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The outbreak of coral-eating Acanthaster spp., commonly known as the

Crown-of-Thorn Starfish (CoTS), contributes to a significant proportion of

coral loss in the tropical Indo-Pacific region. After the dramatic loss of coral due

to their predation, CoTS is expected to face food shortages before coral

recovers, which is usually accompanied by the sudden disappearance of its

population. To reveal the response of CoTS to starvation stress, we conducted

a four-month starvation experiment to investigate the physiological and

molecular changes in the stomach tissue by combining the metabolites and

enzyme activity measurements with transcriptome analysis. The results

showed that the concentrations of primary metabolites and associated

enzyme activities, as well as the amount of total antioxidant were not

significantly altered between fed and starved CoTS in any case. However,

starvation suppressed the expression of the genes involved in glycolysis and

citrate cycle, development and movement, but enhanced that of the genes

associated with sleep promotion, immunity, lysosome and glucose supply. This

suggests that long-term starvation may induce CoTS to enter into a dormancy-

like status characterized by reduced unnecessary physical activities for survival,

accelerated recycling of nutrients, and enhanced immunity.
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Introduction

Coral reefs are one of the ecosystems with the highest

productivity level and can provide essential ecological

functions (Moberg and Folke, 1999; Elliff and Silva, 2017).

However, in recent years, the coral reef ecosystem has been

under severe threat of degradation and destruction due to the

increased mortality of reef-building corals (De’ath et al., 2012;

Leray et al., 2012; Tkachenko et al., 2020). Among many causes

of coral reef decline, the outbreak of the coral-eating Crown-of-

Thorn Starfish (CoTS) Acanthaster spp. accounts for 42% of a

27-year coral decline in the Great Barrier Reef (Australia), which

is even higher than the well-known coral bleaching (10%)

(De’ath et al., 2012). Recently, multiple CoTS outbreaks have

been observed in the South China Sea region, causing

tremendous coral loss ranging from 43% to 97% (Li et al.,

2019; Tkachenko et al., 2020; Heng et al., 2021).

The outbreaks are found to be periodic every 15-20 years in

coral reefs worldwide (Pratchett et al., 2017; Li et al., 2019). After

2-5 years of intensive predation on corals, such outbreaks usually

end with extremely low coral cover and the disappearance of the

majority CoTS population (Saponari et al., 2018; Li et al., 2019;

Tkachenko et al., 2020). It was hypothesized that CoTS might

migrate for alternative habitat searching (Moran, 1986) or die

due to infection by deadly pathogens under starvation stress

(Zann et al., 1987; Birkeland and Lucas, 1990). However, none of

them is proven to stand since CoTS is not likely to perform long-

distance migration under starvation and there is no record of

mass death of CoTS in the field (Sigl and Laforsch, 2016;

Pratchett et al., 2017; Ling et al., 2020). Moreover, given its

relatively long life span (estimated up to 17 years in the field)

compared to the short period (2-5 years) with sufficient food

(Stump, 1996; Saponari et al., 2018; Li et al., 2019; Tkachenko

et al., 2020) and the existing possibility that some CoTS may

have survived between the outbreaks (Stump, 1996), CoTS may

have developed a survival strategy when facing such prolonged

food shortages in the field. However, even with at least 50 years

of research on this corallivore starfish, the vast knowledge gap on

the well-being and whereabouts of the CoTS population facing

food depletion remains to be filled (Pratchett et al., 2017). Thus,

a closer investigation on its starvation state could help us to

better understand the successful comebacks of CoTS recorded

after 10-15 years of coral recovery and provide better solutions

for future CoTS population control (Nakamura et al., 2014;

Pratchett et al., 2017; Li et al., 2019; Kuo et al., 2022).

To study the response of CoTS to starvation stress, we

captured CoTS from the South China Sea and kept them

indoors in two groups with or without feeding of corals for

four months. At the end of the experiment, the stomach tissues

were collected from the survived CoTS for physiological and

transcriptomic investigations. The activities of metabolites and

enzymes related to energy production and antioxidants were
Frontiers in Marine Science 02
measured in these tissues, and their transcriptomes were

analyzed by RNA sequencing (RNA-seq).
Methods and materials

Experimental animal, design, and
sampling

Fifty-two adult CoTS were collected from the South China

Sea near Tanmen (Hainan, China) on August 2021 during the

spawning season and separated gently into two groups in an

indoor recirculating aquaculture system (4 x 4 x 1.2 m3) with

filtered seawater (temperature = 23.5 ± 0.8°C, salinity = 30.4 ±

2.9 ppt) at Tropical Aquatic Research and Development Center

(Hainan, China). To minimize the coral consumption, fed group

was constituted of three randomly selected adult CoTS fed with

artificially bred corals (mainly Acropora, coral supply was

replenished after its complete consumption) (Caballes et al.,

2016), while the starved group contained forty-nine CoTS reared

without any feeding. After four months, six starfishes that

survived starvation were randomly selected as six replicates for

the starved group. Together with two out of three CoTS survived

with feeding (starved for 0 days, control group), stomach tissues

were collected through anatomy (Figure 1). Obtained tissue

samples were labeled and fast frozen in liquid nitrogen before

being sent to the laboratory (Guangzhou, China) with dry ice

and stored at -80°C.
Physiological assessments

Protein content was determined with BCA Protein Assay Kit

(Solarbio, Beijing). Parameters involved in glucose metabolism,

including glucose content, pyruvate (PA) content, and pyruvate

kinase (PK) activity were measured using commercial kits

(Solarbio, Beijing). Antioxidant activity differences between the

two groups were determined through superoxide dismutase

(SOD) activity, catalase (CAT) activity, and total antioxidant

(T-AOC) with commercial kits (Solarbio, Beijing). All data were

normalized to wet weight per gram of stomach tissue.
RNA extraction and RNA-seq

Total RNA from the stomach tissue was extracted with

TransZol Up Plus RNA Kit (TransGen Biotech, Beijing) by

following the manufacturer’s instructions. RNA quality was

evaluated through Agilent 2100 Bioanalyzer (Agilent

Technologies, USA) and agarose gel electrophoresis, while

RNA concentration was assessed with Qubit 2.0 Fluorometer

(Thermo Scientific, USA). Qualified RNA was purified with
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Oligo (dT) beads and used for cDNA synthesis with NEBNext

Ultra RNA Library Prep Kit for Illumina (New England

Biolabs, USA), followed by repairing and sequencing using

Illumina Novaseq6000 by Gene Denovo Biotechnology Co.

(Guangzhou, China).
Data analysis

The obtained data from physiological assessments were

processed to Welch’s t-test (the difference is significant if P

value < 0.05) and graph illustration using GraphPad Prism

software version 9.00 (GraphPad Software, USA). During

RNA-seq, reads were filtered by fastp (version 0.18.0) to

obtain high-quality data (Chen et al., 2018), including adapter

reads, low-quality reads (Q value ≤ 20), and unknown

nucleotides (>10%). Clean reads were mapped to the reference

genome of CoTS (https://www.ncbi.nlm.nih.gov/bioproject/

PRJDB3175/) through HISAT2. 2.4 (Kim et al., 2015),

followed by assembling with StringTie v1.3.1 (Pertea et al.,

2015; Pertea et al., 2016). Gene abundance was calculated with

an FPKM (fragment per kilobase of transcript per million

mapped reads) value, which allows the quantification of gene

expression abundance and variations among the samples by

applying RSEM software (Li and Dewey, 2011). Obtained gene

expressions were processed for differential analysis by DESeq2

(Love et al., 2014). Significant DEGs (differentially expressed

genes) were selected with the parameter of false discovery rate

(FDR) below 0.05 and absolute fold change ≥ 2 in all genes of

each sample. To provide a global gene expression pattern and

cluster in all DEGs, hierarchical clustering of differential gene

expression patterns and was performed through Z-score

calculation. To estimate dissimilarity of gene expression

patterns between the CoTS individuals from the fed and
Frontiers in Marine Science 03
starved group, a nonmetric multidimensional scaling (NMDS)

analysis was performed on the FPKM values of all DEGs by

using the vegan package in R (www.R-project.org), a stress value

was calculated to evaluate the goodness of fit in the ordination

analysis (Clarke, 1993). To analyze the biological properties and

functions of sequenced genes, Gene Ontology (GO) analysis and

the Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment were conducted. Key genes and pathways selection

were based on the enrichment criteria of Q value < 0.05 and the

biological processes suspected to alter under starvation stress.
Quantitative real-time PCR

Several significant DEGs from the two groups were selected

from the RNA-seq libraries to conduct qRT-PCR to verify the

reliability and confirm the gene expression differences in fed (n =

2) and starved (n = 6) CoTS’s stomach tissue samples. qRT-PCR

primers were designed with the Primer-Blast on the National

Center for Biotechnology Information (NCBI) (https://www.

ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=

BlastHome) (Ye et al., 2012) and synthesized by Sangon Biotech

Co. (Shanghai, China). Sequences of the primers were listed in

Supplementary Table 1.

Previously extracted total RNA was reverse-transcribed into

cDNAs with Evo M-MLV RT Mix Kit (with gDNA Clean for

qPCR) (Accurate Biology, China) as the template, reacted with

the 2 x SYBR® Green Pro Taq HS Premix kit (Accurate Biology,

China) on Thermal Cycler Dice® Real Time System III (Takara,

Japan). Cytochrome b gene was used as a housekeeping gene for

internal standardization (Supplementary Table 1). qRT-PCR

reaction was performed with initial denaturation at 95°C for

30 s, followed by 40 cycles of 95°C for 5 s, 60°C for 30 s; and a

final dissociation stage at 95°C for 15 s, 60°C for 30 s and 95°C
FIGURE 1

CoTS starvation experiment design.
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for 15 s. To reveal the relative gene expression of fed and starved

CoTS tissue under each gene, a comparative CT method

(2−DDCT) was applied (Livak and Schmittgen, 2001). Triplicate

cDNA sample amplifications were performed for each

gene, followed by an unpaired t-test and graph illustration

using GraphPad Prism software version 9.00 (GraphPad

Software, USA).
Results and discussion

Survival of the CoTS in starved and fed
conditions

The previous study has shown that CoTS is able to survive

months-long starvation (Birkeland and Lucas, 1990), so it is

believed that it has developed specific strategies to respond to

prolonged food supply suspension, which is, however, not

elucidated yet. In this study, we found that 18 out of 49 CoTS

in the starved group and 2 out of 3 CoTS in the fed group

survived after a four-month experiment, resulting in a survival

rate of 36.7% and 66.7% for starved and fed CoTS respectively.

Although starvation stress greatly decreased the survival rate of

the adult CoTS, this result suggests their potent capacity to

adjust to long-term food shortages, which is usually expected
Frontiers in Marine Science 04
after their outbreaks in the natural environment. The following

results from biochemical and transcriptomic analysis shed some

light on the molecular mechanism of how it responds to

starvation stress.
RNA-seq and differentially expressed
genes analysis

Data reliability was firstly ensured through reads quality

assessment. Clean reads from the starved group and the fed

group were obtained as 42,300, 293 (99.67%) and 52, 458, 674

(99.70%) respectively, and the GC percentage obtained from

all samples was 42.62%. The average percentage of number of

bases whose quality value was above Q20 and Q30 (correct

base recognition rate ≥ 99%, 99.90%) was 97.90% and

93.95% respectively with an average mapped gene ratio of

89.18% compared to the reference genome as shown in

Supplementary Table 2.

By applying the criteria (FDR < 0.05, |log2(fold change)| ≥ 1),

1205 DEGs were identified from starved CoTS stomach tissue,

including 656 up-regulated and 549 down-regulated genes as

shown in Figure 2A. Heatmap of DEGs expression in Figure 2B

shows obvious clustering of gene expression patterns of each

individual CoTS inside the fed and starved group and the
A B

C

FIGURE 2

Overall DEGs expressions in starved and fed CoTS. (A) Volcano map of differential genes in transcriptome (FDR < 0.05, |log2(fold change)| ≥ 1).
(B) Heatmap of the DEGs in fed and starved CoTS individuals (F = fed CoTS, n = 2; S = starved CoTS, n = 6). (C) Nonmetric multidimensional
scaling (NMDS) plot of DEGs among fed and starved CoTS individuals.
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number of DEGs between the two groups was approximately the

same. Ordination of the genes as shown in the NMDS analysis

result (Figure 2C) indicates a noticeable separation of the DEGs

expression of each CoTS samples between the fed and starved

group and a close resemblance of gene expression inside the two

groups, obtained stress value as 0.0453 (below 0.05) suggests a

good fit and a reliable ordination result (Clarke, 1993). To reveal

the functions of the identified genes, the KEGG and GO database

were used for gene alignments and annotation. The top 10

KEGG enriched pathways (Figure 3A) showed the most

significantly enriched pathway was lysosome, followed by

antigen processing and presentation pathway, tuberculosis, cell

cycle, and so on. In GO analysis (Figure 3B), enrichment results

indicated the cellular process, metabolic process, and binding as

the top 3 enriched terms were greatly altered by starvation stress.

As shown in Figure 4, 12 selected genes altered in

metabolism, immunity, development processes, sleep, and

muscle construction were processed with qRT-PCR verification.

Compared to the fed group, gene expression for uncharacterized

protein LOC110982408 (named SLPUP1 in the present study)

in sleep; glycine N-methyltransferase-like (GNMT) in amino

acid metabolism; uncharacterized protein LOC110984484

(named LYS in the present study), legumain-like isoform X1

(LGMN) and cathepsin L1-like (LCP1) in immunity; cyclin-

dependent kinase inhibitor 1B-like (named CCB in the present

study) in cell cycle were all significantly upregulated compared

to the expression level of fed CoTS samples, while the

expression for myosin heavy chain and striated muscle-like

(MYH16) and actin, muscle (CYIA) favor muscle construction;

amine oxidase [flavin-containing] B-like isoform X1(MAOB)

in amino acid metabolism; retinal dehydrogenase 2-like

(ALDH1A2) in carbohydrates metabolism; G1/S-specific

cyclin-D2-like (CCND2) and calmodulin-1-like isoform X1

(CAM1) in cell cycle were significantly downregulated.
Frontiers in Marine Science 05
Similar gene expression trends were confirmed by comparing

the qRT-PCR results with the RNA-seq data, indicating the

RNA-seq results were reliable for further analysis.
Starvation induces enhanced immune
responses

KEGG enrichment analysis indicates the most significantly

altered pathways was in immunity, evidenced by the three

immunity-related pathways among the Top 10 of KEGG pathways

(Figure 3A), including 39 DEGs enriched in lysosome with the

smallest Q value (Figure 3A, Supplementary Table 3.1), 12 DEGs

in antigen processing and presentation, and 21 DEGs in phagosome

as listed in Supplementary Table 3.1. Other immunity-related DEGs

were found enriched in toll-like receptors (TLRs) signaling pathway

(7 genes), complement and coagulation cascade pathway (5 genes)

(Supplementary Table 3.1), all of which together revealed a more

complete immune responses of CoTS under starvation.

Unlike vertebrates, starfishes as invertebrates only have innate

immune responses (Chiaramonte and Russo, 2015). TLRs play an

essential role in the innate immune responses in starfish that trigger

transcription of immune functional genes to induce phagocytosis

and produce immune effectors (Smith et al., 2010). As shown in

Figure 5A, BPI as the function protein for lipopolysaccharide-

binding was upregulated, presumably leading to more efficient

reorganization of the pathogen. As such, the upregulated gene

expression in TRAF6 and TBK1 compose of a highly conserved

cascade, resulting in higher expression of the nuclear factorNFKB1,

which activates phagocytosis and multiple immune effectors such as

inflammatory cytokines (Betancur et al., 2017). When developed

phagosomes find and fuse with lysosomes to eliminate pathogens

and apoptotic cells to maintain cellular homeostasis, the

upregulation of V-ATPase encoding gene VHAAC39-1
A B

FIGURE 3

DEGs enrichment analysis in starved and fed CoTS. (A) Top 10 of KEGG enriched pathways. (B) Histogram of GO enriched genes in transcriptomes.
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(Figure 5A) would lead to a higher activity of phagolysosome in

starved CoTS (Lee et al., 2020; Lancaster et al., 2021). Due to its

essential role in phagosome and lysosome lumen acidification that

lowers the pH and activates hydrolytic enzymes, its upregulation

suggests starved CoTS enhanced their digestion ability for

prevention and resource usage (Lancaster et al., 2021; Nguyen

and Yates, 2021). Expression of cathepsin genes (CTSA, CTSB,

CTSC, CTSD, CTSL, CTSZ and LCP1) in starved CoTS were

significantly increased (Figure 5A; Supplementary Table 3.1).

Cathepsins can not only favor the antigen processing and
Frontiers in Marine Science 06
presentation process to cause destruction of the phagocytosed

microbes inside the lysosomes (Delaissé et al., 1991; Stinchcombe

et al., 2004; Zhang et al., 2019), the released ones from secretory

lysosomes can also assist microbe elimination extracellularly

(Pollard and Borisy, 2003; Nair et al., 2005). Thus, the

upregulation of the cathepsin genes in starved CoTS further

suggested ability for pathogen removal was enhanced. In addition,

starved CoTS showed an upregulation of complement and

coagulation cascade activity (Supplementary Table 3.1), which

allows pathogen uptake and facilitates phagocytosis to eliminate
A B

FIGURE 4

qRT-PCR verification of 12 genes. (A) six upregulated genes. (B) six downregulated genes (**p < 0.005, ***p< 0.001, ****p < 0.0001).
A B C

FIGURE 5

Changes of key genes under starvation in CoTS. (A) Immune responses: Toll-like receptors (TLRs) signing, phagosome, lysosome and
complement and coagulation cascade. (B) Metabolism responses of carbohydrates, lipids and amino acids. (C) Other key changes of cell cycle,
muscle construction and sleep.
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non-self-molecules, evidenced by the increased gene expression of

complement factor B (C2, MCT7 in Figure 5A), which could

increase the complement C3 production and furthermore activate

phagocytosis process (Lubbers et al., 2017; Wahltinez et al., 2020).

In addition, CAT, SOD and T-AOC activities in echinoderms

have been reported to increase under environmental stresses such

as high temperature, high salinity and food depletion, which

are essential for eliminating excess intracellular ROS (Liu et al.,

2016). However, from the antioxidant activity assessments,

average SOD activity was obtained as 93.4 U/g and 76.3 U/g

for starved and fed CoTS respectively, CAT activity was

15166.0 U/g and 18666.5 U/g for starved and fed CoTS

respectively, and the T-AOC amount was 6.1 µmol/g and

4.03 µmol/g for starved and fed CoTS respectively, statistical

analyses suggest the difference in antioxidative capability

caused by starvation was not significant in this study

(Figure 6). Such results could on the one hand be due to the

limited number of samples tested. On the other hand, the

enzymatic activity may vary in tested individuals as such

differences have been found in different animal genders

(Crago and Klaper, 2011), both of which are recommended

improvements for further experiment.
Starvation induces metabolism alteration

Alive animals always demand a continuing supply of energy,

either exogenous or endogenous energy input. When the
Frontiers in Marine Science 07
exogenous energy input suspends, endogenous physiological

fuel stores are expected to function as energy suppliers

(McCue, 2010). As the available amount of energy is limited,

and the energy expenditure in immune responses was suspected

to increase in starved CoTS, which may cause species-specific

energy suppression and reallocation, allowing species to wisely

respond to starvation stress to extend survival time by reducing

unnecessary activities and remaining essential processes for

survival (McCue, 2010).

Starting with the physiological assessments, a negligible

difference in the average glucose level was found in the starved

CoTS (2.4 µmol/g) compared to fed CoTS (3.0 µmol/g), while

the average PA content was 66.3 µg/g and 63.1 µg/g, PK activity

was obtained as 1572.4 U/g and 1559.3 U/g from starved and fed

CoTS respectively. Such results suggest in the present study, no

significant changes in glucose concentrations were found

between starved and fed CoTS, nor were changes in PA and

PK activities critical for energy production (Figure 6), implying

that CoTS may have developed alternative pathways to maintain

the relative balance of glucose utilization and production, which

is well documented at the transcriptome level. DEGs analysis

implies a decreased glucose utilization activity in starved CoTS,

evidenced by the 4 downregulated enzyme-coding genes in

glucose utilization (e.g. ALDH1A2 in Figure 5B) as listed in

Supplementary Table 3.2. In addition, acetyl-CoA might be in

shortage as the gene expression of its utilizing enzymes (e.g.

IDH1) was significantly decreased, resulting in suppressed

citrate cycle. However, the upregulated expression of 4 genes
FIGURE 6

Physiological assays for starved and fed CoTS stomach tissue. Means ± S.E., nstarved = 6, nfed = 2.
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in galactose metabolism (e.g. NAGA and GLB1 in Figure 5B), 5

genes in starch and sucrose metabolism (e.g. BXL2, ENPP3 in

Figure 5B) and 5 genes in glycan degradation (e.g. HEXB, HPSE,

and GNS in Figure 5B) pathways promotes glucose production

(Supplementary Table 3.2). This phenomenon was also reported

in aestivating sea cucumber, where starch and sucrose are

hydrolyzed to produce glucose in response to starvation (Yang

et al., 2021). Thus, such a shift could be a conserved strategy in

starved echinoderms.

Lipids are usually considered the primary endogenous fuel in

starved animals when faced with glucose depletion (McCue, 2010),

alterations occurred in lipid metabolism were investigated through

analysis of DEGs associated with lipidmetabolismKEGG pathways.

As shown in Figure 5B, PPT1 upregulated in starved CoTS stomach

tissue, which was enriched in pathways of fatty acid metabolism and

lysosome (Supplementary Table 3.2). Functioning as the catalyser of

the thioester cleavage reactions in the hydrolysis of long chain fatty

acyl CoAs (Hellsten et al., 1996), PPT1 may favour the degradation

of substrates in lysosomes and the maintenance of cortical neurons

(Hellsten et al., 1996; Yun et al., 2020). MOGAT2-A catalyses the

synthesis of diacylglycerol downregulated in starved CoTS, which

may suggest a lower absorption of fat occurred in starved CoTS

stomach tissues (Cao et al., 2004). Downregulation of GPAT4 was

found in starved CoTS, which impacts triacylglycerol synthesis

during development and regulates glucose as well as lipid

homeostasis (Yu et al., 2018). The downregulation of the

HSD17B4 in starved CoTS stomach tissue may reflect a potential

deficiency of D-bifunctional protein, which acts as the catalyser of

multiple steps of beta-oxidation of very long chain fatty acids, and

its downregulation was proven to break the lipid homeostasis in the

nervous system and gonads, which eventually cause psychomotor

retardation and infertility in mammalian (Lieber et al., 2014). In

addition, steroid biosynthesis may be downregulated in starved

CoTS as revealed by the significant downregulation of genes like

CYP17A1 and DHCR24 in their stomach tissue as shown in

Figure 5B. Although the exact role or mechanism of the genes

remains unclear in starfish, CYP17A1 was found to promote

development in invertebrate, such as gonad maturation

(Thitiphuree et al., 2019), while DHCR24 functions as cell-

protective protein for ROS scavenger and anti-apoptosis (Lu

et al., 2012). As discussed above, starved CoTS seem to tighten

up the lipid metabolism control for energy absorption and

utilization, while loosening the control of activities in

development and cell protection.

Protein or amino acid metabolism is usually considered the last

resort of fuel for energy production when animals face critical lipid

levels (McCue, 2010). It was suggested that some animals tend to

recycle endogenous proteins, either to reduce the protein

requirements or to reduce the net protein loss under starvation

stress (McCue, 2010). According to the protein level test (Figure 6),

average protein contents were 40.8 mg/g for starved CoTS and 39.1

mg/g for fed CoTS, such negligible difference between the two

groups implying a homeostasis state may be achieved in starved
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CoTS. The previously mentioned cathepsin genes (e.g. CTSB) under

immunity may also favor protein recycling through its significant

upregulation. According to Lu et al. (2011) and Zhou et al. (2014),

they as proteinases can promote autolysis by digesting connective

tissues in echinoderms. Such genes that favor nutrient recycling

were found not only phagolysosome-related pathways but also

involved in metabolism, indicating the phagolysosome in starved

CoTS might have become the nutrients processing center through

exogenous pathogen digestion and endogenous recycling.

Metabolism of multifunctional amino acids such as glycine was

enhanced (e.g. GNMT, BHMT in Figure 5B), which plays an

important role in regulating glucose level, antioxidant activity,

and immunity (Takahashi et al., 2016; Hughey et al., 2018), all of

which help reduce the impact of the starvation stress.
Starvation suppressed
unnecessary activities

StarvedCoTSwas found todownregulate several functional gene

expressions related to self-development. As shown in Figure 5C,

expression levels for genes that enriched in cell cycle and DNA

replication pathways (e.g. CCND2) were suppressed. In addition,

expression of CAM1 dramatically reduced in starved CoTS. As an

important Ca2+ regulator, downregulation of CAM1 may slow cell

cycle phases and cellular proliferation (Berchtold and Villalobo,

2014). The cyclin-dependent kinase inhibitor 1B (named as CCB

in the present study) that inhibits cell cycle was greatly upregulated.

Such alterations indicate the cell cycle might be arrested in starved

CoTS, which is a phenomenon also found in both invertebrates and

vertebrates (Wu and Storey, 2012; Zhu et al., 2016). As reported by

Zhu et al. (2016), the arrest of the cell cycle is an energy-saving action

in response to the hypometabolic state of aestivating sea cucumbers.

In addition, hibernating squirrels were found to dramatically

decrease the ATP-expensive functional activities, which caused the

cell cycle arrest (Wu and Storey, 2012). Other functional processes

such as steroid biosynthesis as mentioned before was found

significantly suppressed, which have been proven to make a

profound impact on reproduction, development, and more in

echinoderms (Köhler et al., 2007; Li et al., 2018). For instance,

homologous of identified sex hormones, and corticosteroids and

their receptors havebeenproven tohave endocrine actions in starfish

(Mita et al., 2011; Caballes and Pratchett, 2017). Other genes that

promote energy consumption activities such as CoA utilization,

vision development and neuromodulation were downregulated

(e.g. ALDH1A2, ACAA2 and MAOB in Figure 5B) (Mondovì,

2017; Cho et al., 2021). The upregulation of MAT1A (Figure 5B)

that causing degradation of the multifunctional amino acids implies

the potential suppression of the biological processes such as

catalyzation, regulation, and binding in starved CoTS (Marino and

Gladyshev, 2010; Brosnan and Brosnan, 2020).

Sleep is a widely conserved process in the animal kingdom,

especially in starved animals, sleep has been reported as a
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survival strategy for energy conservation and repairing (Roth

et al., 2010; Menezes et al., 2020). Similarly in echinoderms, Li

et al. (2018) reported that clock-related genes Egr1 and Klf2 are

the key triggers for extended sleep, which lead to aestivation in

sea cucumber A. japonicus. In this study, several genes related to

sleep were annotated by the GO database, including the two

most significantly altered genes, named SLPUP1 and SLPUP2.

Over 200-fold change in upregulation of gene expression was

found in SLPUP genes (Supplementary Table 3.3, Figure 5C),

which share a conserved domain with the SLEEPLESS protein

(SSS) (Lu et al., 2020) that was identified as a conserved sleep-

promoting factor from Drosophila to mammals (Koh et al., 2008;

Wu et al., 2014). The upregulation of SSS could lead to several

phenotypes including decreased motility and activity-rest cycles

(Ruan et al., 2017). Thus, it is likely that SLPUP genes play an

important role in extending sleep and reducing motility in

starved CoTS for energy saving and prolonged survival. The

reduction motility of starved CoTS could be evidenced by the

significantly downregulated muscle-related genes such as

MYH16, CYIA, and TAGLN2 (Figure 5C), encoding for

myosin heavy chain, actin (muscle), and myophilin-like

protein respectively. Since the normal level of interaction of

those motor proteins is essential for muscle contraction and

further movement, such great downregulation would lead to a

relatively immobile state in animals (Wells et al., 1996;

Dominguez and Holmes, 2011). Thus, CoTS could suppress

these processes as an altered energy expenditure strategy in

response to starvation.
Conclusion

Compared to endotherms, ectotherms such as sea stars

appear to have a broader tolerance to starvation due to their

relatively low energy requirements (McCue, 2010). The results of

the present study suggest that CoTS have developed a strategy to

cope with months-long starvation characterized by minimizing

non-survival related energy-consuming activities, increasing

material recycling, and enhancing immunity. The present

study reveals for the first time the survival strategy of CoTS

under prolonged starvation stress at the molecular level,

which will help us better understand the mechanism of

CoTS outbreaks.
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