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Mapping of surface-generated
noise coherence

Najeem Shajahan1*†, David R Barclay1 and Ying-Tsong Lin2

1Department of Oceanography, Dalhousie University, Halifax, NS, Canada, 2Applied Ocean Physics and
Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
The performance of a hydrophone array can be evaluated by its coherent gain,

which depends on the spatial correlation of both the signal of interest and the

background noise between different array elements, where one hopes to

maximize the former while minimizing the latter with array signal processing.

In this paper, a computational vertical noise coherence map of the first zero-

crossing is generated near Alvin Canyon, south of Martha’s Vineyard,

Massachusetts, to study its dependence on the spatial variation in

bathymetry, water column sound speed and sediment type. A two and three-

dimensional Parabolic Equation propagation model based on reciprocity

theory were used for the simulation. The results showed that the seabed

parameters have the greatest impact on vertical noise coherence at the array

location in the Alvin Canyon area, when compared to 3-D bathymetric and

water column sound speed profile variability, especially in the shallower water.

The analysis reveals the ideal spacing for a vertical hydrophone array for better

signal detection in acoustic experiments. In the continental shelf and slope

regions, the ideal spacing lies between 3l⁄8 in deep water and l⁄2 in shallow

water, and for areas with strong bathymetric variations the ideal spacing can be

determined by comprehensive numerical models.

KEYWORDS

noise mapping, coherence, array gain, noise gain, Parabolic Equation model
1 Introduction

Signal detection in a poorly characterized and noisy ocean environment is a

challenging problem. Hydrophone arrays are commonly used to improve signal

detection against background ambient noise. They are used in active and passive

SONAR, transmission loss (TL) experiments, seismic operations, and a variety of

passive acoustic monitoring applications. The performance of an array can be

evaluated by its array gain (AG) which is the improvement in signal-to-noise ratio

(SNR) of the array relative to a single sensor, or the difference between signal gain (SG)

and noise gain (NG) in dB (Urick, 1967). The response of the array to noise is expressed
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in NG which depends on the spatial characteristics of ambient

noise field (Buckingham, 1981). Thus, the spatial coherence of

ambient noise is directly related to the AG.

Analysis of the space-time correlation property of ambient

noise received on an array provides the spatial coherence. It is a

normalized quantity dependent on the ocean environmental

properties and the type of noise source. Typically, the sources

of ambient noise in the ocean can be broadly classified as natural

and man-made (Wenz, 1962). Wind-induced breaking wave,

rain fall, and biological sources are the common sources of

natural ambient noise. Ship traffic, sonar operations, and

offshore exploration and constructions are the prominent

sources of man-made noise in the ocean. Among these

sources, the wind-generated sound is omnipresent and the

primary contributor to ambient noise in the ocean. Because of

the random nature of the signals generated at the ocean surface,

the prediction of noise field requires detailed knowledge of the

properties of the sound propagation environment. Many of the

measurement and modelling studies of spatial coherence are

location specific and used as a tool for noise-based inversion of

the ocean environment (Buckingham, 1979; Hamson, 1980;

Buckingham and Jones, 1987; Carbone et al., 1998; Muzi et al.,

2016; Shajahan et al., 2020).

The two familiar models of spatial coherence are the isotropic

and the surface noise models developed by Cron and Sherman

(Cron and Sherman, 1962). The isotropic model considers the

noise field as statistically independent plane waves propagating in

all directions uniformly while the surface noise model assumes

sources to be distributed on an infinite plane just below the surface

of the ocean. Although the surface noise model agrees well with

deep water measurements (Barclay and Buckingham, 2013a;

Barclay and Buckingham, 2013b), the model does not include

sound propagation characteristics such as refraction, attenuation,

and boundary reflections. Kuperman-Ingenito introduced a noise

model for spatial coherence in a stratified media by considering

noise sources as monopoles distributed just below the ocean

surface (Kuperman and Ingenito, 1980). Buckingham similarly

presented an analytical solution for the vertical coherence of

surface-generated noise applicable in an isovelocity shallow

water waveguide (Buckingham, 1980). A simple closed-form

solution for vertical coherence based on ray theory was

developed by Harrison and found to be very effective in noise-

based inversion applications (Harrison, 1996). These models are

all capable of computing the stationary second order statistics of

the noise field under various simplifying assumptions, among the

most pronounced are an axially-symmetric and range-

independent bathymetry and sound speed profile. Carey

introduced a computational theory for noise spatial correlation

and directionality by simulating a single snapshot of the pressure

field at the sensors using a PE propagation model with randomly

distributed noise sources (Carey et al., 1990; Carey and

Evans, 2011)
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Knowledge of the mesoscale spatial variation of vertical

coherence and the relative influence of environmental factors

is required for the design of element spacing of arrays or

conversely, predicting array performance. However, the

isotropic and surface noise models have difficulty modelling

the continental shelf and slope regions, especially around strong

bathymetric features such as submarine canyons. Also, the

properties of the waveguide can affect noise propagation

causing anisotropy in the noise field and the spatial coherence.

Accurate fine-scale spatial measurements (resolution 10’s of

km2) of vertical noise coherence over a large area are difficult

to obtain due to high experimental effort and cost to make the

acoustic measurement while also characterizing the ocean

environment. This motivates a need for predictive models of

noise coherence. Besides that, modelling the spatial properties of

noise, both the spatial variability and spatial correlations is a

useful prerequisite for the successful execution of active and

passive acoustic experiments and operations. Predictions of

noise correlation may be used to inform sonar array design

(e.g. receive element spacing and operating frequency) while

knowledge of spatial variability may be used to optimally choose

the array location.

In this paper, a map of the vertical coherence of ambient

noise is generated showing its first zero-crossing, and its

dependence on environmental factors is analyzed on spatial

scales greater than 100 km2. The study region was chosen

around Alvin Canyon, south of Martha ’s Vineyard,

Massachusetts. A PE sound propagation model based on

reciprocity theory was used for the simulation of the noise

field (Barclay and Lin, 2019). The simulation results will

provide a quantitative estimate AG relative to different sound

propagation conditions and model configurations. The rest of

the manuscript is organized as follows: Section 2 presents the

basic theory of spatial coherence and AG. Section 3 shows the

method for modelling ambient noise using a 3-D PE model and

the description of the environmental inputs used in the

simulation. In section 4, the simulation results of vertical

coherence and array gain for different test cases are described.

Finally, the conclusions based on the analysis are given in

section 5.
2 Theory- array gain and
vertical coherence

The array gain is determined using the following simple

relationship,

AG = SG − NG (1)

where SG and NG are reported in dB. The AG of a linear

array with discrete hydrophones can be expressed in terms of

cross-correlation coefficient as
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AG = 10   log omon GSð Þmn

omon GNð Þmn
(2)

where GS is the correlation coefficient of the signal, GN is the

correlation coefficient of the noise field, and n and m are the

indices of the sensors along the array. When the noise is

incoherent and the signal has a unit correlation between array

elements, the array performance increases logarithmically with

the number of hydrophones. When the noise is partially

coherent, the array performance degrades depending on the

coherence of noise signals. The overall array performance in

general depends on the degree of coherence existing between

noise signals received at different hydrophones across the array.

Two common reference models of spatial coherence are used

to describe noise coherence with closed form expressions. The

isotropic model considers the superposition of plane waves

uniformly distributed over all directions. The normalized

correlation function for the isotropic noise model can be

expressed as a sinc function:

Giso =
sin kd
kd

; (3)

where k is the wavenumber and d is the spacing between

array elements, independent of the orientation.

The surface noise model developed by Cron-Sherman is

more realistic compared to the isotropic noise model and is

primarily used for deep-water applications. The model assumes

only downward travelling noise in a semi-infinite, non-

attenuating, homogeneous half-space ocean with azimuthal

symmetry. Based on the above assumptions, the vertical noise

coherence function can be expressed in the closed form

expression (Buckingham, 2013)

GCS = 2
sin kd
kd

+  
cos kd − 1

kdð Þ2
� �

+ 2i
cos kd
kd

−  
sin kd

kdð Þ2
� �

: (4)

According to Cox, in a homogeneous noise field, the real

part of coherence for surface-generated noise represents the

symmetry in the noise field about the horizontal while the

imaginary part represents the asymmetry (Cox, 1973). The real

(blue solid line) and imaginary (blue dashed line) components of

coherence for an isotropic noise field as a function of the ratio

between hydrophone spacing and wavelength (d⁄l) are shown in

Figure 1. The real part of coherence falls to zero at half-

wavelength spacings (l⁄2). If we use isotropic assumption in

Eq. 2 with l⁄2 spacing for an array, AG increases logarithmically

with the number of hydrophones. The imaginary part of the

isotropic noise model is zero due to the symmetry in the

noise field.

The real (black solid line) and imaginary (black dashed line)

component of coherence for the Cron-Sherman model are also

shown in Figure 1. The complex coherence function given in Eq.

4 shows the anisotropic nature of noise directionality. In general,
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the coherence is higher for Cron-Sherman model, especially at

the first l⁄2 spacing. When the signal coherence is constant, this

increase in noise coherence may cause a degradation in the AG

compared to the prediction made using isotropic noise field

model. Thus, the position of the first zero-crossing of the real

part of coherence is a critical parameter in designing the spacing

between sensors for sonar applications.

The position of the first zero-crossing can vary depending on

the sound speed profile, sediment type, bathymetry, and

horizontally propagating distant sound in the measurement

location (Buckingham and Jones, 1987; Carbone et al., 1998;

Shajahan et al., 2020). The environmental influence on the noise

coherence can be analyzed by mapping the first zero-crossing in

space. In this work, the position of the first zero-crossing of the

Cron-Sherman model is used as a canonical deep-water

reference and where the relative departure from this spacing

for different cases is mapped and investigated.
3 Mapping ambient noise
vertical coherence

3.1 Three-dimensional ambient noise
field modelling

The ambient noise field can be considered as a superposition

of pressure fields due to individual sources. Normally, for wind-

generated noise, the sources are assumed to be distributed just

below the surface with a specific source intensity per unit area.

Common analytical noise models consider a statistical

distribution of individual sources and the cross-spectral

density for a range-independent environment is obtained by

integrating over range and azimuth (Harrison,1996; Cron and

Sherman, 1962; Buckingham, 1980). An alternate approach

adapted here is to use a sound propagation model to calculate

the pressure field from surface distributed sources. The

parabolic-equation (PE) approximation of the full wave

equation is a convenient way to determine the acoustic field

due to distant sources in a range-dependent environment

(Tappert, 1974). In this case, the PE model exploits the

principle of reciprocity following the acoustic wave Green’s

function equation. The pressure field is identical regardless of

the direction of propagation between two points, so the positions

of sources and receivers may be interchanged for computational

convenience. The complex pressure field computed at a receiver

depth just below the surface at zs for an omnidirectional source

at z1 can be used to determine the received signal at z1 for a layer

of sources placed at zs (note the interchanged source and receiver

positions). Thus, in the case of wind-generated noise, where the

total received field is sum of all the contributions from individual

sources in the horizontal plane just below the surface, the noise
frontiersin.org
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power at depth z1 in a cylindrical grid (r,b) can be obtained as,

S11(w) =o+∞
p=−8o+∞

q=−∞ 〈 s(rq, bp)
2

�� �� 〉 P w , zs(rq, bp)jz1
� ��� ��2DbrqDr, (5)

where P(w,zs(rq,bp)|z1)≡P(w,z1|zs(rq,bp)) according to the

principle of reciprocity and is the complex acoustic Green’s

function in the model domain, zs is essentially the noise source

depth, w is the angular frequency, rq=r0+qDrq is the discretized
range of the qth noise source, bp=pDb is the bearing of the pth

radial, and |s(rq,bp)2| is the ensemble average of the noise source

strength. DbDrrq is the cylindrical coordinate element area over

which the noise sources have been integrated. The cross spectral

density (CSD) can be computed by placing a second source at

depth z2 and combining the two computed fields to yield

S12(w) =o+∞
p=−8o+∞

q=−∞ 〈 s (rq, bp)
2

�� �� 〉P1 w , zs(rq, bp)jz1
� �

P2* w , zs(rq, bp)jz2
� �

DbDrrq, (6)

where the * denotes the complex conjugate.

A detailed description of the reciprocal PE noise model

method has been previously given (Barclay and Lin, 2019). The

accuracy of this reciprocal PE noise model has also been

validated against benchmark solutions of an analytical noise

coherence model in a shallow water Pekeris waveguide and

Cron-Sherman formula in deep water (Deane et al., 1997;

Barclay and Lin, 2019). By keeping the sources at positions z1
and z2, the complex pressure field can be calculated for the

model domain. Once the power spectrum and cross-spectrum

are computed, the normalized cross-spectral density, or

coherence, can be determined by

G12 wð Þ = S12 wð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S11 wð ÞS22 wð Þp : (7)
Frontiers in Marine Science 04
An axially independent two-dimensional (Nx2-D) and a 3-D

PE model using the split-step Fourier algorithm with a wide-angle

PE approximation was used to calculate the pressure fields in this

study (Lin et al., 2013; Lin et al., 2015). The 3-D model solves the

forward propagating PE equation simplified from the Helmholtz

wave equation by neglecting backward propagating energy in a

cylindrical coordinate system with a one-way marching algorithm

originating from the source position, allowing horizontal

propagation between radial marching directions.
3.2 Environmental input parameters

The main input parameters required for the 3-D PE model

in this study are spatially varying bathymetry, water column

sound speed and seabed sediment geoacoustic properties. The

model domain was selected near Alvin Canyon, south of

Martha’s vineyard, Massachusetts. This location was chosen

due to the characteristics of the acoustic waveguide (vertical

and horizontal variability in sound speed and sediment

property) and rapidly changing bathymetry. The two major

submarine canyons present in the region were the Alvin

Canyon at the longitude 70.5°CW and the Atlantis Canyon at

70.25°CW. The bathymetric variations in the model domain

were significant to study the 3-D effect (horizontal refraction) of

sound propagation on the vertical noise coherence. The water

column stratification of the region was also complex due to the

presence of shelf break front, warm-core eddies, freshwater

influence and internal wave activity (Zhang and Gawarkiewics,

2015). The location contains a large variety of propagation

environments such as shallow water with hard and soft

sediment, deep water, and complicated shelf break. Moreover,

many modern acoustics experiments like SW-06 (Shallow water

06) and SBCEX-2017 (SeaBed Characterization EXperiment)

were conducted in the region to understand the effect of

complex environment on acoustic propagation (Tang et al.,

2007; Barclay et al., 2019; Wilson et al., 2020; Bonnel et al., 2021).

The sediment type of the region was obtained from the US

geological survey data base (Reid et al., 2005) Hamilton’s

sediment model for the continental slope environment was

used to estimate the geoacoustic properties of each sediment

sample from the database (Hamilton, 1980; Jensen et al., 2011).

Compressional sound speed, density, and bottom loss were

estimated and the map of compressional sound speed and

bottom loss for the study region is given in Figures 2A, B

respectively. The environmental model assumed a planar sea

surface with total internal reflection. Bathymetric data, shown in

Figure 2C, were drawn from the Global Multi Resolution

Topography (GMRT) database with 45 m resolution in

latitude and 70 m resolution in longitude (Ryan et al., 2009).

The data assimilated Regional Ocean Modeling System (ROMS)

Experimental System for Predicting Shelf and Slope Optics

(ESPreSSO) model output was used to extract average water
FIGURE 1

The real and imaginary vertical noise coherence according to the
isotropic and Cron-Sherman models. Buckingham, M. J. (2013).
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temperature and salinity covering the study region (Rutgers

Ocean Modelling Group). Sound speed profiles are derived

using the Mackenzie equation from temperature and salinity

for November 2016 due to the presence of warm core ring in the

months of spring and summer (Mackenzie, 1981; Zhang and

Gawarkiewics, 2015). The sound speed map at 50 m depth for

the model domain is shown in Figure 2D. Below the mixed-layer,

most of the grid points followed a downward refracting sound

speed profile which is the characteristics of a typical winter

profile of the study region. The variation in sound speed as a

function of depth from a deep water grid point is shown

in Figure 2E.
4 Results and discussions

The numerical simulations were performed to understand

the relative effect of various levels of environmental variability

on the vertical noise coherence and noise gain. For

computational efficiency, the simulations were performed for a

single frequency of 50 Hz over a model grid resolution of 6×6

km, and later the zero-crossing point of the noise coherence will

be computed following the dimensionless independent variable

d/L as depicted in Figure 1. Also, a homogeneous surface

generated ambient noise field is assumed (Buckingham, 1980).

A vertical array of 40 0-dB model sources with 1 m spacing

spanning the water column from 40 to 79 m depths were used to

compute the sound pressure just below the sea surface for a

horizontal range of 10 km. By invoking the principle of

reciprocity, the power spectrum, cross-spectrum and

coherence of surface-generated noise between all the elements
Frontiers in Marine Science 05
of the vertical array (originally a source array, but now a receiver

array after applying reciprocity) were computed using Eqs. 5, 6,

and 7 respectively.

The numerical simulations were carried out for four test

cases with different environmental variations. These cases were

chosen to study the individual effects of environmental inputs on

noise coherence separately. In Case 1, a 2-D PE model was used

to simulate noise coherence at every one degree of bearing to

generate an N×2-D noise field. The N×2-D environment

considers only the bathymetric variation in the radial direction

and neglects the transverse variation of the seafloor and any

other out-of-vertical-plane sound propagation between radials.

The water column sound speed at each grid point was taken as

constant for this first case. The dominant component of surficial

sediment in the study region was fine sand. Thus, the same

geoacoustic properties were used for the seabed at each grid

point with a compressional sound speed Cb= 1650m/s, density

r=1900kg/m3 and attenuation ab =0.8 dB⁄l.
Case 2 examined the bathymetry induced horizontal

refraction by replacing the N×2-D model with a 3-D model

with the environmental inputs being the same as in case 1. Case

3 studied the effects caused by the sound speed profile by

replacing the constant sound speed in the water column with a

local range-independent sound speed c(z). In Case 4, the

combined effect of bathymetry, sound speed profile and

sediment properties on ambient noise vertical coherence was

examined. Table 1 summarizes the four test cases and their

respective environmental inputs.

The relative change in the first zero-crossing coherence point

from the Cron-Sherman model for Cases 1 and 2 and their

difference are shown in Figure 3. The bathymetric data of the
FIGURE 2

The environmental properties of the model domain (A) seabed compressional sound speed (B) seabed attenuation (C) bathymetry (D) water
column sound speed at 50 m depth and (E) a deep water sound speed profile.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1016702
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shajahan et al. 10.3389/fmars.2022.1016702
study domain are shown as isobath contours in each coherence

map. Both cases considered constant sound speed in the water

column and identical sediment properties at each grid point in the

model domain. Thus, this comparison solely focuses on the effect

of range-dependent topography. The N×2-D simulation does not

include transverse coupling of sound energy across the vertical

plane. On the other hand, the 3-D PE model incorporates sound

focusing and defocusing due to horizontal refraction. Examination

of Figures 3A, B shows that the relative change for Cases 1 and 2 is

higher than 50% in shallow water (< 200 m) for both cases. This

result clearly suggests the inaccuracy of the Cron-Sherman model

in representing the noise field in shallow waters. The proximity of

the seabed can introduce interaction of sound with the ocean

boundaries resulting in bottom reflected arrivals at the sensors.

Moreover, the sandy bottom type used for the simulation may

cause horizontal propagation of noise below the critical angle as a

result of total internal reflection. Both these factors can contribute

to the symmetry in the noise field resulting in an increase in the

first zero-crossing coherence point compared to the Cron-

Sherman model.

The relative change approaches 0% for Case 1 in regions

with depth greater than 1000 m. This shows the agreement

between the N×2-D simulation and the Cron-Sherman model in

deep water regions. However, Case 2 shows a 10-15% increase in

zero-crossing coherence point between 1000 and 2000 m while

above 2000 m the coherence map agrees well with the surface

noise model. The difference between Cases 1 and 2, shown in

Figure 3C, shows the importance of 3-D propagation effects in

regions of variable bathymetry, especially between the 200 and

2000 m isobaths. The rapidly changing bathymetry in the

continental slope regions can induce horizontal refraction and

sound focusing resulting in a 10-15% difference between 2-D

and 3-D modelling.

The relative change in percentage from the Cron-Sherman

model for Cases 2 and 3 are shown in Figures 4A, B respectively.

The constant sound speed is replaced by a sound speed profile at

each grid point in Case 3. In comparison with Case 2, the shallow

water regions of Case 3 showed a decrease in the relative change

up to 30%. The first zero-crossing coherence point of the deep-

water regions for Case 3 matches with the Cron-Sherman model

result. The interaction of sound with the seabed is larger for a
Frontiers in Marine Science 06
downward refracting sound speed profile when compared to a

constant sound speed water column. As sound interacts more

with the seabed, the increased bottom loss may cause asymmetry

in the noise field and most of the energy remains at the surface.

As a result, the relative change in shallow waters for Case 3 is less

compared to Case 2. The difference between Cases 2 and 3 is

shown in Figure 4C. This analysis clearly shows the importance

of an accurate sound speed profile in the simulation of the spatial

characteristics of ambient noise (Barclay and Buckingham,

2013a; Barclay and Buckingham, 2014).

In Case 4, all the three spatially varying properties were used

to simulate the spatial coherence at each grid point and the noise

coherence map was generated using the 3-D propagation model.

The relative change for cases 3 and 4 are shown in Figures 5A, B

respectively. The noise coherence map of Case 4 is similar to that

of case 3 except for some regions in shallow water where the

relative change in Case 4 falls to zero as shown in Figure 5B. The

map of the sediment compressional sound speed given in

Figure 2C indicates that the sediment composition in those

regions was clayey silt. Bottom reflection loss mainly depends on

the type of sediment. Clayey silt more effectively absorbs the

sound energy compared to larger grained sediments. The

negative gradient in sound speed profile in shallow water also

enhances the interaction with the bottom. As a result, the noise

field is dominated by downward travelling sound similar to the

assumption of the Cron-Sherman model. Figure 5C shows that

the bottom type can cause a difference of up to 40% in the noise

coherence map. Identical to the other cases, the noise map for

case 4 mostly follows the Cron-Sherman model and the

sediment type does not affect the zero-crossing coherent point

in deep water. The analysis shows that sediment type is the

critical shallow water parameter for an accurate model of the

noise field and spatial coherence (Yang and Yoo, 1997; Jensen

et al., 2011).

To demonstrate the influence of spatial variation in

environmental properties on signal detection, a map of NG

was generated for a 10-element hydrophone array with l⁄8
spacing coherently summed (with the beam steered

broadside). According to Eq. 1, a decrease in NG enhances the

overall array performance, while an increase degrades the

performance. NG maps were generated using the simulated
TABLE 1 Test cases and corresponding environmental input parameters.

Case Bathymetry Sound speed Geoacoustics

1 Nx2-D constant constant

2 3-D constant constant

3 3-D SSP constant

4 3-D SSP variable
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https://doi.org/10.3389/fmars.2022.1016702
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shajahan et al. 10.3389/fmars.2022.1016702
vertical coherence. Two transects along the latitude as shown in

Figure 6 were chosen to study the variation in noise gain from

shallow water to deep-water. The first transect (transect a) was

away from the canyon axis with a gradually decreasing

bathymetry from the continental shelf to deep water. A second

transect (transect b) close to the axis of the Alvin canyon was

chosen to study the influence of bathymetric variation. The

estimated NG of both transects and corresponding bathymetry

are shown in Figures 7A, B respectively. NG estimates using the

isotropic (black dashed line) and the Cron-Sherman (green

dashed line) model are also plotted to compare with the

test cases.

In Figure 7A, the NG increases from shallow to deep water in

all four test cases. Most of the estimates for transect lie between

the isotropic and the Cron-Sherman model with Case 4 showing

the largest variation in gain. It can be observed that the NG

estimate for test cases in deep water (lower latitude) matches

with the Cron-Sherman model and the gain mostly follows the

isotropic model in shallow water (higher latitude). The second

transect is shown in Figure 7B also followed a similar trend as

transect b, except for a slight increase in NG at the head of the

canyon. This could be due to the sound focusing caused by

changes in the bathymetry at the head.
Frontiers in Marine Science 07
Lastly, the NG analysis can be used for choosing the ideal

spacing of hydrophone arrays for better signal detection in active

and passive acoustic experiments by minimizing the NG. Based

on the above analysis, it can be inferred that the ideal spacing for

a hydrophone array is l⁄2 in shallow water, which follows the

simple isotropic model, and 3l⁄8 in deep water. However, in

regions with varying bathymetry such as continental slope and

shelf-break the ideal spacing lies between 3l⁄8 and l⁄2 and can be
determined by comprehensive numerical models.
5 Conclusions

In sonar performance analysis, AG is a significant factor in

determining the signal detection capability. AG not only

depends on the coherence of the signal but also on the spatial

coherence of ambient noise received between different array

elements. Thus, an accurate representation of the ambient noise

field is necessary for better signal detection. The simple

analytical models of surface-generated noise coherence may

not be applicable in complex environments with spatial

variation in water column sound speed, bathymetry,

geoacoustic properties, and possible 3D propagation effects.
B

C

A

FIGURE 3

The percentage difference between the Cron-Sherman and computational vertical noise coherence model’s first zero-crossing point for
(A) Case 1, (B) Case 2 and (C) the difference between Cases 1 and 2.
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Therefore, numerical models can be used in these environments

for the accurate representation of the noise field for sonar

performance analysis.

In this work, the influence of environment on surface

generated ambient noise coherence on a spatial scale of 100

km2 has been analyzed using Nx2-D and 3-D PE models. Range

dependent bathymetry, sound speed profile and sediment type

were the environmental parameters used for the simulation of

the noise field. The four test cases subject to different

environmental variability and realism were considered to study

the relative influence of waveguide properties on noise

coherence. The comparison of noise maps for Nx2-D and 3-D

environments showed that the effect of bathymetry induced

horizontal refraction is the least compared to the other factors

in benign seafloor areas. In shallow water, the sound speed

profile is an important factor for accurately representing the

noise field. Noise spatial coherence is also found to be more

sensitive to seabed acoustic properties in shallow water

compared to deep-water regions. Deep water regions are the

least affected by the variations in environmental properties.

Thus, the Cron-Sherman surface noise model is good enough

to represent the spatial coherence in deep water. Furthermore,

the analysis of NG estimates revealed the ideal spacing for
Frontiers in Marine Science 08
hydrophone arrays in the continental shelf, slope, and deep-

water regions.

Measurement of ambient noise coherence is important for

sonar performance analysis and can be used to extract

information about the ocean environment. This paper has

introduced a method for mapping ambient noise coherence

based on its first zero-crossing. Existing noise mapping

methods use sound pressure levels to represent the spatial

dependence of ambient noise and find application in

identifying regions of anthropogenic noise impact (Erbe at

al., 2012; Farcas et al., 2020). The reliability of these noise level

maps depends on the accuracy of the source spectrum level for

wind-generated noise. The numerical method introduced here

may also be applied in a similar way, and the use of vertical

coherence for mapping is independent of source strength and

spectral shape, which can be an advantage over mapping using

noise level. Noise coherence maps are also a useful tool to

visualize the influence of spatially varying environmental

properties on array performance. Although the model

domain in this study was restricted to a region near Alvin

canyon, the methods and conclusions drawn from the results

can be used for designing hydrophone arrays in other similar

shelf break areas.
B

C

A

FIGURE 4

The percentage difference between the Cron-Sherman and computational vertical noise coherence model’s first zero-crossing point for
(A) Case 2, (B) Case 3 and (C) the difference between Cases 2 and 3.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1016702
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shajahan et al. 10.3389/fmars.2022.1016702
B

C

A

FIGURE 5

The percentage difference in the first zero-crossing coherence point for (A) Case 3, (B) Case 4 and (C) the difference between Cases 3 and 4.
FIGURE 6

The two transects along latitude (A, B) and the bathymetry of the study region.
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Lastly, an interesting future work will be to produce a

noise coherence map that identifies regions of anthropogenic

noise influence by combining an ambient noise model, a 3-D

sound propagation model and Automatic Identification

System (AIS) ship position data to further inform sonar

system design. This information can also be used to frame

mitigation strategies to identify regions where anthropogenic

noise has a high impact on the natural soundscape.
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