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High ammonium recycling in an
anthropogenically altered
Yeongsan River Estuary,
South Korea
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Regenerated nitrogen (N) cycling was studied in a turbid and nutrient-rich

estuary located in the southeast region of the Yellow Sea (Yeongsan River

Estuary; YRE), in order to elucidate the biogeochemical consequences of

coastal development. Ammonium regeneration and potential uptake rates

were measured from March 2012 to June 2013 using 15N tracer techniques.

Size fractionation suggested that small-sized bacteria (<0.7 mm), rather than

zooplankton, were responsible for most of the ammonium regeneration.

Intermittent freshwater discharge events might have prevented stable

zooplankton community development and caused the insignificant role of

zooplankton in ammonium regeneration. Ammonium regeneration and

potential uptake rates were relatively high (0.1–1.2 and 0.2–1.5 µmol L−1 h−1,

respectively), and were highest during summer. Ammonium turnover times

were shorter than water residence times throughout the study period. These

results indicate that ammonium is actively recycled and is likely to supply

enough N required to sustain the high primary productivity observed in the YRE

(50%–450%). Reduced turbidity and increased water residence times caused by

the construction of an estuarine dam in the YRE have probably resulted in the

formation of optimal conditions for the high ammonium regeneration.

KEYWORDS

Yeongsan River estuary, estuarine dam, nitrogen cycling, ammonium regeneration,
isotope dilution experiments, primary productivity
Introduction

The Yellow Sea is a shallow marginal sea situated between mainland China and the

Korean Peninsula. Increased anthropogenic nitrogen (N) inputs to coastal regions from

rivers in China and the Korean Peninsula stimulate eutrophication, trigger the formation

of hypoxic zones, and influence the structure and functioning of these coastal ecosystems
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(Wei et al., 2007; Zhang et al., 2007; Rabalais et al., 2010; Hyun

et al., 2020). However, ecological responses to N inputs in this

region have been poorly studied.

The ecological implications of N loading in an estuary

depend on the estuary’s physical and biogeochemical

characteristics (Heip et al., 1995; An and Gardner, 2002;

Middelburg and Herman, 2007; Bianchi, 2007). Dissolved

inorganic N (DIN) inputs from land, usually in the form of

nitrate (NO−
3 ) are assimilated into particulate organic N (PON)

during autochthonous production; some of the PON is recycled

into DIN during microbial regeneration, usually in the form of

ammonium (NH+
4 ). The degree of NO−

3 ! PON ! NH+
4

conversion may be important for primary productivity because

ammonium is the preferred N source for phytoplankton

(McCarthy et al., 1977). Many studies have reported that the

uptake and turnover rates of ammonium in estuarine

environments are higher than those of nitrate (Middelburg

and Nieuwenhuize, 2000a; Yuan et al., 2012).

Ammonium regeneration is mainly mediated by bacteria,

protozoa and zooplankton. The contribution of bacteria to

water column ammonium regeneration differed according to the

coastal characteristics such as the temperature, plankton

community structure and supply of microbial substates

(Gardner et al., 1997; Jochem et al., 2004). For example,

Picoplankton (mainly associated with bacteria) contributed

significantly to ammonium regeneration during the summer

(20-45%), while nanoplankton (mainly associated with ciliates)

accounted for 83-88% of the regeneration in winter in the shallow

well-mixed water (Maguer et al., 1999). Maguer et al. (1999)

suggested that the contribution of picoplankton versus

nanoplankton to total ammonium regeneration is regulated by

seasonal planktonic community structure. Regenerated

ammonium is consumed by processes such as nitrification and

assimilation of phytoplankton and heterotrophic bacteria.

Photosynthetic ammonium uptake tends to be light-dependent,

whereas heterotrophic uptake is largely regulated by the

availability of organic substrates (Gardner et al., 2004). The

relat ive importance of ammonium uptake between

phytoplankton and heterotrophic bacteria can be demonstrated

by light-dark incubations. (Gardner et al., 2004; McCarthy et al.,

2009, 2013). In several aquatic systems includingMississippi River

plume, Lake Champlain, Western Lake Erie, the light ammonium

uptake rates were higher than dark rates suggesting that

predominance of photosynthetic uptake (Jochem et al., 2004;

McCarthy et al., 2013; Hoffman et al., 2022).

Nutrients and grazing are generally the most important

factors controlling phytoplankton productivity and biomass at

the ocean surface (Tilman et al., 1982; Armstrong, 1994).

However, physical factors, such as light availability, vertical

mixing, and freshwater flushing, are also significant (Alpine

and Cloern, 1988; Mallin and Paerl, 1992; Sin et al., 1999). The

coastal waters of the western Korean Peninsula adjacent to the

Yellow Sea are eutrophic; however, algal blooms are relatively
Frontiers in Marine Science 02
rare in the region despite the high nutrient levels (Kim et al.,

2013; Park et al., 2013). The rarity of algal blooms may be due to

the high turbidity (and low light levels) caused by the high input

of suspended solids from rivers and resuspension by the

macrotidal (10 m range) regime (Son et al., 2005; Byun et al.,

2007). In estuaries with low, rapidly changing light conditions,

the N form (nitrate versus ammonium) may be important

because nitrate (as an oxidized chemical species) is less likely

to be coupled to primary productivity (Middelburg and

Nieuwenhuize, 2000a; Yuan et al., 2012).

The Yeongsan River Estuary (YRE) is located in the

southeastern Yellow Sea and receives high nutrient loads from

a highly populated area (Gwangju; population 1.5 million) and

as a result of agricultural practices. A dam was constructed at the

mouth of the YRE in 1981 to secure freshwater for agricultural

and industrial use (Yim et al., 2018). A large artificial lake was

formed, with poor water quality (Lee et al., 2009). The

characteristics of the estuary also changed dramatically after

the dam construction, which caused reduced water circulation

(Cho et al., 2004). The estuary is a tide-dominated, shallow,

semi-enclosed bay with intermittent freshwater discharge

regulated by dam sluice gates, which affect the physical and

biogeochemical characteristics such as current, turbidity,

nutrient concentration, and plankton dynamics (2015; Byun

et al., 2004; Cho et al., 2009; Sin et al., 2013; Sin and Jeong, 2020).

Like other estuaries adjacent to the Yellow Sea, primary

production in the YRE is controlled by physical factors,

including vertical mixing, the concentrations of suspended

solids, and temperature (Byun et al., 2007). However, the YRE

has a higher primary productivity (36–8900 mg C m−2 d−1; Lee

et al., 2011; Sin et al., 2015) than other adjacent estuaries without

dams, most likely because turbidity is generally lower due to

reduced tidal resuspension near the dam. Summer hypoxia has

been reported in the bottom layer of the YRE, which is an

unusual finding for a macrotidal estuary (Lim et al., 2006).

This study aims to estimate the ammonium regeneration

and potential uptake rates in the YRE by measuring changes in

ammonium isotope ratios (Gardner et al., 1995; An et al., 2013)

during incubation experiments. An additional goal is to improve

the understanding of N recycling in the YRE, where a

combination of artificial (high anthropogenic N loads, dam

construction) and natural (macrotidal regime, high suspended

sediment loads) perturbations co-occur, and to examine how

dam construction may alter N cycling in an estuarine system.
Materials and methods

Study area

The Yeongsan River (drainage area 3455 km2, length

129 km) is one of the four major rivers in South Korea that

flow into the Yellow Sea. An estuarine dam was constructed,
frontiersin.org
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inside the dam, an artificial freshwater lake (the Youngsan Lake)

was created. Youngsan Lake has experienced massive sediment

accumulation since the dam was constructed (33.6% reduction

of the total water storage capacity) (Lee et al., 2009). Restriction

of tidal circulation and loading of anthropogenic nutrients and

organic compounds from upstream have transformed the area

into a eutrophic lake with frequent occurrences of algal blooms

and oxygen depletion in the bottom waters (Lee et al., 2009).

Outside the dam, a semi-enclosed bay (the YRE) was created. the

YRE (2 km wide, 7 km long, average depth 14 m; Figure 1) has a

semi-diurnal tidal cycle, with mean spring and neap ranges of

approximately 6 and 3 m, respectively. Annual mean

precipitation in the region is 1322 mm, and the estuary’s

annual mean freshwater discharge is approximately 1.5 billion

m3. More than half of this precipitation is concentrated in the

summer monsoon season (July and August); therefore,

freshwater discharge occurs mostly during summer (>80% of

annual discharge; Cho et al., 2004). The estuary’s vertical

temperature and salinity profiles are homogeneous until early

June, due to vertical mixing. Thermohaline stratification occurs

in summer as a result of increased surface temperatures and

warmer freshwater discharges (Cho et al., 2004). This summer

stratification is disrupted by heavy freshwater discharges, but

redevelops quickly (in approximately two days) after cessation of

discharge (Cho et al., 2014).
Experimental and analytical procedures

Isotope dilution experiments were conducted five times

between March 2012 and June 2013 at St. 2 in the YRE (34°

47’21.86”, 12626’23.06”; Figure 1) to estimate seasonal variations

in ammonium recycling rates. Water samples for incubation

experiments were collected 4–7 days after a freshwater discharge:

salinities were similar to the outer estuarine bay (Table 1).
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Isotope dilution experiments were conducted as described in

previous studies (Gardner et al., 1997; Jochem et al., 2004;

McCarthy et al., 2013). Briefly, surface water samples were

collected in Niskin bottles (at a sampling depth of 0.5 m) and

spiked with 15NH4
+ to achieve a final concentration of 8 µM (98

atom%; 15NH4Cl, Sigma-Aldrich). Water Samples were divided

into six clear polystyrene culture bottles (75 cm2; SPL

Lifesciences). Each experiment was performed in triplicate in

light and dark (wrapped in aluminum foil) bottles. The bottles

were floated on the surface of the sampling station and incubated

for 24 h. Subsamples were collected from each sample after
15NH4

+ addition (0 h) and after the incubation intervals.

Subsamples were filtered over a 0.2 µm nylon filter (Whatman

puradisc syringe filter); the resulting filtrates were collected in

10 ml glass vials (Wheaton) and frozen immediately. In June

2013, ammonium recycling rates were measured in three size

fractions (whole fraction,<200 µm,<0.7 µm) to assess the

contribution of phytoplankton and zooplankton to ammonium

recycling (Jochem et al., 2004). The collected water samples were

filtered using a 200 µm stainless steel sieve or Whatman GFF

glass-fiber filters (0.7 µm pore size). Each filtrate (<200 µm

and<0.7 µm) and unfiltered water sample was then treated

according to the procedure described above.

Ammonium isotope ratios and concentrations were

measured by high-performance liquid chromatography

(HPLC) using a cation-exchange column as described in

Gardner et al. (1995), but with a modified procedure using

updated HPLC pumps as described in An et al. (2013).

Ammonium regeneration and potential uptake rates were

calculated from changes in ammonium concentration and

isotope ratios over time, using the Blackburn–Caperon model

(Blackburn, 1979; Caperon et al., 1979).

In the natural-light incubations in July 2012 and June 2013,

ammonium was exhausted by the end of the 24 h incubation

period; thus, the uptake and regeneration rates could not be
FIGURE 1

Locations of the study sites in the YRE. Water quality data for Sts. 1 and 3 were archived from the National Institute of Environmental Research
and the Marine Environment Information System, respectively.
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obtained for these samples. However, minimum uptake rates

were estimated from the initial ammonium concentrations of

these samples and the regeneration rates of the dark incubations.

Sufficient amounts of 15NH4
+ were added to the samples to

prevent nutrient exhaustion over the incubation period (Gardner

et al., 1997; McCarthy et al., 2013). In March, May, and October

2012, the added 15NH4
+ was 44%–65% of the ambient levels. In

contrast, in July 2012 and June 2013, when ambient ammonium

levels were very low, 15NH+
4 additions were 1100%–2800% of the

ambient levels. The regeneration rates obtained in this study are

considered to be the actual rates, as high-level nutrient addition

should not affect regeneration rates (Blackburn, 1979), whereas

uptake rates are regarded as potential rates (Gardner et al., 1997).
Frontiers in Marine Science 04
The ammonium and nitrate + nitrite concentrations of collected

water samples at St. 2 were determined spectrophotometrically

(Strickland and Parsons, 1972; Jones, 1984).

In order to find out the biogeochemical properties of

Yeongsan Lake surface water that affects the study area,

inorganic nutrient concentration (nitrate plus nitrite,

ammonium, dissolved inorganic phosphorus [DIP]) data at St.

1 for 2002–2013 were obtained from the National Institute of

Environmental Research (http://water.nier.go.kr) (Figure 2).

Physico-chemical data at St. 3 near the survey point were also

archived on the Marine Environment Information System

(MEIS: http://www.meis.go.kr) website (Table 1). DIP data

represented in this study were measured as soluble reactive
FIGURE 2

Monthly concentration variations in total nitrogen, inorganic nitrogen, and DIN:DIP ratios near the inside of the dam (Yeongsan Lake; St. 1),
obtained from the National Institute of Environmental Research (http://water.nier.go.kr).
TABLE 1. Seasonal variations in temperature, salinity, ammonium concentration, nitrate + nitrite, ammonium/nitrate + nitrite ratios, dissolved
inorganic phosphate (DIP), and DIN:DIP ratio during 2000–2013 obtained from Marine Environment Information System (St. 3) and the sampling
periods in the YRE (St. 2).

Properties Seasonal mean and range Sampling periods

Winter(Feb.) Spring(May) Summer(Aug.) Fall(Nov.) 15 Mar 2012 30 Apr 2012 30 Jul 2012 22 Oct 2012 10 Jun 2013

Temperature (℃) Average(SD) 5(1) 16(1) 27(1) 16(1) 7.9 12.4 25.9 19.5 18.3

Range 4~8 14~19 24~29 13~18

Salinity Average(SD) 30(2) 28(6) 22(8) 31(2) 30.0 31.1 26.9 28.4 31.2

Range 25~32 9~33 7~29 24~33

Ammonium (µM) Average(SD) 2(2) 7(12) 2(2) 2(2) 16.6 12.2 0.3 18.0 0.7

Range 0~6 0~41 0~7 0~7

Nitrate+Nitrite (µM) Average(SD) 16(10) 23(28) 36(40) 16(6) 27.0 20.9 8.3 6.2 9.9

Range 1~36 1~95 0~119 7~33

NH4
+/(NO3

-+NO2
-) Average(SD) 0.1(0.1) 1.2(3.5) 0.4(0.8) 0.2(0.2) 0.6 0.6 0.0 2.9 0.1

Range 0.0~0.3 0.0~13.4 0.0~2.9 0.0~0.6

DIP
(µM)

Average(SD) 0.4(0.4) 0.3(0.2) 0.7(0.7) 0.9(0.3)

Range 0.1~1.0 0.0~0.7 0.0~2.1 0.6~1.4

DIN:DIP ratio Average(SD) 98(79) 825(1754) 74(42) 22(5)

Range 17~230 22~4795 19~130 17~30
fro
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phosphates (Strickland and Parsons, 1972). t test was conducted

to explore the difference between light/dark and size-fraction

incubation (whole fraction,<200 µm,<0.7 µm) of the

regeneration and uptake rates. Regression analysis was also

performed to assess the relationship between temperature with

the regeneration and uptake rates. All statistical analyses were

carried out using SPSS v20.0.
Results

During the incubation experiments, DIN concentrations were

comparable to seasonal values in the YRE (Table 1). Nitrate + nitrite

concentrations were usually high with large fluctuations in surface

water throughout the year. On average, seasonal ammonium

concentrations were an order of magnitude lower than those of

nitrate (Table 1). However, the ammonium concentrations during

the study period were usually higher than the seasonal mean value

(Table 1). Surface-water nitrate concentrations were generally

within the seasonal range obtained by MEIS (St. 3), whereas

ammonium concentrations exceeded the seasonal range in spring

and fall, and were less than 1 µM in summer (June and July). The

average seasonal concentration of DIPwas low, not exceeding 1 µM,

and nutrient exhaustion was observed in the surface water in spring

and summer. The DIN : DIP ratio exceeded the Redfield ratio all

year round. The DIN : DIP ratio was highest in spring surface water,

averaging 825, and was lowest in the fall, although still higher than

the Redfield ratio of 16:1.

To identify the riverine input of nutrients into YRE, the

monthly variations in total nitrogen, DIN, and DIN : DIP ratio

near the inside of the dam were shown using data from the

National Institute of Environmental Research (Figure 2). At St.1,

the total and inorganic N concentrations tended to be high in

spring (Figure 2). Inorganic N concentrations were high during

all seasons, with ammonium and nitrate concentrations of

approximately 10 and 100 µM, respectively, even during the

summer, when the concentrations were at their lowest. The

ratios of nitrate and ammonium to total N were 56%–88% and

2%–14%, respectively. The DIN : DIP ratio (55–182) at St. 1 was

higher than the Redfield ratio (Figure 2). We calculated the DIN

flux into the estuary through the dam sluice gates based on the

DIN concentrations of the Yeongsan Lake and of the freshwater

discharge. The DIN flux was 110–682 ton mon−1. DIN loading

into the surveyed area was highest in summer.

Ammonium uptake rates varied with seasonal temperature

and were highest in July 2012 (light uptake versus temperature, r2 =

0.57; dark uptake versus temperature, r2 = 0.59). Ammonium

uptake rates were higher in light incubations than in the dark

(Figure 3A), although the difference was only statistically

significant in July 2012 (P< 0.001) and June 2013 (P< 0.05).

Light enhancement (light uptake − dark uptake)/light uptake)

ranged from 47% to 66%. Light uptake was significantly lower in

the<0.7 µm fraction than in the whole fraction (P = 0.008) in June
Frontiers in Marine Science 05
2013 (Figure 3A). Uptake in the<0.7 µm fraction was similar in

both light and dark incubations; light enhancement was not

observed in this size fraction. Potential uptake rates among the

size fractions were not significantly different in the dark

incubations (Figure 3B).

Identification of seasonal trends of ammonium regeneration

over the entire survey period was difficult due to the absence of light

data for July 2012 and June 2013. A direct light effect may be

insignificant for regeneration because ammonium is mainly

regenerated by processes such as dissimilatory bacterial

respiration and zooplankton excretion. The dark rate is therefore

thought to explain ammonium regeneration by the plankton

community in the surveyed area. Ammonium regeneration rates

in the dark incubation were 0.1–1.2 µmol L−1 h−1, with the

maximum rate recorded in July 2012 (Figure 4A). Dark

regeneration was positively correlated with temperature (r2 =

0.54). Light regeneration rates tended to be higher than dark rates

in spring and fall, although this difference was not statistically

significant (Figure 4A). Size-fractionated dark regeneration rates

(total plankton community,<200 µm, and<0.7 µm size classes) also

exhibited no significant differences (Figure 4B).

To assess changes in the turbidity of the surveyed area caused

by dam construction, annual mean values of the suspended

sediment concentration were compared for the period prior to

construction (one year’s worth of data; 1976), during construction

(1979–1981), and after construction of the dam until 2013 (MEIS,

1997–2013; NFRDA, 1983; Moon et al., 1991). The turbidity of the

sampled area decreased after dam construction (Figure 5). Before

construction, the annual average suspended sediment

concentration of the Mokpo coast was 86.9 mg l−1; this

decreased by 48% during construction, averaging 45.5 mg l−1

(NFRDA, 1983; Moon et al., 1991). After construction, the

annual average turbidity range was greatly reduced to 9.9–32.3

mg l−1, one-quarter (63%–92% decrease) of pre-construction levels

(MEIS, 1997–2013). From 1984 until the present, similar levels

have persisted. The range of turbidity variation has also decreased

compared to the pre-construction values (Figure 5).
Discussion

N:P stoichiometry in the YRE

The surface waters of the study area were rich in nitrate

throughout the year, and ammonium was only exhausted in

summer (Table 1). The relatively high levels of nitrate in the YRE

surface waters appeared to be related to high N loading from

upstream areas, which contain farmland, livestock, and large

cities (Lee, 2015; Figure 2). The YRE DIN : DIP ratio was higher

than the Redfield ratio throughout the year (Table 1). Studies of

nutrient-uptake kinetics have suggested that a dissolved N:P

ratio of higher than 20–30 indicates a potential P limitation on

phytoplankton growth (Goldman et al., 1979; Justic et al., 1995).
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Although N is a very important limiting element for primary

production in oceanic environments, this is not true for all

coastal environments, for example, P limitation (N:P ratio of

200:1) has been reported for the coastal area of the Pearl River

Estuary in the South China Sea and North Sea estuaries (Yin

et al., 2001; Howarth and Marino, 2006). P limitations in the

YRE appear to be the result of enhanced controls on P input

from metropolitan areas, coupled with extremely high N input

from the agricultural sector (Howarth and Marino, 2006).

However, there is a limit to determining the nutrient

limitation only by the N:P ratio in the rapidly changing YRE

environment. Which nutrients are limiting or co-limiting factors

for phytoplankton growth can change dynamically throughout

the year and among years (Fisher et al., 1992; Wu et al., 2017). In
Frontiers in Marine Science 06
a previous study of nutrient limitation in the YRE, although P

limitation was predominant estimated through the N:P ratio,

bioassay experiments showed that phytoplankton growth was

regulated by P inputs from winter to spring, while N played a

more dominant controlling role in fall. No nutrient limitation

was observed during summer in the YRE (Yoon, 2012; MOF,

2014). In this study, the results of winter with a relatively high N:

P ratio and autumn with the lowest values showed similar

tendencies to those of Yoon (2012).

The YRE is highly affected by eutrophic freshwater with high

N:P ratio discharged from the Youngsan Lake (Figure 2). During

the non-discharge period, the N:P ratio and limiting nutrients of

phytoplankton can be changed by biogeochemical processes

such as recycling of nutrients and sediment-water nutrient
B

A

FIGURE 3

Ammonium potential uptake rates for whole-water samples (A) and size-fractioned (whole, <200 mm, and <0.7 mm) water samples (B) in light
and dark treatments in the YRE. The * indicates a minimum value estimated from the initial ammonium concentration and regeneration rates in
dark incubations.
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exchange within the estuary (Finlay et al., 2013; Wu et al., 2017;

Zhou et al., 2022). In this study, active recycling of ammonium

in summer can supply sufficient N demand for primary

production and is expected to affect the N:P stoichiometry (see

the discussion of ‘Implications of estuarine dam on ammonium

recycling’ below). In order to more accurately determine the role

of N and P on phytoplankton growth in YRE, further studies are

needed in the future, including the biogeochemical processes of

N and P.
Ammonium regeneration in the
water column

Although results for natural-light ammonium regeneration

by size‐fractionated plankton were not obtained, the dark
Frontiers in Marine Science 07
regeneration rates from the size-fraction experiments can

provide clues as to which plankton communities mediate

ammonium regeneration, as heterotrophic organisms do not

generally require light energy for such processes (Wheeler et al.,

1989; Gardner et al., 1997). The similarity in dark ammonium

regeneration rates between the whole-water and<0.7 mm
fractions (Figure 4B) suggests that in early summer, most of

the ammonium is regenerated by small bacteria, whereas

zooplankton excretion is less important. Similar observations

have been reported for the Mississippi River plume (Jochem

et al., 2004) and the western English Channel (Maguer et al.,

1999). In the Mississippi River plume, no differences were

observed between ammonium regeneration rates in whole-

water samples and the<2 µm size fraction at several sites along

a salinity gradient, indicating that bacterial mineralization was

important to the ammonium recycling process (Jochem et al.,
B

A

FIGURE 4

Ammonium regeneration rates for whole-water samples (A) and size-fractioned (whole, <200 mm, and <0.7 mm) water samples (B) in light and dark
treatments in the YRE; nd, no data.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1017434
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Lee and An 10.3389/fmars.2022.1017434
2004). Maguer et al. (1999) reported that picoplankton

contribute significantly to ammonium regeneration during

summer in the shallow, well-mixed waters of the English

Channel. The less significant role of zooplankton in

ammonium regeneration may be the result of abrupt

freshwater discharges, as sudden changes in salinity and

concentration of suspended solids during discharge events

may be accompanied by changes in plankton species

composition and substantial decreases in zooplankton biomass

(Seo, 2008; Sin et al., 2013). Sin et al. (2013) suggested that

phytoplankton and zooplankton that accumulate in an estuary

during a non-discharge period can be flushed from the estuary

by intermittent freshwater discharge events because the

freshwater residence time (0.2–2.03 days; Lee and Jun, 2009) is

lower than the phytoplankton doubling time (0.56–5.8 days; Sin

et al., 2013). Moreover, although the phytoplankton biomass

recovers within several days, the zooplankton respond more

slowly (MOF, 2014). These intermittent discharges into the YRE,

which create an environment that is unsuitable for stable

zooplankton populations, may be one reason why ammonium

regeneration by zooplankton excretion is not important in

this estuary.

Light effects on heterotrophic nutrient regeneration are less

obvious than those on autotrophic nutrient uptake

(phytoplankton; Wheeler et al., 1989; Gardner et al., 1997).

However, previous studies have shown that ammonium

regeneration can be enhanced in light incubations (Gardner

et al., 1997; James et al., 2011). James et al. (2011) demonstrated

that ammonium regeneration in a turbid lake in south Florida

was higher in light conditions than in the dark. Differences

between light and dark regeneration rates were also observed in

the surface waters of the Mississippi River plume, indicating a

close coupling between phytoplanktonic production of DON
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and microbial N recycling processes (Gardner et al., 1997).

Slightly higher regeneration rates under natural light

incubation were also observed in the present study during

spring and fall and support the idea that labile organic

nitrogen from phytoplankton was produced more during the

day than at night (Figure 4A).
Ammonium uptake in the water column

The differences between light and dark uptake rates were used

to estimate the role of phytoplankton in total ammonium uptake,

assuming that the dark ammonium uptake reflects the bacterial

contribution to this process. The ammonium uptake in the dark

treatment can be considered as the uptake primarily contributed

by heterotrophic bacteria, as N uptake by phytoplankton is closely

associated with light energy, whereas uptake by heterotrophic

bacteria is more correlated with the availability of organic matter

(Gardner et al., 2004). Although dark N assimilation by

phytoplankton has been reported, this process usually occurs

under severe N limitation and is less likely in N-replete systems

such as the YRE (Clark et al., 2002; Jochem et al., 2004; Maguer

et al., 2011). We also observed that the dark uptake rate for the

total plankton community and the light and dark uptake rates for

plankton less than 0.7 µm in size were similar (Figure 3B); thus, at

least for June 2013, we concluded that the dark uptake was due to

small-sized heterotrophic bacteria.

As incubations were performed in surface waters for 24 h,

uptake under light conditions reflects the total ammonium

uptake for one full day. Therefore, the difference between light

and dark (bacterial) uptake can be regarded as the

photosynthetic ammonium uptake. The photosynthetic

ammonium uptake was usually higher than the bacterial
FIGURE 5

Annual mean values and ranges of suspended sediment concentrations for one year prior to (1976), during (1979–1981, shaded area), and after
dam construction, until 2013 (MEIS 1997–2013; NFRDA 1983; Moon et al., 1991).
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uptake, although this difference was not statistically significant,

except during summer, when photosynthetic uptake was twice as

high as bacterial uptake (Figure 3A).

The contribution of phytoplankton and bacteria to

ammonium uptake derived from the light/dark uptake

differences has been reported in previous studies (Jochem

et al., 2004; Gardner et al., 2004; McCarthy et al., 2009; James

et al., 2011). McCarthy et al. (2009) demonstrated that there

were no differences between light and dark potential uptake rates

in Florida Bay. From the results of 15N incubations and bacterial

abundance, it has been suggested that a substantial fraction of

potential ammonium uptake can be ascribed to heterotrophic

bacteria. Jochem et al. (2004) have shown that potential

ammonium uptake rates in light bottles were higher than

those in dark bottles, and the dark uptake as a percentage of

total uptake was approximately 40% to 80% in the Mississippi

River plume. Gardner et al. (2004) found that the dark uptake

rates (attributed mainly to bacteria) during spring in Lake

Michigan were ~70% of the natural light uptake rates (bacteria

plus phytoplankton) at most lake sites, but only ~30% at river-

influenced sites. The results of the present study demonstrated

that dark ammonium uptake rates were 34%–53% of natural

light uptake rates and were within the range of ratios observed

for other estuarine environments, indicating slightly dominant

autotrophic consumption of ammonium during most

investigation periods (Gardner et al., 2004; Jochem et al., 2004;

McCarthy et al., 2009).
Importance of ammonium regeneration
for primary production in the YRE

The ammonium regeneration rates in the YRE were higher than

the values previously reported for the Delaware River (Lipschultz

et al., 1986), Florida Bay (McCarthy et al., 2009), the West Florida

Shelf (Bronk et al., 2014), Copano Bay (Bruesewitz et al., 2015), St.

Lucie Estuary (Hampel et al., 2019), a wetland at Lake Erie

(Lavrentyev et al., 2004), the Thau lagoon, France (Collos et al.,

2003), and the Mississippi River plume (Cotner and Gardner, 1993;

Gardner et al., 1997). Our results in the dark treatment were also 22

times higher than those in the Peruvian upwelling system

(Fernandez et al., 2009). The maximum value in this study (dark

regeneration rate of 1.19 mmole N L−1 h−1 in July 2012) was

comparable to the rates obtained from a coastal mangrove swamp

in India (Dham et al., 2002), Lake Okeechobee (Hampel et al., 2019),

Yangtze River (Xue et al., 2021a), and lower than those of the

subtropical eutrophic Lake Taihu in China (McCarthy et al., 2007;

Hampel et al., 2018; Jiang et al., 2019; Xue et al., 2021b). YRE

ammonium uptake rates were higher than those observed in other

estuaries, including the nitrate-rich Thames Estuary (Middelburg

andNieuwenhuize, 2000b), turbid European tidal estuaries (the Ems,

Douro, and Rhine; Middelburg and Nieuwenhuize, 2000a), theWest

Florida Shelf (Bronk et al., 2014), Copano Bay (Bruesewitz et al.,
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2015), and Cochin Estuary (Bhavya et al., 2016). However,

ammonium uptake rates were similar to those observed for the

Mississippi River plume (Gardner et al., 1997), a coastal mangrove

swamp in India (Dham et al., 2002), St. Lucie Estuary (Hampel et al.,

2019), Yangtze River (Xue et al., 2021a), a Lake Erie wetland

(Lavrentyev et al., 2004; Hoffman et al., 2022), and the mesohaline

region of the Loire and Scheldt estuary (Middelburg and

Nieuwenhuize, 2000a). The ammonium uptake rates were also

lower than the values of the Lake Okeechobee (Hampel et al.,

2019) and Lake Taihu (Hampel et al., 2018; Jiang et al., 2019). In

this study, ammonium regeneration and uptake rates were in a range

similar to the values in eutrophic freshwater rather than coastal

waters.The ammonium turnover time (ambient concentration

divided by uptake rate) in light incubations ranged from 0.01 (July

2012) to 1.24 days (March 2012), even though ammonium was

almost depleted in summer. The average residence time of freshwater

reported for the YRE ranged from 0.26 (summer wet season) to 2.03

days (fall dry season; Lee and Jun, 2009). Therefore, the ammonium

turnover time was shorter than the freshwater residence time, and

we can conclude that ammonium recycling actively occurs within

this estuary throughout the year. Similarly, it was suggested that the

ammonium turnover times reported along a river–estuary

continuum in a coastal catchment of the Texas Coastal Bend were

lower than water replacement times, supporting high productivity

(Bruesewitz et al., 2015). A high rate of ammonium turnover was

also reported in Lake Taihu, indicating that may promote

cyanobacterial bloom during N-limited season (Xue et al., 2021b).
Implications of estuarine dam on
ammonium recycling

High concentrations of suspended solids in a tidally

dominated estuary reduce the euphotic depth and limit

primary production (Cloern, 1987; Mallin and Paerl, 1992).

Moreover, if the estuarine water residence time is shorter than

the cell doubling time of phytoplankton, phytoplankton biomass

accumulation is low (Sin et al., 1999; Thomas et al., 2005; Sin

et al., 2013). Estuaries and coastal waters located in the

southeastern part of the Yellow Sea (including the YRE, Han

River, and Geum River) are well-mixed and turbid due to

sediment resuspension enhanced by strong macro-tidal

currents, with abundant sediment input from land (Lee and

Chu, 2001; Byun et al., 2007). Light limits primary production in

these systems, but phytoplankton blooms can occur in summer

when light conditions temporarily improve, even in turbid

estuaries (Wafar et al., 1983; L’Helguen et al., 1996). In the

southeastern Yellow Sea, however, because annual precipitation

is concentrated during summer, which decreases water residence

time (in turn reducing phytoplankton biomass accumulation),

phytoplankton blooms are relatively rare, despite the high

nutrient levels (Kim et al., 2013; Park et al., 2013). The

building of estuarine dams causes physical and biogeochemical
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changes to the estuary environment by restricting seawater

circulation (Cho et al., 2004; Byun et al., 2007; Gedan et al.,

2009). Dam construction weakens tidal currents and generates

stagnant areas (Cho et al., 2004; Cho et al., 2014). Mean turbidity

in the YRE has decreased to 63%–92% of pre-dam levels

(Figure 5), resulting in improved light conditions.

Vigorous ammonium recycl ing by bacteria and

phytoplankton in the YRE may be a combined result of reduced

turbidity and increased water residence times due to construction

of the estuarine dam. When stratification intensifies during non-

discharge periods, ammonium utilization can be enhanced

because of favorable light conditions, increased water residence

times. This phenomenon—combined with an ammonium

turnover time that is shorter than the freshwater residence time,

together with high nutrient inputs from inside the dam—can

result in phytoplankton blooms (Thomas et al., 2005; Figure 2). In

summer, the primary productivity in the YRE was higher (up to

8900 mg Cm−2 d−1, Lee et al., 2011) than that in adjacent estuaries

and other estuarine systems (Douro Estuary, Portugal and

Westerschelde Estuary, the Netherlands), with similar ranges of

suspended solids, nutrients, and flushing times (Kromkamp and

Peene, 1995; Middelburg and Nieuwenhuize, 2000a; Azevedo

et al., 2006; Middelburg and Herman, 2007). The ammonium

demand for primary production, estimated from primary

productivity measurements (2,000–8,927 mg C m−2 d−1 from

spring to summer, Lee et al., 2011) and C/N ratios (Redfield ratio),

was 302–1,347 mg Nm−2 d−1 in the YRE. In the current study, the

estimated ammonium uptake by phytoplankton (assuming a

mean euphotic depth of 4 m; Sin et al., 2013) was 710–1350 mg

N m−2 d−1 during the same period. The regeneration of

ammonium through active ammonium recycling is likely to

supports high phytoplankton production during the spring–

summer season in the YRE. Previous studies have suggested

that water column N recycling contributes significantly to

phytoplankton N demand in aquatic environments (Bronk

et al., 2014; Hampel et al., 2018; Jiang et al., 2019; Xue et al.,

2021a; Xue et al., 2021b; Xu et al., 2021; Hoffman et al., 2022). In

the West Florida Shelf, regenerated ammonium was sufficient to

supply the ammonium demand, and supported 85% of the

ammonium uptake even during blooms of Karenia brevis

(Bronk et al., 2014). Ammonium regeneration in Lake Taihu

supported about 60% of potential ammonium demand during

summer Microcystis-dominated blooms suggesting the

importance of regenerated N cycling for cyanobacterial blooms

(Hampel et al., 2018). In studies conducted on Lake Taihu and

Lake Erie, extrapolated whole-lake regeneration of ammonium

can supply N up to 200% of the external load to the lake,

suggesting that internal N cycling plays an important role in

supporting high productivity (Hampel et al., 2018; Hoffman et al.,

2022). Even though active ammonium recycling was observed

within the YRE system, further research is needed on how the

altered estuarine structure and function affect the N cycle and

primary production such as YRE, including the relative
Frontiers in Marine Science 10
importance of nitrate and ammonium as a source of inorganic

N for phytoplankton and primary production.
Conclusions

This study investigated ammonium regeneration and potential

uptake rates an anthropogenically altered YRE using stable-isotope

techniques. To the best of our knowledge, this study is the first to

examine water column nitrogen recycling in an estuary that has been

significantly deformed by dam construction, and has improved our

understanding of the impact of man-made structures on the nitrogen

cycle. This study showed that high ammonium recycling provides a

significant proportion of N to sustain phytoplankton production,

suggesting that internal nutrient cycling are important in YRE. The

higher contribution of bacteria than zooplankton to ammonium

regeneration in this study is likely to be associated with artificial

freshwater discharge. In addition, as the environment is changed by

dam construction from a highly turbid estuary to semi enclosed bay,

decrease in turbidity and increase in residence time were assumed to

promote ammonium recycling.
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