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The habitat occupied by flatfish fry differs considerably in light regime from that

of the adult. The diversity of opsins and their expression patterns appear

greatest for flatfishes to experience variable light environments. Yet, opsin

repertoires and expression patterns in this group of fishes are poorly described.

To understand how the visual system has adapted to such changes, we unveil

that Japanese flounder (Paralichthys olivaceus) has a visual system adapted to a

benthic environment by fine-tuning paralogous opsins (SWS2A and RH2) for

wavelength shift and regulated expression. P. olivaceus express five basic opsin

genes (M/LWS, SWS1, SWS2, RH1 and RH2) and gene-specific duplications were

observed in RH2 and SWS2 paralogues. The expression of the three short-

wavelength sensitive genes, SWS2Aa, SWS2Ab, and SWS2B, is significantly

elevated at the benthic stages, especially in SWS2Ab a striking expression

change is observed. The four middle-wavelength sensitive genes exhibit

divergent expressions, the expression of RH2A-1 and RH2A-2 increased,

while that of RH2B-1 and RH2B-2 decreased significantly from pelagic to

benthic stage, especially RH2A-2. At present, changes at a total of 26 sites are

known to have modified the lmax of various visual pigments during vertebrate

evolution. Thus, these tuning site variations in our P. olivaceus are suspected to

cause a green-shift in the lmax of SWS2Aa pigments and blue-shift in that of in

RH2A-2. Together, our results suggest that RH2 and SWS2 opsin repertoires

serve to optimize visual function under variable light environments by gene

family duplications, differential expressions, and maximum absorption

wavelength (lmax) variations.

KEYWORDS

paralichthys olivaceus , visual opsins, gene duplication, spectral tuning,
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Introduction

Opsins are membrane-bound proteins with seven a-helical
structures, belonging to G-protein-coupled receptors (GPCRs)

families (Hárosi, 1994; Yokoyama, 1997; Shichida and Imai,

1998). The visual opsins present in photoreceptor cells mainly

function as light signal receptors from outer environment using

a vitamin-A derived chromophore, 11-cis-retinal. Based on color

vision discrimination of spectral differences in photic

environments, visual opsins are sorted into five sub-families,

namely, “red-sensitive” M/LWS, “green-sensitive” RH2, “blue-

sensitive” SWS2, “ultraviolet-sensitive” SWS1, and “dim-light

sensitive rhodopsin” RH1 (Yokoyama, 1997; Yokoyama, 2000b;

Yokoyama, 2002; Yokoyama, 2008). As the first step of vision,

opsins play vital roles in food gathering, communication,

predator avoidance, mate selection, and navigation (Hoffmann

et al., 2007; Watson et al., 2011; Cortesi et al., 2015).

Visual systems in fish are typically complex because of the

remarkable diversity of visual opsins compared with other

vertebrates (Rennison et al., 2012; Davies et al., 2015). The

reason for this diversity is largely related to the underlying

genetic mechanisms, including sequence evolution, lineage-

specific tandem duplication, changes in gene expression, gene

fusion, and gene mutation (Chinen et al., 2003; Hofmann and

Carleton, 2009; Rennison et al., 2012; Nakamura et al., 2013;

Cortesi et al., 2015). For example, the interaction of both depth-

related variation in opsin sensitivity as well as nuptial

colouration (ie sexual selection) that resulted in speciation

(Seehausen et al., 2008).

With increasing depth in the ocean the light gets dimmer,

the sunlight penetrates the clearest oceanic water to a

maximum of 1000 m and long wavelength light and

ultraviolet l ight attenuated most strongly so that ,

eventually, the light left contains only blue wavelengths

close to 480 nm, like dim blue moonlight when observation

in the deep water (Land and Osorio, 2011). Therefore, opsin

pigments are usually tuned to adapt the peak transmission by

wavelength shifts. A292S replacement, an amino acid

replacement at site 292 of the rhodopsin protein, causes a

blue-shift in RH1 pigments of East African cichlid fishes,

providing functional adaptations to the deep-water photic

environment (Sugawara et al., 2005). Although only RH1 and

RH2 genes, the coelacanth adapt to weak photic environment

at depths of 200 m by both pigments short wavelength shifts

(Yokoyama, 2000a). The adult elephant shark migrates into

shallower river mouth to spawn. Therefore, the retention and

duplication of LWS pigments in elephant shark show a novel

adaptation to the varying photic environment of the deep and

shallow waters encountered by short wavelength shift in

LWS1 (Davies et al., 2009).

A great number of teleosts experience dramatic changes in

morphology and physiology from larva to juvenile stage
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(Youson, 1988). Among them, the drastic metamorphic

changes from symmetrical to asymmetrical body in flatfishes is

one of typical examples. In addition to metamorphic changes,

the photic environments inhabited by flatfish are quite divergent

throughout their life cycle. Flatfish larvae are pelagic, juveniles

inhabit shallow, near-shore waters, and adults are benthic and

often descend to depths that exceed 200 m (Iwanicki et al., 2017).

It appears that diversity of opsin genes is quite different in

flatfish. Nine visual opsin genes have been characterized in

turbot (Scophthalmus maximus), eight in barfin flounder

(Verasper moseri), while tongue sole (Cynoglossus semilaevis),

winter flounder (Pseudopleuronectes americanus) and Atlantic

halibut (Hippoglossus hippoglossus) contain five opsin genes

(Helvik et al., 2002; Mader and Cameron, 2004; Chen et al.,

2014; Kasagi et al., 2015; Figueras et al., 2016). Thus, it appears

that diversity of opsins is important for flatfishes to experience

variable light environments.

P. olivaceus is an economically important marine species

cultivated in China, Japan and Korea. P. olivaceus also undergo

metamorphosis process, including 90° rotation in body

position and the migration of one eye to the contralateral

side, which lead to a transition from the pelagic to the benthic

habitat accompanied by changes in the photic environment

(Fuiman, 1997; Gibson, 1997; Geffen et al., 2007). However, the

molecular mechanism responsible for the adaptation of P.

olivaceus to the dim-bottom vision after metamorphosis

remains largely unknown. It is thus important to elucidate

this evolutionary change, not only at anatomic and

physiological levels but also at molecular and genetic levels.

The aim of this study was to characterize the visual system of P.

olivaceus in the course of their adaptation to various

photic environments.
Materials and methods

Ethics statement

This study was approved by the Animal Care and Use

Committee of the Centre for Applied Aquatic Genomics at the

Ocean University of China.
Fish samples

P. olivaceus samples were collected from Haiyang Yellow Sea

Aquatic Product CO., Ltd, Shandong, China. The samples were

collected on the basis of the process of metamorphosis including

pre-metamorphosis 14 days post hatching, (dph), metamorphic

climax (25 dph), and post-metamorphosis (49 dph) in

accordance with the migration of eyes (Takashi, 1982). A total

of three individuals were collected at each time point. Prior to
frontiersin.org
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simple collection for adult fish, all individuals were anesthetized

by MS-222 at 30 mg/mL. P. olivaceus eyes were collected from

each fish, frozen immediately in liquid nitrogen, and then stored

at -80°C until analyzed.
RNA extraction and cDNA synthesis

Total RNA from each sample was extracted separately using

Trizol Reagent (Invitrogen, Carlsbad, CA, USA) according to the

manufacturer’s instructions and treated with RNase-free DNase

I (TaKaRa, Dalian, China) to eliminate the genomic DNA

contamination. cDNA synthesis was performed with 1mg total

RNA and random hexamer primers using Reverse Transcriptase

M-MLV Kit (TaKaRa, Dalian, China) following the

manufacturer’s protocol. The quality and the quantity of RNA

were then detected by 1.5% agarose gel electrophoresis and

spectrophotometry with NanoPhotometer Pearl (Implen,

Munich, Germany).
Expression of visual opsin genes

Specific primer pairs for visual opsin genes were listed in

Table 1. Pre-experiments were conducted to confirm the

generation of single cDNA PCR products. The 18S rRNA gene

was used as internal reference gene. Samples from three

individuals were pooled together and performed in triplicate.

Then quantitative real-time PCR (qRT-PCR) was performed

with 2×SYBR Green qPCR Master Mix (US Everbright Inc.) by

LightCycler 480 (Roche, Forrentrasse, Switzerland) at 95°C for

5 min pre-incubation, followed by 45 cycles of 95°C for 15 s and

60°C for 45 s. Relative expression level of genes was calculated by

2-DDCt method.

The qRT-PCR data were subjected to analysis using one-way

ANOVA with SPSS 20.0 (IBM, New York, USA). P < 0.05 was

considered to indicate statistical significance. All data were

expressed as the mean ± standard error of the mean (SEM).
Phylogenetic analysis and
synteny analysis

Sequence alignments of a variety of visual opsin genes were

generated by ClustalW (Chenna et al., 2003). A Bayesian

probabilistic inference method was performed with a

Metropolis Markov chain Monte Carlo (MCMC) algorithm

using MrBayes 3.2.2 software (Huelsenbeck and Ronquist,

2001; Ronquist et al., 2012). A general time-reversal (GTR)

model (Lanave et al., 1984) was used, applying a gamma-

distributed rate of variation across all sites with a proportion

of invariable sites. Two runs and four chains in parallel were
Frontiers in Marine Science 03
performed for 400000 generations with a chain sample

frequency of 10 generations. The first 25% (10000) of all trees

generated were discarded as burnin to allow for tree convergence

and a low (close to 0.01) standard deviation of split frequencies.

Whole-genome sequences used for synteny analysis were

obtained from NCBI and Ensembl. The upstream and

downstream genes of RH2 and SWS2 were searched from gff3

files. Then, the figures were drawn by Genomicus.
Results and discussion

Opsin gene duplication and phylogeny

We identified all types of opsin genes, M/LWS, SWS1, SWS2,

RH1 and RH2 from both transcriptomes (Accession number

SRX500343) and annotated genes (Wang et al., 2014; Shao et al.,

2017). The P. olivaceus genome possesses 10 visual pigment

genes: one each for SWS1, M/LWS, and RH1, three for SWS2,

and four for RH2. All ten P. olivaceus opsin genes were

positioned ancestrally to their teleost counterparts within each

clade in the phylogenetic tree (Figure S1). The three blue

sensitive SWS2 genes reside in a single tandem-array as two

distinct clades: SWS2B and SWS2Aa/SWS2Ab (Figures 1B, F).

The four RH2 genes, RH2A-1, RH2A-2, RH2B-1 and RH2B-2,

form another highly conserved tandem array as two distinct

clades, RH2A1/A2 and RH2B1/B2 (Figures 1A, D). Accession

numbers of visual opsin genes for phylogenetic analysis were

listed in Table S1.

Opsins are one of the most dynamic gene families in the

evolution of vertebrates tightly linked to the adaptive evolution

of animal vision system. Teleost opsins are most diversified ones

for the successful occupation of habitat ranging from clear

shallow rivers to dark deep sea. The phylogenetic results of the

three SWS2 and four RH2 opsins in our P. olivaceus revealed

both RH2A1/A2 and RH2B1/B2 pairs were apparently derived

from additional rounds of species-specific gene duplications, like

SWS gene evolution in other percomorph fishes (Cortesi

et al., 2015).

Whole-genome and single-gene duplications are important

evolutionary mechanisms that provide new genetic raw material

for the formation of biological diversification (Ohno, 1970).The

multiple rounds of whole-genome duplications are considered to

have laid the genomic foundation for the evolutionary status of

teleost fishes (Meyer and Van de Peer, 2005). While single-gene

duplications are thought more important for adaptive

diversification of entire gene families, such as MHC genes (De

Souza and Bonilla-Rodriguez, 2007) and opsins in fishes

(Hofmann and Carleton, 2009). In the P. olivaceus genome,

the copy numbers of RH2 and SWS2 opsins not only differ from

the deep ocean-adapted tuna fish (Nakamura et al., 2013), but

also from those of tongue sole and turbot. The tongue sole has
frontiersin.org
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only one SWS2Aa (with no SWS2Ab and SWS2B) gene and two

RH2 genes, whereas turbot has two SWS2 genes and five RH2

genes with one of them being not tandemly duplicated (Chen

et al., 2014; Figueras et al., 2016). Although they experience the

same metamorphosis during early development and occupy

benthic habitat during adult life, tongue sole usually

distributes in river mouth and shallow waters with depths of 5

to15m, flounder prefers depths of 20 to 70m, whereas turbot is

most abundant in 30 to100m.
Opsin gene expression

Opsin genes exhibit drastic changes in expression patterns from

pelagic larvae to benthic juveniles. The scotopic vision geneRH1 and

long-wavelength sensitive gene LWS1 show poor expression before

metamorphosis (14 dph) but significantly increased during (25 dph)

and after (49 dph) metamorphosis (P < 0.01). The expression of the

three short-wavelength sensitive genes, SWS2Aa, SWS2Ab, and
SWS2B, is also significantly elevated at the benthic stages (P <

0.01), especially in SWS2Ab a striking expression change is

observed. The four middle wavelength sensitive pigment genes

exhibit divergent expressions, the expression of RH2A-1 and

RH2A-2 increases, while that of RH2B-1 and RH2B-2 decreased

significantly from pelagic to benthic stage (P < 0.01), especially

RH2A-2 (Figures 1C, E).
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To date, little has been known about the expressions of opsin

genes at different developmental stages of flatfish. Chen et al.

(2014) reported in tongue sole that the expression of the scotopic

vision RH1 gene and long-wavelength sensitive LWS gene are

signifcantly higher in the benthic stages, which are similar in P.

olivaceus in this study. They also reported a expressional

decrease from pelagic to benthic stages of RH2 gene. However,

they did not define which RH2 gene is detected, as there are two

RH2 genes in the tongue sole genome. Our result showed

obvious expressional diversification of RH2 genes with the two

RH2A-1/RH2A-2 decrease while RH2B-1/RH2B-2 increase

from pelagic to benthic stages. These observations may suggest

that flounder possesses diversed sensitivity of different

wavelengths during different life stages, reflecting its

adaptation to changed vision environent. Because flatfish

experience methamorphosis and undergo an eye migration

during this process, it is reasonable to consider that the

dynamic expression patterns of RH2A and RH2B genes is

possibily caused by temperal and spatial development of

different subtypes of opsins during early development, similar

to the case of zebrafish (Takechi & Kawamura, 2005) .

Although RH2 and SWS2 belonged to opsin gene family, the

functions were different. It has been reported that RH2 was

green-sensitive, whereas SWS2 was blue-sensitive (Yokoyama,

1997; Yokoyama, 2000b; Yokoyama, 2002; Yokoyama, 2008).

Both RH2 and SWS2 were expanded during evolution P.
TABLE 1 Primers used for qPCR analyses in this study.

Gene Oligo Sequence (5’-3’)

RH1 Forward CGGGAAACGACTGAAGGCTA

Reverse AACAACTCTGTAATGGGCTGACC

RH2A-1 Forward CCTTTCCACTGTCTCTTCAATCTG

Reverse TGGAGCCGTTCATCACTGGT

RH2A-2 Forward GGAATGGGCGGCAAGGT

Reverse TGGATAACAATCAGTAAGGACAACG

RH2B-1 Forward CTGTTGGAATGGGCGGTATG

Reverse GAGTTGTTGGGAATCGTCTGTGT

RH2B-2 Forward CAAGAGAAGATGGAGAACGGC

Reverse GGTGATGGTGAACCCAAAGC

SWS2Aa Forward GGGATGGGAGGAGGTGAGG

Reverse GCAGGGAAATAAGTCTTCTTGATGAG

SWS2Ab Forward GGGGATGGGTGGAGGTGAT

Reverse ACACTGTGGAAAACATTGCGG

SWS2B Forward CCTCCTCAATAAACAGTTCCGC

Reverse AGCCGACTCTTTATCTCAAGGAAT

LWS Forward GCCCTCCTGCTAAGAACAAAAT

Reverse CAAGACCGTTGGTGAAGACTGA

SWS1 Forward TTACCTGGCACCTCAATGGG

Reverse GCAGATGTTGACGAGGATGTAGTT

18s Forward GGTAACGGGGAATCAGGGT

Reverse TGCCTTCCTTGGATGTGGT
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olivaceus genome. The expanded RH2 might have divergent in

function to adapt benthic habitat after metamorphosis. We

speculated that RH2B-1/2 maintained the original green-

sensitive function. But RH2A-1/2 differentiated shifted wave-

length sensitivity. Because, the expression patterns of RH2B-1/2

showed marked decrease after metamorphosis as they are no

longer important in benthic deep sea environment, while RH2A-

1/2 showed sharply elevated expression patterns.

Generally, light of longer wave length was predominant in

pelagic habitat, and RH2B-1/2 was sensitive to green. Depth of

life stage increased with a change from pelagic to benthic, and

from shallow to deep sea habitat. The wavelength also changed

as the depth of the seawater increased, with blue and blue-green

light of relatively shorter wavelengths becoming predominant in

deep environment. The remarkably increased expression of

SWS2 paralogues were in consensus with the habitat

adaptation requirement.
Tuning site analysis

Some amino acid sequence variations can change themaximum

absorption wavelength (lmax) of the visual pigments. At present,
Frontiers in Marine Science 05
changes at a total of 26 sites are known to havemodified the lmax of

various visual pigments during vertebrate evolution. We examined

amino acid sequence variations among the three SWS2genes and the

fourRH2genes for functional implications (Tables S2, S3),which are

rathernumerousascompared to thoseofotherfish species (Figures2,

3); some of these sites appear involved in fine-tuning of light

sensitivity in blue and green opsins. In P. olivaceus, SWS2 is

different from other teleosts at several predicted spectral tuning

sites. The amino acids of the three SWS2 members at the two

important tuning sites 94 and 97 were all different from one

another, and site 86 in SWS2Ab and 94 in SWS2Aa being specific

amino acid changes in the teleosts. Different frommost other teleost

SWS2 genes that possess S292 and varied 116 (T, L, V or A), P.

olivaceus SWS2Ab possessing M116 and A292 while SWS2Aa
possess M116 that are virtually the same with corresponding

tuning sites of most RH2 orthologous genes of most other

teleosts (Table 2).

Previously report suggested that the lmax values of P. olivaceus

SWS2b was 465.6 nm, which was categorized into blue-sensitive

opsin (Kasagi et al., 2018). According to the results in bluefin killifish

(Yokoyama et al., 2007), the amino acid compositions of tuning sites

44, 46, 94, 97, 109, 116, 118, 265, and 292of the SWS2Agenes tend to

shift the lmax value. But because almost all RH2 pigments have
A

B

D

E

F

C

FIGURE 1

Charactorization of opsin genes in P. olivaceus. (A, B) The phylogenetic analysis of RH2 and SWS2 genes. (C) The expression of RH genes during
the process of metamorphosis in P. olivaceus. (D) Syntenic analyses of RH genes in teleosts. (E) The expression of SWS genes during the
process of metamorphosis in P. olivaceus. (F) Syntenic analyses of SWS genes in teleosts. Different letters represent significant difference.
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FIGURE 2

Amino acids alignment of RH2. The dots represented the same amino acid sites compared with B. taurus RH1 sequence among different
species. The horizontal lines represented the missing of amino acid sites compared with each other.
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M116, and they are associated with the pigments with green-shifted

lmax values, the site changes in our P. olivaceus are suspected to

cause a green-shift in the lmax of SWS2Aapigments. When

compared with the wavelength shifts caused by site-directed

mutations in other species, the lmax value of SWS2B were found

shifting toward purple (shorter wavelength-sensitive) by all tuning

site changes, especially site 94C, 97C.

Similarly, amino acid variations at sites 83, 116, 207 and292have

been reported to be the tuning sites affecting lmax value in RH2

pigments (Yokoyamaet al., 1999). The sequences ofP. olivaceusRH2

are also different fromother teleosts at some of the predicted spectral

tuning sites (Matsumoto et al., 2006; Hofmann and Carleton, 2009;

Flamarique et al., 2013; Nakamura et al., 2013; Cortesi et al., 2015).

The P. olivaceus RH2A-1, RH2B-1 and RH2B-2 were similar in

tuning site variations, whereas RH2A-2 pigment contained distinct

amino acid changes.MostfishRH2 contain anM116 or F116 and an
Frontiers in Marine Science 07
M207, but the P. olivaceus RH2A-2 possessed an L116 and an L207

(Table 2). The only known L207was found in L. chalumnaeRH2Alc

(Yokoyama et al., 1999). It is interesting to notice that all the reported

SWS2 pigments in teleosts have an L207. Comparing the RH2 and

SWS2sequences, theL116andL207mutationsare suspected tocause

a blue-shift in the lmax of in P. olivaceus RH2A-2 pigment.

Because the adult flatfish lives in deep benthic environment

where blue and blue-green lights are predominant, the identified

tuning site mutations resulting blue-shift in the lmax of RH2A-2 as

well as those resulting green-shift in thelmax of SWS2A all reflected

the evolutionary results offlounder genome to adapt the dim-bottom

vision habitat (Figure 4).

All the results let us conclude that P. olivaceus have adapted

the benthic vision environment by: 1. gene-specific duplications

in both RH2 and SWS2 genes, 2. tuning site mutations for

wavelength shift by both RH2 and SWS2 opsins that make P.
FIGURE 3

Amino acids alignment of SWS2. The dots represented the same amino acid sites compared with B. taurus RH1 sequence among different
species. The horizontal lines represented the missing of amino acid sites compared with each other.
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TABLE 2 Comparison of the representative amino acid sites involved in the light sensitivity of SWS2 and RH2 opsins among several teleosts*.
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Japanese flounder SWS2Ab M F V T N V G S V G A A E G M

SWS2Aa M F V T N V G S T A S A E G M

SWS2B M F V T N V G S T C C G E G T

Zebrafish SWS2 M F I T N V G S V A A G E G T

Medaka SWS2Aa M F V T N V G S T A S A E G A

SWS2B M V V T N V G S T C C G E G T

Tuna SWS2A M F V T N V G S T A S G E G L

SWS2B M F V T N V G S T C C G E G T

Dottyback SWS2Aa M F V T N V G S T A S A E G M

SWS2Ab M F V T N V G S T A S A E G V

SWS2B M F V T N V G S T C C G E G T

Bovine RHO 44 46 49 52 83 86 90 91 93 94 97 109 113 114 11

Japanese flounder RH2A-1 M F C T G M G F I T S F E G M

RH2A-2 M F C T G M G F I T S A E G L

RH2B-1 M F C F G M G F V S S G E G M

RH2B-2 M F C F G M G F I T T G E G M

Zebrafish RH2-1 M L I F G M G F V S C G E G F

RH2-2 M F C L G M G F V T C G E G F

RH2-3 M F C F G M G F V T T G E G M

RH2-4 M F C F G M G F V T T G E G M

Medaka RH2A M F L F G M G F V C S G E G M

RH2B M F C T G M G F I T S F E G M

RH2C M F C T G M G F I T S F E G M

Tuna RH2A1 M F C T G M G F I T S A E G M

RH2g6738 M F C F G M G F I T T A E G M

RH2A2 M F C T G M G F T T T G E G M

RH2g6740 M F C F G M G F I T T G E G M

RH2B M F C F G M G F V C S G E G M

Stickleback RH2-1 M F C T G M G F I T S A E G M

RH2-2 M F C T G M G F I T S A E G M

* A total of 26 sites known to have modified the lmax of various visual pigments is listed and the site numbers are standardized to those of bovine
 r
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olivaceus possess a broader wavelength adaptation from green to

purple-blue lights; 3. an expressional modification of different

RH2 and SWS2 paralogues to adapt either pelagic or

benthic environments.
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FIGURE 4

Schematic of metamorphosis and adapting benthic habitat of P. olivaceus. The wavelength shift by both RH2 and SWS2 opsins made P.
olivaceus possess a broader wavelength adaptation from green to purple-blue lights. Different letters represent significant difference.
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