introduction of compressed sensing theory could solve many

problems in the traditional DOA estimation methods, this

method did not consider the case of unknown source sparsity.

It should be noted that source sparsity refers to the number of

transmitting sources. In many application scenarios, the source

sparsity is unknown, especially in underwater acoustic

environments, where the source is located hundreds or even

thousands of meters under the water surface. This problem can

be addressed using the source sparsity adaptation, which can

effectively enhance the generalization of application scenarios

while meeting practical engineering requirements.

Recently, a number of CS-based sparsity adaptation

algorithms have been proposed (Do et al., 2008; Fu et al.,

2016; Wei et al., 2017; He et al., 2019; Li et al., 2020; Cui et al.,

2021; Lu et al., 2022). For instance, Li et al. (2020) developed a
frontiersin.org
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variable-step matching pursuit algorithm based on oblique

projection, where the support set was determined by the

oblique projection test method, and the atomic number was

obtained by the nonlinear method, providing a higher

reconstruction accuracy and lower computational complexity.

Cui et al. (2021) proposed a reconstruction algorithm for sparse

signals based on adaptive bidirectional sparsity and weak

selection of atoms matching pursuit. The proposed method

followed the idea of weak atomic selection combined with a

variable bidirectional step size, which improved reconstruction

performance and decreased time complexity. Lu et al. (2022)

proposed an improved algorithm for segmented orthogonal

matching pursuit based on wireless sensor networks. In this

method, the fixed value strategy was combined with the

threshold strategy to improve atomic selection accuracy.

However, the existing sparsity adaptive methods for DOA

estimation have certain drawbacks, such as low stability, and

the selection of iterative threshold is greatly influenced by

environmental factors, such as the number of snapshots and

array types.

Aiming to solve the above-mentioned problems, this paper

proposes a high-precision sparsity adaptation-based DOA

estimation method for underwater acoustic signals, which

combines deep learning and CS theory. The proposed method

can realize high-precision DOA estimation of underwater

acoustic signals under unknown source sparsity.

The main contributions of this work are as follows:

(1) Considering the CS theory-based DOA estimation,

which is limited by the prior information on source sparsity,

this study designs an adaptive model of source sparsity based on

a causal CNN to learn the characteristics of underwater acoustic

signals received by an array at different times to predicting the

source sparsity accurately;

(2) Aiming at the problem of invalid atomic screening in the

DOA estimation algorithms based on multipath matching

pursuit (MMP) algorithm, this study proposes a differentiated

path screening strategy. The proposed strategy screens

differentiated atoms to form a path set and determines a

preliminary approximate angle direction, which can effectively

reduce algorithm complexity and ensure the correctness of the

approximate angle direct ion whi le improving the

screening efficiency;

(3) Considering the difficulty in selecting iterative thresholds

and the poor generalization ability of the traditional

reconstruction algorithm, this study introduces a combination

optimization strategy. In this strategy, the left-right atom

approximation criterion is used to screen each of the

candidate path groups, which can improve the error correction

ability and estimation accuracy of the reconstruction algorithm.

The rest of the manuscript is organized as follows. In Section

2, we introduce the CS-based DOA estimation model of

underwater acoustic array signal. In Section 3, we present the

causal CNN-based adaptive source sparsity model. In Section 4,
Frontiers in Marine Science 03
we present the DCMP-based DOA estimation model. In Section

5, we use Bellhop model to simulate complex underwater

acoustic channel and construct underwater acoustic array

signals. The performance of the model proposed in Sections 3

and 4 is also evaluated. Finally, in Section 6, we conclude

this work.
2 CS-based DOA estimation model
of underwater acoustic array signal

2.1 Traditional DOA estimation model of
underwater acoustic array signal

The underwater acoustic communication environment

considered in this study is presented in Figure 1. As shown in

Figure 1, there are N far-field narrowband underwater acoustic

signals denoted by z1,z2,...,zN, having frequency f and sound

velocity v , which are incident onto a uniform linear array

with wavelength l . The linear array consists of M array

elements arranged in the vertical direction. The interval

between adjacent array elements is d , and it is equal to half of

the signal wavelength. Assume that the angle between the

kth (k=1,2,⋯N) incident signal and the vertical direction of

the array is denoted by qk . Then, the vector form of the array

signal at time t can be mathematically expressed as follows:

X(t) = A(q)Z(t) + N(t) (1)

where. X(t)=[x1(t),x2(t),⋯,xM(t)]
T,t=1,2,...,L ; L is the

number of snapshots; Z(t)=[z1(t),z2(t),⋯,zN(t)]
T represents the

transmission signal of N sources at time t ; A(q)=[a(q1),a(q2),⋯,

a(qN)] is an M×N dimensional array manifold matrix; a(qk)=[1,
e−j2pftk,⋯,e−j2pf(M−1)tk]T is the steering vector; tk=dsinqk/c, k=1,2,
⋯,N ; N(t) is the ambient noise received by the array.

The matrix form of the received signal X∈CM×L by the array

is given by:

X = AZ + N (2)
2.2 CS-based DOA estimation model of
underwater acoustic array signal

Aiming to satisfy the Nyquist sampling theorem, the

traditional DOA estimation methods sample a large amount of

data first, and then only a small part of the data is compressed.

This approach wastes many data resources and increases

hardware system complexity. To address these shortcomings,

this work adopts the CS theory. First, a sparse or compressible

signal is sampled at a rate much lower than the Nyquist sampling

rate. Next, the projection measurement value is obtained based

on the measurement matrix. Then, all information on the signal
frontiersin.org
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is retained, and the problem is transformed into an optimization

problem. Finally, the reconstruction algorithm is used to recover

the original signal. The flowchart of the CS theory is presented in

Figure 2, where it can be seen that it includes sparse signal

representation, measurement matrix design, and signal

reconstruction algorithm.

Assume that there is a signal S=[s1,s2,...,sR]
T in space under

the action of a transform radix Y , which can be mathematically

expressed as:

S = S
L

i=1
yiai = Ya (3)

Then, the mathematical model of the DOA estimation based

on the CS theory is defined by:

Y = FS = FYa = Wa (4)

where Y denotes the measured value obtained through the

compressed projection, W is the perception matrix, and F is the

measurement matrix.

It should be noted that the CS theory can be applied only to

sparse or compressible signals. However, in an underwater

acoustic environment, only a few directions in the entire space

have an incident source; thus, the true incoming directions of the

sources are sparse for the whole space. According to Figure 1,
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considering the vertical array direction of the left plane of the

array, the space is divided into Q(Q>>N) angles discreetly, as

shown in Figure 3. The set of all possible incident directions in

the space is expressed as fq̂ 1, q̂ 2,⋯, q̂ Qg. Therefore, the array
manifold matrix Â (q̂ ), which contains the information on all

angles, is used as a sparse representation matrix:

Â (q̂ ) = ½a(q̂ 1), a(q̂ 2),⋯, a(q̂ Q)�

=

1 1 ⋯ 1

e−j
2pd
l sin q̂ 1 e−j

2pd
l sin q̂ 2 ⋯ e−j

2pd
l sin q̂ Q

⋯ ⋯ ⋯ ⋯

e−j
2p(M−1)d

l sin q̂ 1 e−j
2p(M−1)d

l sin q̂ 2 ⋯ e−j
2p(M−1)d

l sin q̂ Q

2
666664

3
777775

(5)

In matrix Â (q̂ ), each column corresponds to information

about one angle, and a coefficient vector g=[g1,g2,⋯,gQ]
T

corresponding to Â (q̂ ) is generated. The direction

corresponding to the non-zero element in g indicates that

there is a source incident in the angle direction; otherwise, the

direction corresponding to the zero element in g indicates that

there is no source incident in the angle direction. Therefore, the

mathematical model of DOA estimation of an underwater

acoustic signal based on the CS can be expressed as:

Y = FX = FÂ g +FN (6)
FIGURE 2

The flowchart of the CS theory.
FIGURE 1

The DOA estimation model of an underwater acoustic array signal.
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where X represents the received signal by the array, and Â is

the sparse representation matrix.

Assuming that the variance of the noise received by the array

in an underwater acoustic environment is d , the coefficient

vector of the reconstructed signal satisfies the following

expression:

ĝ = argmin ∥ g ∥ s : t :  ∥Y −FÂg ∥ ≤ d (7)
3 Causal CNN-based adaptive
source sparsity model

The premise of the application of DOA estimation

technology based on the compressed sensing theory is to know

source sparsity. In an underwater acoustic environment, a source

is usually located hundreds to thousands of meters under the

water surface, so it is difficult to obtain source sparsity

information. This limits the promotion and application of

DOA estimation technology based on the compressed sensing

theory. Considering the timing characteristics of underwater

acoustic signals, this paper constructs an adaptive source sparsity

model based on a causal CNN. The proposed model can

effectively predict source sparsity and overcome the problem

that the source sparsity should be known a priori in an

underwater acoustic environment.
3.1 Data set construction

This work uses signals received by underwater acoustic

arrays as datasets. The datasets are represented as f(X0(i), P(i))g
 i = 1, 2,⋯, l, where l denotes the sample size, X0(i) is the

network input, consisting of the signals received by a single
Frontiers in Marine Science 05
element of array, X0(i) ∈ 1� L, and P(i) is the classification

label, which represents source sparsity, and P(i) ≤ max (M).
3.2 Adaptive source sparsity model based
on causal CNN

The proposed adaptive source sparsity model based on a

causal CNN is shown in Figure 4. The size of the convolution

kernels in the first convolution layer is 1×J1 , the number of

convolution kernels is W1 , and the step size is J . The first

convolution layer is used to extract local features from the

underwater acoustic signals. Further, in the second

convolution layer, the convolution kernel size is 1×J2 , the

number of convolution kernels is W2 , and the step size is one.

This layer is used to enhance the correlation between local

features of underwater acoustic signals. The convolution layer

adopts the Leaky ReLU activation function, which is defined as

follows:

LeakyReLU (x) =
x  if x > 0

lx  if x ≤ 0

(
(8)

where x is the node output, and l is the fixed parameter,

which is in the range of (0,1) .

The output feature maps of the last convolution layer are

flattened and used as input of the fully-connected layer. The

third, fourth, and fifth layers are fully-connected layers and

consist of R1 , R2 , and R3 neurons, respectively. The fully-

connected layers are used to integrate the features. The Leaky

ReLU activation function is used in the fully-connected layers. In

addition, the L1 regularization is used in the fully-connected

layers to avoid over-fitting, and the regularization parameter is

set to b. The softmax activation function is used in the output

layer, and it is given by:
FIGURE 3

The schematic diagram of space division.
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softmax  (xi) =
exi

oC
c=1e

xc
(9)

where xi is the output of the i th neuron in the output layer,

and C is the number of neurons in the output layer.

The output layer outputs the prediction probability of

sparsity of each source, and the number of sources with the

maximum prediction probability represents the prediction result

of the network; then, the source sparsity G can be obtained.

The network parameters used in this study are shown in

Table 1. The L1 regularization parameter of the fully-connected

layer is set to 1e-5, the learning rate is set to 1e-4, and the

maximum number of iterations is 500.
4 DCMP-based DOA
estimation model

In this section, the DCMP-based DOA estimation method is

presented. In this method, first, the received signal array extracts

the noise subspace using the singular value decomposition

(SVD) to calculate the noise power. Next, following the

differentiated path screening strategy, G iterations are

performed, and in each iteration, the inner product of the

residual and each column in the sparse representation matrix

Â is calculated, and atoms with large differences are selected to

be stored in the differentiated candidate path set. Then, the

combined path optimization strategy is adopted. Further, based

on the selected differentiated candidate path set, the left and

right atom approximation criteria is used to screen each group of

paths, and for each group, the estimated noise power is

calculated. Finally, the path group with the estimated noise

power that is closest to the original noise power is selected,

and the corresponding angular direction of each atom in the

path group is regarded as the calculated DOA.

The two main innovations in the proposed DCMP algorithm

are as follows:

(1) When screening atoms, the MMP-based DOA

estimation algorithm directly screens the top h atoms with the
Frontiers in Marine Science 06
largest current inner product; h denotes the sub-path expansion

factor, which is the number of atoms screened by each inner

product. It is found by simulations that the angle relationship of

the previous atom with a larger inner product is very close. If the

first h atoms with the largest inner product are directly taken out

as a new path or a candidate set, both screening redundancy and

screening time will increase. To overcome this problem, this

paper proposes a differentiated path screening strategy. In each

iteration, among the first h atoms with the largest inner product,

only atoms whose difference exceeds g are selected; g denotes the
differential path screening factor, which represents the atomic

index difference minimum. This strategy can preliminarily

determine the general angle direction, effectively reduce

algorithm complexity, and improve screening efficiency while

ensuring the correctness of the general angle direction.

(2) Typical termination condition in the traditional iterative

greedy reconstruction algorithms is that the residual reaches the

preset threshold. However, the threshold selection is greatly

affected by the array element number, snapshot number, and

environmental factors. Thus, it is difficult to select an

appropriate threshold value. This paper proposes a combined

optimization strategy, which uses the left and right atomic

approximation criteria to filter the candidate path group and

replace the wrongly selected atoms. Finally, this strategy takes

the DOA represented by the optimal candidate path as a

prediction result, which can enhance the error correction

ability of the reconstruction algorithm and can also improve

the estimation accuracy.
4.1 Noise subspace extraction and noise
power calculation

Since an underwater acoustic environment is strongly

disturbed by artificial and natural noises caused by ships,

industrial activities, marine organisms, and marine turbulence,

the SVD of underwater acoustic signals can effectively separate

signal and noise subspaces, extracts the noise subspace, and

calculates the noise power for subsequent DOA estimation.
FIGURE 4

The proposed adaptive source sparsity model based on a causal CNN.
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After determining the source sparsity G using the adaptive

source sparsity model based the causal CNN, which is presented

in Section 3, the SVD is applied to the received signal X by the

array:

X = USVH (10)

The noise subspace of the underwater acoustic array, which

is denoted by NSV∈CM×(L−G) , is extracted as follows:

NSV = USE = XVE (11)

where E=[0 ones(L,L−G)] , and ones(L,L−G) represents an

L×(L−G) -dimensional all one matrix.

Finally, the noise power Npower is obtained by:

Npower =
o
M

i=1

o
L−G

j=1
∥NSV (i, j) ∥

2

L − G

M
(12)
4.2 DCMP algorithm

The overall flowchart of the DCMP algorithm is presented in

Figure 5. In this study, the DCMP algorithm is used to estimate

the DOA of an underwater acoustic signal based on the received

signal X by array obtained by (2); X denotes a measured value of

matrix Y . The sparse representation matrix Â is constructed by

(5), and then the source sparsity G is predicted, as explained in

Section 3.2. The received signal array noise power Npower is

calculated by (12). The DCMP algorithm and the noise power

nearest criterion are used to select the path group L̂ , which

includes indexes of G atoms from Â so that the estimated noise

power pre_Npower of the reconstructed signal of the path group is

close to Npower . The ultimate goal is to select a path combination

from the reconstruction results whose noise power is the closest

to the noise power of the received signal array so that (13) – (15)

are satisfied.

L̂ = argmin
L

( ∥ pre _NL
power − Npower ∥ ) (13)
Frontiers in Marine Science 07
pre _NL = ∥Y −FÂ (L)g ∥ (14)

pre _NL
power =

o
M

i=1

o
G

j=1
∥ pre _NL(i, j) ∥2

G

M
(15)

In (13) – (15), L̂ = ½b̂ 1, b̂ 2,⋯, b̂G� represents the index path

group corresponding to the atom filtered from Â ; Â (b̂ i) ∈ M � 1

is a column vector of Â (single atom); pre_NL represents the noise

of the reconstructed signal corresponding to the path group L ,

which denotes the estimated noise; pre _NL
power is the noise power

of the reconstructed signal corresponding to path group L , which

is the estimated noise power.The proposed DCMP reconstruction

algorithm includes three main stages: initialization, differentiated

path screening, and combined path screening. The three stages are

presented in the following.
4.2.1 Initialization
Assume that the initial residual is R=Y , source sparsity is G ,

sub path expansion factor is h (i.e., the number of atoms per

inner product screening), differentiated path screening factor is g
(i.e., minimum atomic index difference), and noise power is

Npower ; then, the column unitized sparse representation matrix

Â can be expressed by:

Â =
Â

∥ Â ∥
(16)
4.2.2 Differentiated path screening
It should be noted that this work screens only approximate

angle direction in the differentiation path screening stage, which

improves the screening efficiency and ensures the approximate

angle direction correctness. During the differentiation path

screening stage, G iterations are performed, and multiple

atoms are generated in each iteration. Each atom corresponds

to a different path branch, and after G iterations, multiple paths
TABLE 1 The network parameters.

Layer number Layer type Input size Convolution kernels (Number, size)/Number of neurons Step length Output

1 Input layer 1 × 96 × 1 \ \ \

2 Convolution layer 1 1 × 96 × 1 64 1 × 16 1 × 16 6 × 1 × 64

3 Convolution layer 2 6 × 1 × 64 64 1 × 2 1 × 1 1 × 5 × 64

4 Full connection 1 1 × 320 256 \ 1 × 256

5 Full connection 2 1 × 256 128 \ 1 × 128

6 Full connection 3 1 × 128 64 \ 1 × 64

7 Output layer 1 × 64 4 \ 1 × 4
fron
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are generated, each of which is composed of G atoms and

corresponds to a residual (i.e., the estimated noise). Each

iteration includes ①–③, as shown below.
Fron
① Suppose that the (i−1)th iteration generates k paths

denoted by all _Li−1 = ½L1,L2,⋯,Lk� and k residuals

denoted by Ri−1=[r1,r2,⋯,rk] . Then, in the i th iteration,

traverse k paths obtained in the (i−1)th iteration. When

traversing the j th ( j=1,2,⋯,k ) path, calculate the inner

product between the residual rj corresponding to the

path and each atom (column) in Â , and sort the inner

product rj values in descending order. Afterward, save

the atomic index pos corresponding to the inner product

values, as shown in (17). From the first h atomic indexes,

select the atoms whose index difference exceeds g and

add them to the j th path Lj of the (i−1)th iteration to

form a new differentiated candidate path set denoted by

merge_L , as shown in (18) and (19).
pos = sort( ∥ Â TRj ∥2 ) (17)

index = uj pos(u) − pos(v)j j > g ∩ u ≤ h ∩ v ≤ hf g (18)

merge _Lj
i = array _merge(Lj, index) (19)

In (17)–(19), sort() is a sort function, which is used to sort

elements in descending order; index is the intermediate variable,

which is used to save the index set of differentiated atoms
tiers in Marine Science 08
matching rj ; merge _Lj
i ∈ length(index)� i, where length() is the

function that returns the length of a vector, and array_merge()

is a merge function, which is used to add each atom in the index to

the path j in the (i−1)th iteration;
② The coefficient vector ĝ i of a newly generated length

(index) paths is reconstructed by the least square

method. The residual Rj
i value corresponding to length

(index) paths is computed by:
ĝ m = argmin
g

( ∥ pre _Nmerge _Lj
i(m) ∥ )

     = argmin
g

( ∥Y − Â (merge _Lj
i(m))g ∥ )

     = (Â (merge _Lj
i(m))TÂ (merge _Lj

i(m)))

− 1Â (merge _Lj
i(m))TY

(20)

ĝ j
i = ½g1, g2,⋯, glength(index)� (21)

rm = Y − Â (merge _Lj
i(m))ĝ m (22)

Rj
i = ½r1, r2,⋯, rlength(index)� (23)

③ Update the differentiated path set all _Li and residual of

iteration Ri as follows:

all _Li = ½merge _L1
i ,merge _L2

i ,⋯,merge _Lk
i � (24)
FIGURE 5

The flowchart of the DCMP reconstruction algorithm.
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Ri = ½R1
i ,R

2
i ,⋯,Rk

i � (25)
4.2.3 Combined path screening
During the combined path screening stage, based on the

differentiated path set Li, atoms on each path are further

screened and replaced according to the nearest noise power

principle and approximation criteria of left and right atoms for

determining the optimal path group and realizing accurate

DOA estimation.

The specific steps of this process are as follows:
Fron
① Suppose that a differentiated path set all _LG screened

during the differentiated path screening stage contains k

groups of paths, all _LG = ½L1,L2,⋯,Lk�, and each

path includes G atoms, Li = ½b1, b2,⋯, bG�. Then, the
estimated noise power pre _Npower of each group of

paths can be obtained by (14) and (15), and the noise

power error error _Npower is obtained by:
error _Npower = pre _Npower − Npower

�� �� (26)
② The values of error _Npower and its corresponding path

group are sorted in ascending order, and the current

optimal path group best_L is constructed. The

minimum noise power error min_error is obtained as

follows:
½error seq� = inv _ sort(error _Npower) (27)

best _L = all _LG(seq(1)) (28)

min _ error = error(1) (29)

where inv_sort() is the ascending-order sorting function, and

seq is an ascending sequence of indexes.

③ Traverse the ascending path group, and update each group

of paths according to the left and right atom approximation

criteria. The left and right atom approximation criteria are

introduced in the following.Path group i contains G atomic

indexes ( Li=[b1,b2,⋯,bG] ), of which each corresponds to angle

information. The adjacent atomic indices on both sides of G

atomic indices are selected and put into con_L as follows:

con _L = ½b1, b2,⋯, bG, b1 − 1, b2 − 1,⋯, bG − 1:b1 + 1, b2

+ 1,⋯, bG + 1� (30)

Next, the atomic indexes in con_L are arranged in the way of

equation (31) to obtain a new path combination new_L :

new _L = ½b01, b02,⋯, b0G� b0j ∈ ½bj, bj − 1, , bj + 1� (31)
tiers in Marine Science 09
where j=1,2,⋯,G , and new_L contains a total of 3G

group paths.

The estimated noise power pre _Npower corresponding to

each group of paths in new_L is calculated by (14) and (15).

Similarly, (13) is used to select the path group corresponding to

the noise power closest to Npower , which is denoted as an optimal

path group new_L for this traversal, and the noise power

difference new_error is saved. The iteration on this group of

paths proceeds until new_error no longer decreases or the

maximum number of iterations is reached, after which the

path group optimization is stopped.
④ After each path iteration, it is analyzed whether

new_error is less than the min_error , and if so, the

min_error and best_L are updated; otherwise, the

remaining groups of paths continue to be traversed.
4.2.4 DOA calculation
Based on the combination path screening stage, the optimal

path combination best_L is obtained. Since each atom in the

path group corresponds to one DOA value, the DOA is

calculated using the following expression:

qpre = qmin + (best _L − 1)*qinterval (32)

where qmin is the minimum angle that can be predicted, and

qinterval is the angle resolution.
5 Simulation results and
performance analysis

5.1 Simulation setup

The performance of the proposed algorithm was verified by

simulations on a pc equipped with an Intel Core i5-9400 CPU at

2.90 GHz and an 8-GB memory. The underwater acoustic

channel simulation, network dataset construction, and DCMP-

based DOA estimation model were simulated in MATLAB

R2018b. The adaptive source sparsity model based on causal

CNN was developed using Python and Tensorflow.

In this study, the Bellhop model was used to simulate an

underwater acoustic environment. The Bellhop model was

selected because it is in good agreement with the actual data in

the frequency range of 600 Hz–30 kHz. Therefore, this model

can effectively predict channel data and simulate complex

underwater acoustic environments. In addition, in this model,

various environmental parameters, such as seabed surface shape,

reflection and refraction losses of an acoustic wave, sound speed

profile, can be set and adjusted. Further, underwater acoustic

channel state parameters, such as the path number, unit impact
frontiersin.org
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response, and path delay, can be obtained so different

underwater acoustic channels can be modeled. The signal

modulation mode used in this study was BPSK; the sampling

frequency was 1 kHz, and the symbol rate was 250 sps. The

parameters of the marine environment are given in Table 2. The

sound source and the underwater acoustic array were placed in

the neritic area, and the maximum water depth was only 600 m.

Environmental parameters, such as wind speed, sound speed,

seawater density, and shear wave absorption coefficient, were

considered. Compared with the ideal environment, such as the

array and the source are located in the abyssal region and there is

no wind and waves on the sea surface, the underwater acoustic

environment used in this research can be considered to be

relatively complex.

The overall simulation flow was as follows. First, the

collected underwater acoustic array signals were input into the

source sparsity prediction model to obtain the source sparsity

prediction results. After that, the underwater acoustic array

signal and source sparsity information were input into the

DOA estimation model to achieve DOA prediction.
5.2 Simulation and performance analysis
of adaptive source sparsity model based
on causal CNN

To simulate different application scenarios, three source

sparsity types, corresponding to different numbers of sources

(the number of sources was one, two, or three), three commonly

used array models (eight-element, 10-element, and 12-element

line arrays), and seven SNR values (i.e., -5 dB, 0 dB, 5 dB, 10 dB,

15 dB, 20 dB, and 25 dB) were simulated. A total of 63 different

scenarios were tested, and the element interval of the linear array

was half of the signal wavelength.

To construct the network training dataset, after bellhop

underwater acoustic channel modeling and array reception,
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the signals received by each array element were regarded as

independent individual inputs into the network. For each value

of sparsity, SNR, and array type 100 groups of data were

collected, and the total number of input samples was 3×(8+10

+12)×100×7=63,000 . The label denoted the number of source

sparsity (i.e., 1, 2, or 3). The dataset was randomly divided into

training and test sets according to the ratio of 7:3.

For the training dataset including three different source

sparsity types, seven different SNR values, and three array

types, the accuracy of the proposed model on the test set was

89.6%. To verify the impact of different scenarios on the sparsity

prediction performance effectively while keeping the network

structure and parameters unchanged, 1,500 groups of new data

(verification set) were reconstructed to verify the network under

different SNR values, array types, and source sparsity types. The

verification results are shown in Table 3, where it can be seen

that the prediction accuracy of the network increased with the

SNR. When the SNR was higher than 10 dB, the prediction

accuracy of the network reached 100%; when the SNR was -5 dB,

the prediction accuracy could still reach approximately 80%.

According to the results, the proposed adaptive source sparsity

model based on the causal CNN could accurately predict the

source sparsity under seven different SNR values and three

common array models.
5.3 Simulation and performance analysis
of DCMP-based DOA estimation model

To evaluate the accuracy and efficiency of the proposed

reconstruction algorithm, 1,500 Monte Carlo simulations were

performed under different SNR values, array types, and source

sparsity types. The DOA estimation followed the source sparsity

prediction in Section 5.2. The same batch of underwater acoustic

array received signals was used as in Section 5.2. The

performance of the proposed DCMP algorithm was compared
TABLE 2 The parameters of the marine environment.

Parameter Numerical value

Seawater depth (m) 600

Seawater density ( kg/m2) 1,021 (Summer seawater density)

Sediment layer depth (m) 600

Sediment density ( kg/m2) 1,810

Sea surface roughness parameter Strong wind (wind level 5, wave height 2 m)

Shear sound velocity (m/s) 1,500

Shear wave absorption coefficient (dB/wavelength) 1.0399e−5

Array depth (m) 165.5

Source signal modulation method BPSK

Signal center frequency (Hz) 1,000

Source depth (m) 165.5, 200, 265.5

Voice line 10
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with the performances of the orthogonal matching pursuit

(OMP) algorithm and MMP algorithm. Thereinto, sparse

representation matrix was constructed with an interval of 1∘ .

The DOA estimation performance was evaluated in terms of

accuracy, average estimation time, and mean absolute error

(MAE), which are defined by (33)– (35), respectively. In (33),

numerator indicates the number of simulations in which G

predicted sources satisfy the constraint of q i
pre = q i, i = 1, 2,⋯,

G, while the denominator denotes the number of simulations.

The average prediction time (34) can measure the time

complexity of the algorithm. The MAE (35) can indicate the

prediction error of the algorithm.

acc =
numq i

pre=q i ,i=1,2,⋯,G

numexperiment times
(33)

average _ time =
total _ time

numexperiment times
(34)

MAE =
1
Go

G

g=1

1
Qo

Q

q=1
qgq
pre − qgq

�� �� !
(35)

In (33)–(35), qpre denotes the prediction angle; q is the real

angle; Q is the number of Monte Carlo simulations; when qpre is
the same as q , the prediction result is correct.

Considering the influence of differentiated path screening factor

g on the algorithm performance, 1,500 simulations were performed

for different g values, and the results are shown in Table 4. The

simulation results indicated that the prediction accuracy of the

proposed DCMP algorithm decreased with the value of g .This was
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because the value of g determined the minimum interval of atoms

screened in an iteration. If the interval was too large, it led to the

error that effective atoms would be misclassified into similar atoms.

The average estimation time of the algorithm decreased with the

value of g, which demonstrated that the number of atoms screened

in each iteration decreased, so the number of paths composed of

atoms would also decrease, as well as the time loss. At the same

time, the MAE increased slightly with the value of g . Namely, when

g=10 , the accuracy of the proposed algorithm was high, and the

time loss and the MAE were relatively low. Therefore, In the

subsequent simulations, the value of g was set to 10.

The results of the accuracy, average time, and MAE of

different reconstruction algorithms obtained under different

source sparsity values are presented in Figure 6. As shown in

Figure 6A, the prediction accuracy of all algorithms was

affected by the source sparsity. When there was only one

source, the prediction accuracy of the algorithms was nearly

99%; for two sources, the accuracies of MMP and OMP

algorithms were less than 85%, while the accuracy of the

proposed DCMP algorithm remained above 95%. The

prediction accuracy results for three sources were relatively

different among the algorithms. The prediction accuracy of the

DCMP algorithm was still about 88%, while the accuracies of

the MMP and OMP algorithms decreased to approximately

70%. With the change in source sparsity, when h=5 , the

accuracy of the MMP algorithm decreased from 99% to

approximately 36%; the accuracy of the OMP algorithm also

fluctuated about 30%; the accuracy of the DCMP algorithm

dropped from 99% to nearly 88%. Thus, the accuracy of the

DCMP algorithm had little fluctuations with the change in
TABLE 3 The accuracy of the source sparsity prediction model for different SNR values, array types, and source sparsity.

Source sparsity Array element number SNR (dB)

-5 0 5 10 15 20 25

1 8 89.6 95 100 100 100 100 100

10 89.3 94.8 99.8 100 100 100 100

12 90.33 95.6 100 100 100 100 100

2 8 82.06 82.53 93.4 99.87 100 100 100

10 82 99.33 99.73 99.93 100 100 100

12 93.93 98.93 99.93 99.67 100 100 100

3 8 80 87.73 97.13 100 100 100 100

10 79.8 88.47 95.8 100 100 100 100

12 80.06 87.6 99.93 100 100 100 100
fr
ontiersin.or
TABLE 4 The DCMP algorithm performance under different values of g for two sources, the SNR of 20 dB, a 12-element array, 96 snapshots, and h=5.

g 5 10 15 20 25

Acc (%) 95.87 95.87 95.67 95.67 95.67

Average time (s) 0.0069 0.0053 0.0052 0.0051 0.0051

MAE (°) 1.6440 1.6440 1.7287 1.7287 1.7287
g
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source sparsity. As presented in (Figure 6B), the average time

of the OMP algorithm fluctuated the least with an increase in

source sparsity among all algorithms. The average times of the

DCMP and MMP algorithms increased with the source

sparsity. When h=5 , the average computation time of the

DCMP algorithm was slightly longer than that of the MMP

algorithm. This was due to the addition of the combined path

screening stage in the DCMP algorithm. Although the DCMP

algorithm had longer computation time slightly, it achieved

significant accuracy improvements compared to the other

algorithms. When h=10 , the average computation time of

the MMP algorithm increased significantly, and it was

significantly longer than that of the DCMP algorithm. Thus,

adding the candidate paths increased the computation time of

the MMP algorithm. On the contrary, the DCMP algorithm

adopted the differentiated path screening strategy and could

reduce the redundancy of candidate paths and time complexity

of the algorithm effectively. Particularly, when the source

sparsity was three, the average prediction time of the MMP

algorithm was more than twice that of the DCMP algorithm.

Further, as shown in (Figure 6C), the MAE of all

reconstruction algorithms increased with the source sparsity.

In the case of one source, the MAE values of the DCMP and

OMP algorithms were roughly the same; meanwhile, the MAE

of the MMP algorithm was slightly higher than those of the

DCMP and MMP algorithms. In the multi-source scenarios

(two or three sources), the MAE of the OMP algorithm was

larger than 10°. However, the MAE of the DCMP algorithm

was lower than 5°, and the MAE of the MMP algorithm was

lower than 10°. With the increase in the h value, the MAE of

the DCMP algorithm almost stayed unchanged. In the multi-

source scenarios, the MAE of the MMP algorithm was slightly

higher, by about 1°, than that at h=10 . Therefore, the DCMP

algorithm had better estimation performance when the

number of sources was greater than two.

The results of the accuracy, average time, and MAE of the

three reconstruction algorithms under different SNR values are

presented in Figures 7–9. As presented in Figures 7A, 8A, and

9A, the prediction accuracy of the reconstruction algorithms

increased with the SNR values. For one source and SNR of -5

dB, the prediction accuracy of the DCMP and OMP algorithms

was approximately 85%. However, the accuracy of the MMP

algorithm could reach only about 60%. For multiple sources

(two or three sources) and seven different SNR values, the

prediction accuracy of the DCMP algorithm was higher than

those of the MMP and OMP algorithms. With the increase in

the h values, the prediction accuracies of the DCMP and MMP

algorithms also increased. In addition, compared to the DCMP

algorithm, the effect of h on the MMP algorithm was more

obvious. This could be because the MMP algorithm expanded

h sub paths in each iteration, and adding h meant increasing
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the candidate paths in each iteration, which significantly

improved the prediction accuracy. In the DCMP algorithm,

although when h improved, only the path whose difference

exceeds g in h paths were selected, which also indicated that the

angle information in each round of iteration was similar to that

of the first few atoms with the largest inner product of residual

R . Therefore, the gain effect of h on the DCMP algorithm was

not obvious. As presented in Figures 7B, 8B, and 9B, the

average computation time of each reconstruction algorithm

decreased slightly with the SNR values. The average

computation time of the OMP algorithm was the lowest

among all algorithms. As shown in Figures 7C, 8C, and 9C,

as the SNR values increased, the MAE values of all

reconstruction algorithms decreased. When there was only

one signal source, the MAE values of the DCMP and OMP

algorithms were almost the same. But the MAE values of the

DCMP algorithm was much lower than that of the MMP

algorithm by 0.6°–7°. When there were two or three signal

sources, the MAE of the DCMP algorithm was 0.05°–14° lower

than those of the OMP and MMP algorithms. Thus, the DCMP

algorithm had higher prediction accuracy than the MMP and

OMP algorithm under all seven different SNR values. The

average time of the DCMP algorithm was higher than that of

the OMP algorithm but lower than that of the MMP algorithm.

In addition, the DCMP algorithm had a lower MAE than the

other two algorithms.

The accuracy, average time, and MAE results of the DCMP,

MMP, and OMP algorithms obtained for different types of

arrays under the conditions of a 20-dB SNR, two sources, and

96 snapshots are presented in Figure 10. As shown in

Figure 10A, the accuracy of all reconstruction algorithms

increased with the number of array elements. At the SNR of

20 dB, two sources, and 96 snapshots, the prediction accuracy of

the DCMP algorithm could reach more than 90% under different

array types. However, the highest prediction accuracy of the

MMP algorithm was only 82%, while that of the OMP algorithm

was even lower, only 72%. As presented in Figure 10B, the

average time of all reconstruction algorithms fluctuated slightly

with the number of array elements. As shown in Figure 10C, the

MAE results of all three reconstruction algorithms decreased

with the number of elements in the array. For different array

types, the MAE value of the DCMP algorithm was much lower

than those of the OMP and MMP algorithms. In summary, the

DCMP algorithm showed good performance under different

array types.

The results of the accuracy, average time, and MAE of the

DCMP, MMP, and OMP algorithms based on different numbers

of snapshots under the conditions of a 20-dB SNR, 2 sources,

and a 12-element array are presented in Figure 11. In the

simulations, the sampling points corresponding to 1, 3, 6, 12,

and 22 times code elements were selected as the number of
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FIGURE 6

The performances of the DCMP, MMP, and OMP algorithms for different source sparsity under the SNR of 20 dB, a 12-element array, and 96
snapshots. (A) DOA prediction accuracy; (B) average estimation time; (C) MAE.
Frontiers in Marine Science frontiersin.org13

https://doi.org/10.3389/fmars.2022.1022494
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jiao et al. 10.3389/fmars.2022.1022494
B

C

A

FIGURE 7

The performances of the DCMP, MMP, and OMP algorithms under different SNR values for one source, a 12-element array, and 96 snapshots.
(A) DOA prediction accuracy; (B) average estimation time; (C) MAE.
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FIGURE 8

The performances of the DCMP, MMP, and OMP algorithms under different SNR values for two sources, a 12-element array, and 96 snapshots.
(A) DOA prediction accuracy; (B) average estimation time; (C) MAE.
Frontiers in Marine Science frontiersin.org15

https://doi.org/10.3389/fmars.2022.1022494
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jiao et al. 10.3389/fmars.2022.1022494
B

C

A

FIGURE 9

The performances of the DCMP, MMP, and OMP algorithms under different SNR values for three sources, a 12-element array, and 96 snapshots.
(A) DOA prediction accuracy; (B) average estimation time; (C) MAE.
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FIGURE 10

The performances of the DCMP, MMP, and OMP algorithms for different array types under the SNR of 20 dB, two sources, and 96 snapshots.
(A) DOA prediction accuracy; (B) average estimation time; (C) MAE.
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FIGURE 11

The performances of the DCMP, MMP, and OMP algorithms for a different number of snapshots under the SNR of 20 dB, two sources, and a 12-
element array. (A) DOA prediction accuracy; (B) average estimation time; (C) MAE.
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snapshots for performing the comparison. As presented in

Figure 11A, the prediction accuracies of the reconstruction

algorithms increased with the number of snapshots. The

prediction accuracy of the proposed DCMP algorithm could

still reach more than 90% at a low number of snapshots (the

number of snapshots was 16), while that of the MMP algorithm

can reach up to about 82%, and that of the OMP algorithm was

only about 72%. As presented in Figure 11B, the average

computation time of the algorithm increased with the number

of snapshots. The average time of the OMP algorithm was the

lowest among all algorithms, and it was less than 0.002 s. The

average time of the DCMP algorithm was less than 0.01 s.

However, the average time of the MMP algorithm increased

significantly with the number of snapshots. When the number of

snapshots was 352, the average time of the MMP algorithm was

more than 0.05s. As shown in Figure 11C, the MAE of all

reconstruction algorithms decreased with the number of

snapshots, and the MAE of the DCMP algorithm was 2°–9°

lower than those of the OMP and MMP algorithms. Therefore,

the DCMP algorithm could achieve good prediction

performance under a different number of snapshots while

maintaining a short prediction time.
6 Conclusions

In this work, a high-precision underwater acoustic signal DOA

estimation method based on sparsity adaptation is proposed. In the

first part of the proposedmethod, an adaptive source sparsity model

based on a causal CNN is used to predict source sparsity. The

proposed method is verified by simulations. The simulation results

show that the prediction accuracy of the proposed model can reach

100% when the SNR is higher than 10dB. In addition, the proposed

model can reach a prediction accuracy of more than 80% when the

SNR is less than zero, which indicates its good performance in

adaptive source sparsity prediction. In the second part, a DCMP

algorithm is employed. Simulation results obtained under seven

different SNR values show that compared to the other

reconstruction algorithms, the DCMP algorithm can improve

accuracy by 9.99%–19.94%. In addition, the proposed algorithm

can improve accuracy by 18.4% in a multi-source scenario, so it can

be applied to multi-source application scenarios with different array

types and fewer snapshots.

However, there is a certain difference in the average time

between the proposed algorithm and the OMP algorithm, and
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MAE needs to be further reduced. In future work, more tests

could be conducted to improve the performance of the proposed

algorithm. Furthermore, the two-dimensional DOA estimation

problem could be studied using the three-dimensional

Bellhop modeling.
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