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Modified kinetic energy feature-
based graph convolutional
network for fish appetite
grading using time-limited data
in aquaculture
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Feed has the greatest impact on the carbon footprint of the aquaculture, and

also determines the water quality in aquaculture to a great extent. Making

appropriate feeding control strategies is one of the most effective ways to

promote cleaner production as well as fish welfare in aquaculture. Reliable and

accurate fish appetite grading especially based on time-limited data is a

prerequisite for achieving high-precision and reasonable feeding control in

practical production. To date, however, few efforts have been done on this

challenge. For these, regardingMicropterus salmoides as the experimental fish,

a novel and practical method, based on a modified kinetic energy feature-

based graph convolutional network (GCN), was developed in this study. First,

graphs were constructed based on the extracted modified kinetic energy

features and their temporal correlation. Then, with the help of a series of the

convolution and global pooling operations, a GCN model was customized

based on the constructed graphs. Following this, the customized GCN model

was enriched by the self-attention pooling mechanism and customized

network structure. Results show that the proposed GCN-based approach

outperforms other typical state-of-the-art methods in fish appetite grading,

and the grading accuracy obtained here could be 98.60% using only the first

4.2 seconds as well as the first 8.3 seconds of input data, which is not much

different from that (98.89%) using full-length (25 second-long) input data.

What’s more, compared to the recurrent neural network (RNN)-based method

which performance is closest to our method, the space complexity of the

proposed approach here can better satisfy the requirements of real

aquaculture, in which the quantity of the trainable parameters here is only

6.4% ~ 31.8% of the RNN-based method. In summary, the proposed modified

kinetic energy feature-based GCN approach is favorable for the appetite

grading of fish like Micropterus salmoides with time-limited data, which is a
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promising approach in dealing with feeding control tasks and alleviating the

water environmental burden in aquaculture.
KEYWORDS

aquaculture, fish appetite grading, time-limited data, kinetic energy feature,
customized graph convolutional network
Introduction

Aquaculture production has grown rapidly in the past few

decades, thereinto, 52% consumption of the aquatic products

worldwide in 2018 was provided by aquaculture (FAO, 2020). In

the meantime, the concept of cleaner production and fish welfare

is being emphasized due to its indispensable role in quality and

yield of the aquatic products (Luna et al., 2019). Feeding is of

great importance in managing aquaculture tasks, where the cost

of feed is around 30%~70% of the total production costs (Føre

et al., 2011; Atoum et al., 2015; Zhou et al., 2018). Underfeeding

impedes fish growth, thus the strategy of overfeeding is

commonly adopted in practical production to satisfy the

nutritional needs of fish. However, overfeeding leads to left-

over feed, which results in not only the extra cost, but also the

poor water quality (Barraza-Guardado et al., 2014; Jescovitch

et al., 2018; Zhao et al., 2019) and an extra load on water

treatment equipment (Chang et al., 2005). Moreover, previous

research has shown that feed has the greatest impact on the

carbon footprint of the aquaculture (Luna et al., 2019). As a

consequence, optimization of the feeding control is a prime

consideration to realize cleaner production and promote fish

welfare in aquaculture, especially in intensive modes.

Precise representation offish appetite is the guarantee for the

accurate feeding control. Relevant studies have shown that fish

feeding behavior has significant advantages in fish appetite

representation (Parra et al., 2018; Li et al., 2020; An et al.,

2021), compared with many other mediums such as residual

feed (Atoum et al., 2015; Wang et al., 2022) and water quality

(Zhao et al., 2019; Zhao et al., 2020a). Until now, many works

have been done to optimize the feeding based on fish school

behavior. For example, the infrared photoelectric senor was used

to capture the gathering behaviors of eels for the feeding control

in indoor intensive aquaculture systems (Chang et al., 2005). Liu

et al. (2014) proposed a computer vision-based feeding activity

index for the automatic feeding of Atlantic salmon in

recirculating aquaculture system (RAS) by analyzing

differences in two consecutive frames. Ye et al. (2016) made

use of the Lucas-Kanade optical flow and information entropy to
02
assess and optimize the feeding of tilapia in RAS, and this

method was then further improved by the quantification of

fish spontaneous collective behaviors (Zhao et al., 2017). These

methods, however, were based on human-made features (i.e.,

low-level features), which made them task-specific and weak in

generalization capability. With the rapid development of deep

learning, convolutional neural network (CNN) was gradually

applied to fish appetite evaluation (Zhou et al., 2019). Profiting

from the utilization of the high-level features of feeding behavior,

fish appetite could be represented more precisely and robustly

(Zhou et al., 2019; Ubina et al., 2021). From this, Wei et al.

(2021) developed a method based on the modified kinetic energy

model and customized recurrent neural network (RNN) to

comprehensively utilize the spatial-temporal characteristics of

fish feeding behavior, which therefore made fish appetite

evaluation more accurate and practical. Similarly, by exploiting

the spatial-temporal characteristics of fish feeding behavior,

Feng et al. (2022) also realized the precise quantification of

fish appetite resorted to a lightweight 3D ResNet-GloRe

network, although a feeding strategy not commonly used in

real production was adopted.

Methods mentioned above mainly rely on the characteristics

of feeding behavior over time and have high requirement on the

time-duration of data (i.e., data integrity). Generally speaking,

the longer the time duration of data is, the better the data

integrity and the better performance of the method would be.

However, longer the time-duration of data normally means the

more time taken in fish appetite assessment; what’s more, the

collection of data with long time-duration is a time-consuming

process itself. In real production, in order to leave enough

reaction time for the follow-up feeding control (including

feeding strategy adjustment), the sooner of fish appetite

assessment, the better. For this, increasing hardware

investment seems to be a simplest and most direct solution,

nevertheless, this will undoubtedly increase the production costs

and affect the economic benefits (Feng et al., 2022). A promising

alternative to the above solution is decreasing the time-duration

of input data, namely, grading fish appetite using time-limited

data particularly the beginning of time series data. But how to
frontiersin.org
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construct an efficient fish appetite grading model with strong

learning ability on this time-limited feeding behavior data is still

a challenge. Few efforts on this challenge have been reported

so far.

Given all that, regarding Micropterus salmoides as the

experimental fish, a modified kinetic energy feature-based

graph convolutional network (GCN), which could address the

challenge mentioned above and grade fish appetite precisely with

low space complexity, was developed in this study. In this

network, each video frame was presented as a node. It’s time

information and the corresponding quantitative spatial

information of fish feeding behavior were utilized as node

features in the graph. In the meantime, the temporal

connections between nodes were abstracted as edges in the

graph. Benefiting by the specific graph constructed above and

the customized network structure, the grading accuracy obtained

by the proposed method here could be 98.60% using only the

first 4.2 (one-sixth of the full-length data) seconds as well as the

first 8.3 seconds (one-third of the full-length data) of input data,

which is not much different from that on full-length (25 second-

long) input data.
Materials and methods

Our experimental protocol was approved by the committee

of the Care and Use of animals of the Zhejiang University. In

addition, the experiments carried out on fish were conducted in

strict accordance with the guidelines of the Association for the

Study of Animal Behavior Use of Zhejiang University

(ZJU20190074) in this study. Note that due to the

indispensable role and rapid growth trend of industrial RAS in

aquaculture, our experiment was conducted in RAS.
Frontiers in Marine Science 03
Fish

In this experiment, Micropterus salmoides were used. All

experimental fish (quantity: 150) were first acclimated in the

experimental RAS for one month. The average size of fish was

37.5 ± 5 g. During the entire experiment, the fish were placed

under a 12h: 12h light-dark cycle (08:00-20:00 light, 20:00-08:00

dark) and fed 2 times a day (10:00 and 16:00) using commercial

floating pellets. The feeding amount per day was set to 5% of the

total mass of the fish.
Experimental system

The experimental aquaculture system (Figure 1) mainly

consisted of a rearing tank (75 cm radius and 40 cm water

depth), a feeding machine, and a computer vision system.

During the entire acclimation and experiment, the following

conditions were maintained: temperature at 26 ± 2°C, dissolved

oxygen (DO) at (5.5 ± 0.5) mg/L, pH at 7.2 ± 0.5, nitrate ≤ 0.5

mg/L, and total ammonia nitrogen (TAN) ≤ 0.8 mg/L. The

computer vision system possessed a Hikvision DS-2CD6233F-

SDI camera, a Hikvision DS-7808NB-K2 Digital Video Recorder

and a Server (GPU: NVIDIA 1080ti 11GB, CPU Intel Core i5-

9400, 2.9 GHz, 8 GB memory). The camera was fixed 120 cm

above the water surface of the rearing tank, with a 25fps frame

rate and a 1080×1920 pixel.

To obtain sufficient fish feeding video data to verify the

performance of the method proposed in this study, the overfed

regime was adopted in this study. Food pellets were delivered

with the same dose at intervals of ~25 s in each feeding event.

Feeding wouldn’t stop until fish showed no response to the

delivered food. The residual pellets remaining on the water
FIGURE 1

The overview of the fish appetite grading pipeline.
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surface after feeding were then removed to prevent affecting the

water quality.
Overview of the proposed approach

Accurate fish appetite grading is a prerequisite for intelligent

feeding control and cleaner production in aquaculture.

Therefore, we proposed a GCN-based fish appetite grading

method, as shown in Figure 1. The method consists of two

major steps: (1) feature extraction and graph construction: the

improved kinetic energy model is used to extract the spatial

characteristics of fish feeding behavior from feeding videos, and

then a graph G = (V, E) is constructed based on the modified

kinetic energy features and their temporal correlation. (2) GCN-

based classification model: the GCN-based model combines the

graph structures and vertex features in the convolution, and

propagated over the graph through multiple layers. Through the

graph convolution layer by layer, the node features are extracted

and updated. In addition, the GCN structure adopts the global

graph pooling method based on self-attention mechanism,

which fully considers the topology of nodes and graphs, and

has significant advantages in graph classification tasks. In this

study, the proposed method was developed using python3.7, and

the customized neural networks grading model was trained

on Pytorch1.10.0.
Feature extraction and graph construction
Graph, as a data structure that could simultaneously store

target’s feature information and its associated information, has

been widely applied to efficient task classification (Lazer et al.,

2009; Lee et al., 2019). This technique, however, is rarely used in

aquaculture yet. For fish appetite grading, if it could be

transformed into a simple graph classification task, the

efficiency of this grading would be maximized. But how to

extract efficient features as the graph features and construct

the graph are the key to achieving this graph classification task.

The spatial-temporal characteristics of fish feeding behavior

shows great potential in fish appetite assessment (Wei et al.,

2021; Feng et al., 2022), therefore, the feature extraction and

graph construction in this study are carried out for the

representation of these spatial-temporal characteristics.

First, the modified kinetic energy model (Eq. (1)) was used to

extract spatial characteristics of fish behavior due to their strong

motion feature extraction ability (Zhao et al., 2017).

EK = CE � v2E (1)

Where CE and vE denote the disorder degree and velocity of

the change in target areas, respectively.

The Gunner Farneback optical flow algorithm was used to

calculate the vE (Eq. (2)) of the changes in target areas in this

study. Then, the scope of velocity was divided into a number of
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sections. As shown in Eq. (3), vE was classified into the

corresponding sections. In addition, to avoid the influence of

the fish body length change on the motion feature extraction

during the experiment, the vE was calculated by the

normalization method.

vE = ox,y Fn x, yð Þj j
N  

(2)

p jð Þ = k jð Þ=N)� 100%,   1 ≤ j ≤ mð gf (3)

Where Fn is the normalized optical flow between two

consecutive frames of images, (x, y) represents the coordinates

of the reflective region in the current frame. m is the number of

sections of vE, N is the number of motion vectors in the current

frame. k and p are the set of statistical numbers and statistical

probability in each section, respectively. In this section, vE was

counted at intervals of 0.04 bl (bl is the average body length of

Micropterus salmoides), and m was set to 25.

Then, CE was calculated as:

CE = −o
m

j=1
p jð Þlog2 p jð Þð Þ (4)

Combined with Eq. (4), the normalized kinetic energy of the

whole areas was defined as:

Ek = − o
m

j=1
p jð Þlog2 p jð Þð Þ

 !
� ox,y Fn x, yð Þj j

N

� �2

(5)

Figure 2 shows the modified kinetic energy over time within

a single round feeding event. As shown below, fish appetite,

graded following the criterion of Øverli et al. (2006) and Eriksen

et al. (2011), can be described well by the modified kinetic

energy here.

Finally, graph G was constructed by the following two

elements: (1) adjacency matrix A (A ∈ RN×N). This element is

used to represent the connection between video frames (i.e., time

correlation). The adjacency matrix contains only elements of 0

and 1. The element is 0 if there is no link between two video

frames and 1 denotes there is a link. (2) feature matrix X. We

regard the spatial-temporal characteristics of fish behavior (i.e.,

the normalized kinetic energy features and their temporal

correlation) extracted from video frames as the attribute

features of the node in the networks, expressed as X ∈ R N×P,

where P represents the number of node attribute features.

To express the above algorithm more intuitively, the feature

extraction and graph construction process are outlined in

Algorithm 1.
Input: video frames; modified kinetic energy

model (MKEM); normalization strategy N;

adjacency matrix A (A ϵ RNxN); feature

matrix X (X ϵ RNxP);
frontiersin.org
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Fron
Output: G = (V , E)

1: function feature extraction (video

frames, MKEM, N)

2: CE video frames

3: Fn(x,y) video frames & N

4: vE Fn(x , y)

5: for x, y in video frames do
6: EK = CE � v2E
7: return EK
8: function graph construction (EK, A, X)

9: A video frames

10: X  video frames & EK
11: G = (V , E)  A & X

12: return G
ALGORITHM 1

Feature extraction and graph construction.
tiers in Marine Science 05
GCN-based fish appetite grading model
Advanced methods of applying deep learning to structured

data such as graphs have been proposed in recent years. In

particular, the method of generalizing the convolution operation

to graphs has been proven to improve performance and has been

widely used (Lee et al., 2019; Zhao et al., 2020b).

Given this, a customized GCN (Figure 3) following the

constructed graph above was proposed in this study to achieve

accurate fish appetite grading using time-limited data. This

model consists of seven graph convolutional layers, and

outputs of each layer are concatenated. Node and graph

feature are updated and aggregated in the pooling layer with

self-attention mechanism, and then transmitted to the MLP

layer through the readout layer. Finally, the fish appetite level is

determined with the help of softmax layer. The propagation rule

of GCN can be summarized by the following expression:
FIGURE 3

Schematic diagram of the proposed fish appetite grading model.
FIGURE 2

Diagram of the modified kinetic energy over time within a single round feeding event (None: fish do not respond to food; Weak: fish eat only
pellets that fall directly in front of them but do not move to take food; Medium: fish move to take food, but return to their original positions;
Strong: fish move freely between food items and consume all the available food. Noted that, the heat maps generated by the optical flow of the
points with the maximum kinetic energy are used to better visualized fish appetite here).
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h l+1ð Þ = s ~D−1
2 ~A~D−1

2h lð ÞQ
� �

(6)

Where h(l) represents the node representation of l-th layer

and Q ∈ RF×F′ represents the convolution weight with input

feature dimension F and output feature dimension F′, ~A =

A + IN represents the matrix with added self-attentions, IN
represents the identity matrix, ~D =o

j

~Aij, and s is the

activation function. The Rectified Linear Unit (Relu) function

was used as an activation function in this study.

The attention mechanism has been widely used in recent

deep learning studies (Cheng et al., 2016; Lee et al., 2019). Such a

mechanism enables the model to focus more on important

features and less on noncritical features (Lee et al., 2019),

especially the self-attention mechanism. Thus, the self-

attention pooling mechanism was used in this study. The self-

attention score Z ∈ RN×1 was calculated as follow.

Z = s ~D−1
2 ~A~D−1

2XQatt

� �
(7)

Where X ∈ RN×F is the input feature of the graph with N

nodes and F-dimensional features, and Qatt ∈ RF×1 is the

parameter of the self-attention pooling layer.

In the GCN-based classification model, the readout layer was

used to aggregates node features to make a fixed size

representation. The summarized output feature of the readout

layer was as follows:

s =
1
No

N

i=1
xi ∥max

i=1
xi (8)

Where N is the number of nodes, xi is the feature vector i-th

node, and || denotes concatenation.

Data collection and training set production
In this study, the video frames of fish school behavior under

four feeding intensities were intercepted at equal intervals (12

frames per second). After data augmentation (referring

to Wei et al., 2021), the total number of samples in the

training set increased to 24300 (see https://github.com/

Doubleblindpeerreview/fish-appetite-grading for details of

dataset and codes). Of those data, 80% were used as the

training set, 10% were used as the validation set, and 10%

were used as the test set.

Setting appropriate parameters is the key step to training a

robust model. In this study, Adam optimizer, early stopping

criterion and hyperparameter selection strategy were used as the

model architecture. If the validation loss did not improve for 60

epochs in an epoch termination condition with a maximum of

100k epochs, the training would be stopped. After many trials,

the initial parameters and training strategies of the GCN-based

method were set to the values shown in Table 1.
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Performance evaluation
The results of testing for all approaches were arranged in

confusion matrices, including true positive (TP), true negative

(TN), false positive (FP), and false negative (FN). In this context,

TP and TN respectively denote the numbers of the same samples

with the current feeding appetite pertaining to the other fish

appetite recognition results and actual results; FP and FN are the

numbers of different videos with the current fish appetite

pertaining to the other fish appetite recognition results and

actual results, respectively.

To evaluate model performance, five widely used measures

were calculated: accuracy, precision, recall, specificity and F1

score. Accuracy is the ratio of the number of correctly graded

samples to the total number of samples; precision is the ratio of

the number of samples for a specific level of fish appetite in the

test set to the number of samples for that fish appetite in the

recognition results, which shows the ability of the model to

accurately grade the fish appetite; recall is the proportion of

correctly classified items among all items to be classified;

specificity is the ratio of the number of samples with wrong

recognition to the number of samples with other fish appetite in

the test set; F1 score is a harmonic means of the precision and

recall (Jiang et al., 2020). All the above five measures are ranged

from 0 to 1, high value means the good predictive ability of the

model, their definitions are as follows:

accuracy =
TP + TN

FP + FN + TP + TN
(9)

precision =
TP

TP + FP
(10)

recall =
TP

TP + FN
(11)

specificity =
TN

FP + FN
(12)

F1 = 2� precision� recall
precision + recall

(13)
TABLE 1 The main parameters of GCN model.

Parameter Value

Learning rate 5×10-4

Batch size 128

Dropout rate 0.5

Pooling rate 0.8

Hidden size 256

Weight decay 1×10-4
frontie
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Results and discussion

Performance of the proposed method

As shown in Table 2, the average accuracy of the method

under four fish appetite levels reached 98.89% (Precision:

98.92%, Recall: 98.90%, F1 score: 98.90%), which indicates the

effectiveness of the proposed fish appetite grading method.

To verify the performance of the method, we compared it

with the three most widely used GNNs including ChebNet,

GraphSAGE, and GAT. In addition, to better reveal the

performance of our method in fish appetite grading, the

hierarchical pooling architecture and global pooling

architecture were used in the same GNN-based method as a

comparison. The hierarchical pooling architecture consists of

three blocks, each consisting of a graph convolution layer and a

graph pooling layer. The outputs of each block are summarized

in the readout layer. The sum output of each readout layer is

input to the linear layer for classification. For a fair comparison,

we performed the same self-attention graph pooling strategy,

training strategy, and hyperparameter optimization strategy for

each method, and use the same dataset (full-length data).
Frontiers in Marine Science 07
Figure 4 and Figure 5 (see Table S1 in supplementary

materials for details) show the grading results of fish feeding

behavior datasets using different GNN-based models, where the

suffix h indicates that the model adopts the hierarchical pooling

mechanism, and g indicates that the model adopts the global

pooling mechanism. Pleased node that based on the same global

pooling or hierarchical pooling architecture, our GCN-based

method dramatically outperforms other GNN-based methods.

In addition, for the data structure used in this paper, the global

pooling method is better than the hierarchical pooling method.

The global pooling architecture minimizes the loss of

information and outperforms hierarchical pooling on datasets

with fewer nodes. Due to the limited number of nodes in the

constructed graph dataset, the global pooling method shows

better performance in this study.

Graph attention network (GAT), as a novel convolution-

style neural networks that operate on graph-structured data,

leveraging masked self-attentional layers. The network allows for

assigning operations, and is parallelizable across all nodes within

a neighborhood while deal ing with different sized

neighborhoods, and does not depend on knowing the entire

graph structure upfront. As opposed to GCN, the GAT model
FIGURE 4

Fish appetite grading results of different GNN-based methods.
TABLE 2 Grading results for each fish appetite level.

Fish appetite Grading result Precision (%) Recall (%) Specificity (%) Accuracy (%)

none weak medium strong

none 537 1 0 0 99.44 99.81 99.84 98.89

weak 3 669 0 0 98.82 99.55 99.54

medium 0 7 611 3 97.92 98.39 92.28

strong 0 0 13 586 99.49 97.83 99.84
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can dynamically learn neighbor weights, but ignores the

relationship between nodes (Xiang et al., 2021), which makes

it not as effective as GCN under some conditions. As shown in

Figure 4, although the accuracy of the GAT-based method under

the two pooling mechanisms is similar, their accuracy is slightly

lower than that of the GCN-based method. The GraphSAGE-

based method uses an inductive method to calculate the node

representation (Hamilton et al., 2017). Specifically, the method

first extracts a fixed number of nodes from the adjacent nodes of

each node, and then integrates the information of these neighbor

nodes. This method has achieved good results in many large-

scale inclusive learning problems. However, compared with the

GraphSAGE-based method, the GCN-based method can capture

the global information of the graph so as to better represent the

characteristics of nodes, which is suitable for small-scale graphs.

The dataset graph used in this study has a simple structure and

few nodes. For this type of dataset, the GCN-based method has

more advantages. The ChebNet-based method has strong

expression ability. Its K-order convolution operator can cover

the K-order neighbor nodes of nodes, but its complexity and

parameter quantity are higher than GCN (Kipf and Welling,

2016). By stacking multiple GCN layers or expanding the

empirical domain of graph convolution, the expressivity of the

GCN- based method can be greatly improved. Therefore, under

the dataset used in this study, the training accuracy of the

ChebNet-based method is lower than that of the GCN-

based method.
Feasibility demonstration

For the feeding control in real production, the most

important is how to accurately assess fish appetite as soon as
Frontiers in Marine Science 08
possible, and then leave enough reaction time for the next feeding

operation. Therefore, it is crucial to evaluate the feasibility of the

method proposed in this study whether the fish appetite can be

accurately and effectively evaluated with time-limited data. In

view of this, we divided the dataset into four subsets (as illustrated

in Figure 6) to meet the needs of feasibility verification, which

includes 1) the first 4.2 seconds of data (Dataset 1, one-sixth of

the full-length data), 2) the first 8.3 seconds of data (Dataset 2,

one-third of the full-length data), 3) the first 12.5 seconds of data

(Dataset 3, one-half of the full-length data), and the first 25

seconds of data (Dataset 4, full-length data).

To verify the performance of the proposed method here, we

compared it with two typical and state-of-the-art fish appetite

grading methods, namely, the RNN-based method (Wei et al.,

2021) and the CNN-based method (Zhou et al., 2019). Note that

to make comparison more comprehensive, not only the RNN-

based method but its normalized version (i.e., RNN’-based

method) was used for the comparison here, allowing for the

fact that the normalized motion features was adopted in our

method. In particular, for the CNN-based method above, its

image dataset in this study was obtained by extracting video

frames owning the most obvious feeding behavior characteristic

from the original video. Specifically, five consecutive frames of

images with the strongest fish appetite were extracted from each

feeding videos as the original image samples. And then, the

original image samples were augmented to 24300 samples using

rotation, flip, and translation image expansion techniques.

Following this, the dataset was divided into a training set, a

validation set, and a test set in a ratio of 8:1:1. It should be noted

that, to obtain the optimal performance of the adopted methods

above, the corresponding optimum hyperparameters were

adopted here (details in Table S2 and Table S3 in the

supplementary material).
FIGURE 5

The accuracy of different GNN-based methods under different fish appetite levels.
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The grading accuracy of fish appetite based on our method

(i.e., GCN-based method) and RNN-based method under

different datasets were analyzed in this study, as well as the

grading accuracy of CNN-based method (see Table S4 in

supplementary materials for details). The average accuracy,

precision, recall and F1-score of the CNN-based method were

83.54%, 83.90%, 84.15%, and 83.97%, respectively. Because the

CNN-based method only uses the behavioral spatial

characteristics of fish school to grade fish appetite, its

performance is far from that of the other two fish feeding

desire grading methods. Benefit from the spatial-temporal

behavioral characteristics, the RNN-based method showed

better performance than the CNN-based method. As shown in

Figure 7 (since the results of the CNN-based fish appetite

grading method are quite different from those of the GCN-

based and RNN-based method, it is not shown in the figure to

avoid affecting the expression), the RNN-based method achieved

similar fish appetite grading results on normalized and non-

normalized version. It should be noted that with the increase in

the time duration of the dataset, the effect of the RNN-based fish

appetite grading method shows an obvious upward trend. The

RNN-based method achieved the best performance in Dataset 4,

but the fish appetite grading accuracy is relatively low in time-

limited datasets. Fish appetite representation is closely related to

time (Wei et al., 2021). The RNN-based method is designed to

counter the effect of diminishing gradients through layers and is

suitable for time series data. However, the length of time series

data also restricts the grading performance of RNN-based

method on fish appetite. As presented in Figure 7, the GCN-

based fish appetite grading method achieved the best

performance in Dataset 4, but there was only a minor

difference from the test results obtained from Dataset 1 and

Dataset 2. Benefiting from the construction of the modified
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kinetic energy-based graph and the customization of GCN

structure, our method indicated stronger learning ability than

the state-of-the-art fish appetite assessing methods especially on

time-limited feeding behavior data.

The t-SNE technique, which visualizes high-dimensional

data by giving each datapoint a location in a two or three-

dimensional map (Van Der Maaten and Hinton, 2008), is

becoming more and more popular in data analysis. Thus, the

t-SNE based two-dimensional analysis was used in this study to

visualize the grading effect of the GCN-based, RNN-based, and

CNN-based method on fish feeding desire. As illustrated in

Figure 8, the CNN-based appetite grading method failed to

divide fish appetite into four significant clusters (different

colors represent different appetite levels), which also showed

that the CNN-based method achieved poor fish feeding desire

grading accuracy. On the contrary, both GCN-based and RNN-

based grading methods can divide fish appetite into four

significant clusters, so both methods have great appetite

grading performance. However, compared with the RNN-

based method, there are only a few data points with different

colors mixed together in the GNN-based method (i.e., fewer data

sample points prone to misclassification). To further analyze the

causes of RNN-based method error identification, some false

recognition examples are shown in Figure 9. It can be seen that

there are a small number of “medium” or “weak” samples that

were incorrectly recognized as “weak” or “strong” in all the four

datasets. The main reason is that the modified kinetic energy has

similar variation characteristics when the appetite level is

“medium” or “weak” (as shown in Figure 2). Hence, the

samples of these two are sometimes mis-recognized. In

addition, Dataset 1 and Dataset 2 cannot reflect the whole

process of fish feeding, which is also the key to limiting the

accuracy of RNN-based method in fish appetite classification on
FIGURE 6

The illustration of dataset partition.
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these two datasets. This reason also makes some “strong”

samples incorrectly recognized as “medium”.

In addition, Figure 10 shows the confusion matrixes of fish

appetite grading results of the RNN-based and GCN-based

methods on different datasets. It was obvious that in

comparison with the RNN-based method, the classification

accuracy of GCN-based method was equal or higher in each

class to some extent, especially in Dataset 2 and Dataset 4. That

means the proposed GCN-based approach learns new feature

representation from the neighbor nodes through graph

convolution, which improves the recognition ability under

different datasets. Compared with the RNN-based method, the

GCN-based method is more suitable to characterize the spatial

and temporal topological information of fish feeding behavior.

Therefore, the GCN-based method has achieved effective fish

appetite grading results under different datasets, including the

time-limit datasets.
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It should be noted that, in order to achieve efficient grading

of fish appetite in real production, the complexity especially the

space complexity of the grading method itself is very important,

as the valid training samples are limited in practical farming

(Pan et al., 2019). We therefore calculated the quantity of the

trainable parameters of RNN-based and GCN-based methods in

this study, respectively (as illustrated in Figure 11). Combined

with Figure 7 and Figure 9, the GCN-based method proposed in

this study could not only obtain high accuracy in fish appetite

grading, but take only 6.4% ~ 31.8% space complexity of that in

RNN-based method, which can greatly improve the feasibility of

fish appetite assessment in practical production.

The proposed modified kinetic energy feature-based GCN

approach in this paper can effectively grade fish appetite with

time-limited data, which is a promising approach in dealing with

feeding control tasks and alleviating the water environment

burden in aquaculture. Nonetheless, limitations still exist in
A B C

FIGURE 8

t-SNE based two-dimensional clustering analysis of different fish appetite grading methods (see Figure S1 in supplementary materials for more
details). (A) GCN_Dataset 4. (B) RNN_Dataset 4. (C) CNN.
FIGURE 7

Fish appetite grading results under different datasets.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1021688
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wei et al. 10.3389/fmars.2022.1021688
this method. First, our training on the model is based on

experimental data under ideal conditions, which were derived

from videos of specific growth periods of Micropterus salmoides

in RAS, without monitoring the entire growth period of

Micropterus salmoides. Therefore, when it comes to other

scenarios, the practicability of our method may reduce.

Besides, since the method proposed in this study is based on

computer vision techniques, feed property also affects the

performance of the model here to some extent, floating feed

would be more beneficial to the performance maximization of

the method here in contrast to sinking feed.
Conclusions

In order to leave enough reaction time for the follow-up

feeding control and alleviate the water environment burden of
Frontiers in Marine Science 11
the aquaculture, a novel, practical and promising fish appetite

grading method with low space complexity was proposed in this

study. Benefiting from the construction of the modified kinetic

energy feature-based graph and the customization of GCN

structure, our method indicated stronger learning ability than the

typical state-of-the-art fish appetite assessingmethods especially on

time-limited feeding behavior data. And the grading accuracy of

fish appetite obtained by the proposed method could reach 98.60%

using only the first 4.2 (Precision: 98.66%, Recall: 98.59%, F1 score:

98.62%) as well as the first 8.3 seconds (Precision: 98.61%, Recall:

98.63%, F1 score: 98.62%) of input data, which is not much

different from that (98.89%) on full-length (25 second-long)

(Precision: 98.92%, Recall: 98.90%, F1 score: 98.90%) input data.

Although limitations (such as feed property) still exist in this study,

the findings here could not only provide references for the accurate

control of fish feeding, but is of significance for the realization of

cleaner production in practical aquaculture.
FIGURE 10

Confusion matrixes of fish appetite grading results of GNN-based and RNN-based methods on different datasets.
FIGURE 9

False recognition examples of the RNN-based method model in different datasets.
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