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Immune characterization and
expression analysis of a goose-
type lysozyme gene from
Pinctada fucata martensii
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Meizhen Zhang1, Bidan Liang1 and Bin Zhang1

1Fisheries College, Guangdong Ocean University, Zhanjiang, China, 2Guangdong Provincial Key
Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
In the present study, a g-type lysozyme was successfully screened and cloned

from Pinctada fucata martensii (designated as PmlysG). The cDNA has a length

of 973 bp with an open reading frame (ORF) of 769 bp, encoding a protein of

255 amino acids. The PmlysG transcript was detected in multiple tissues by

quantitative real-time PCR (qRT-PCR), with the highest expression being in the

hepatopancreas. Additionally, the temporal expression of PmlysG mRNA in the

hepatopancreas after in vivo stimulation with pathogen-associated molecular

patterns (PAMPs), such as lipopolysaccharide (LPS), peptidoglycan (PGN) and

polyinosinic acid (PolyI:C) was detected by qRT-PCR. Although PmlysG

responded to all three stimulation modes, it rapidly responded to PGN

stimulation. Meanwhile, the recombinant protein of g-type lysozyme of P.f.

martensii (rPmlysG) was used for antibacterial function analysis, and the results

showed that rPmlysG has antibacter ia l funct ion against Vibrio

parahaemolyticus, Aeromonas hydrophila, and Pseudomonas aeruginosa.

Overall, these study results suggest that the identified PmlysG participates in

the innate immune responses of P.f. martensii against pathogen infection.

KEYWORDS

Pinctada fucata martensii, g-type lysozyme, expression analysis, antibacterial activity,
quantitative real-time PCR
Introduction

Lysozyme, belonging to the GH (hydrolytic glycosidase [(b-) glycoside hydrolase)

subfamily 22, is a ubiquitous enzyme found in various organisms. It is a key effector

molecule of the invertebrate and vertebrate innate immune systems. It can catalyze the

hydrolysis of b-1,4-glycosidic linkage between N-acetylmuramic acid and N-

acetylglucosamine alternating the sugar residues in the bacterial cell walls and

peptidoglycan (PGN), thus inducing bacterial cell lysis (Jollès and Jollès, 1984; Prager
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and Jollès, 1996). According to the source, structure, and

physicochemical properties, lysozymes can be classified into

six types: Goose-type-lysozyme (g-type); Invertebrate-type-

Iysozyme (i-type); Chicken-type-lysozyme (c-type); Bacterial

lysozyme; Plant lysozyme and Bacteriophage lysozyme

(Jiménez-Cantizano et al., 2008). Lysozyme exerts a synergistic

effect on the cationic antimicrobial peptides exposed to the PGN

layer of gram-negative bacteria (Hancock and Scott, 2000).

G-type lysozymes are mostly abundant in poultry eggs and

were first identified in an antibacterial peptide of a white bird egg

(Canfield and McMurry, 1967). In aquatic organisms, g-type

lysozyme was first identified in Paralichthys olivaceus (Hikima

et al., 2001). Besides, the g-type lysozyme has been identified in

Epinephelus coioides (Yin et al., 2003), Pseudosciaena crocea

(Zheng et al., 2007), and Ctenopharyngodon idellus (Ye et al.,

2010). As a non-specific immune factor of fish, g-type lysozyme

is closely related to the immune function of fish against bacterial

infection. It is a natural endogenous antitoxin and helps improve

the immunity of the body through its antibacterial, antiviral, and

anti-inflammatory activities (Shakoori et al., 2019). For instance,

g-type lysozyme significantly increased in different tissues of C.

idellus after infection with Aeromonas hydrophila (Ye et al.,

2010). Furthermore, the recombinant protein of g-type lysozyme

induced by Escherichia coli poses antibacterial activity against

various gram-negative and gram-positive bacteria in different

environments (Li et al., 2008; Zhang et al., 2012).

Unlike advanced animals, mollusks are typical invertebrates

without any unique immune system. In this regard, the innate

immune factors play a crucial role in invertebrate immunity

(Wang et al., 2013; He et al., 2019; He et al., 2020), including

heme-mediated cellular and humoral immune responses (Fan

et al., 2022; Lv et al., 2022). The innate immune factors dissolve

the invading microorganisms or bacterial tissues using

constitutive and inducible antibacterial molecules (Rolff and

Siva-Jothy, 2003; He et al., 2018). Shellfish are filter-feeding

organisms and are often exposed to various potential pathogens

in the aquatic environment. Correspondingly, lysozyme in

shellfish helps in pathogen defense due to its antibacterial

effect and also helps in ingestion and digestion (Nilsen et al.,

1999; Nilsen et al., 2003).

Recent studies have also identified the g-type lysozymes in

invertebrates. For instance, the g-type lysozyme has been

successfully identified in the adductor muscle of Chlamys

farreri with active participation in immune response (Li et al.,

2013). Similarly, a study has identified nine SNP sites and three

ins-del polymorphic sites in the promoter region of G-type

lysozyme of Japanese scallops (Mizuhopecten yessoensis). These

mutations are classified into two haplotypes, which are

associated with different transcription factor binding sites (He

et al., 2012).

Pearl oysters (Pinctada fucata martensii) are one of the

primary shellfish reared in the seawater pearls of southern

China with high economic value (Wu et al., 2017a; Lu et al.,
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2022). Nevertheless, several P.f. martensii have died in recent

years due to environmental pollution (Qiu et al., 2014; Wu et al.,

2017b). Thus, improving disease resistance in P.f. martensii has

great significance.

In the present study, the cDNA sequence of goose-type

lysozyme in P.f. martensii (PmlysG) was cloned using the rapid

amplification of cDNA ends (RACE) technique and the

expression of PmlysG in various tissues was analyzed using

quantitative real-time PCR (qRT-PCR). Additionally, the

PmlysG after treatment with pathogen-associated molecular

patterns (PAMPs) were evaluated, including lipopolysaccharide

(LPS), PGN, and polyinosinic acid (PolyI:C). Lastly, the

recombinant protein of PmlysG (rPmlysG) was used against

bacteria in vitro to further analyze the molecule characteristics

of g-type lysozyme in P.f. martensii.
Materials and methods

Experimental materials and screening of
immune effector molecules

P.f. martensii of approximately 2 years of age, with shell

lengths of 5–6 cm, were collected directly from the sea in

Chengwu, Zhanjiang, Guangdong Province, China. The P.f.

martensii were cultured at 25–27°C in tanks with recirculating

seawater for three days prior to experimentation.

The amino acid sequences with antimicrobial properties

were obtained from the antimicrobial peptide database (APD3,

http://aps.unmc.edu/AP/main.php), PubMed (https://www.

ncbi.nlm.nih.gov/pubmed/), and National Center for

Biotechnology Information (https://www.ncbi.nlm.nih.gov/).

The genome data of P.f. martensii (Accession: PXD006786)

(Du et al., 2017)was compared with the AMP database using a

local reference. The gene sequences with the highest alignment

rate were analyzed using the online blast in the NCBI protein

sequence database to predict the types of immune effector

molecules collected. A total of 21 sequences were obtained

(Table S1). All the 21 sequences are interesting, some

sequences have been studied and published in our previous

study (He et al., 2020; Liang et al., 2022), other sequences are in

study. One of the immune effector molecules identified as

PmlysG was selected for follow-up studies in this manuscript.
Characterization and cloning of PmlysG

The PmlysG specific primers for PCR amplification were

designed using Primer Premier 5.0 (Table 1). The total RNA was

obtained from P.f. martensii hemocytes using the Trizol reagent

(Thermo-Fisher Scientific, USA). RNase-free DNase (Promega,

USA) was used to avoid DNA contamination. The PCR product

integrity was assessed on 1% agarose gel. The RNA
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concentration was determined based on the OD260/OD280

ratio using a NanoDrop 2000 spectrophotometer (Thermo-

Fisher Scientific, USA). The cDNA was prepared using the

Reverse Transcriptase M-MLV, following the manufacturer’s

protocol. The 3’ and 5’ ends of the PmlysG gene were cloned by

RACE using the SMART RACE cDNA Amplification

Kit (Clontech).
Bioinformatics analysis

The homologous gene sequence was obtained through

BLAST search. The open reading frame (ORF) was identified

using the ORF finder. The theoretical isoelectric point and the

molecular mass of the predicted amino acid sequence were

estimated using ExPASy (https://web.exPasy.org/protparam/).

The signal peptide sequence was predicted using the

Signalp4.0 server. The transmembrane domain analysis of

sequences was conducted using TMHMMServerv 2.0 (http://

www.cbs.dtu.dk/services/TMHMM/). The amino acid sequence

and functional sites were predicted using SoftBerryPsite. The

protein secondary structure was predicted using SOPAM.

The protein sequences of PmlysG and g-type lysozyme from

six species (Argopcten irradians, Mytilus galloprovincialis,

Azumapcten farreri, Haliotis discus, Mizuhopecten yessoensis,

and Physlla acuta) were compared using DNAMAN6.0.

Finally, the neighbor-joining phylogenetic tree was constructed

using MEGA6.0.
Tissue expression analysis

The relative expression level of PmlysG in various tissues of

P.f. martensii was measured by quantitative real-time PCR. The

tissues, including mantle, hemocytes, gonads, gil ls ,

hepatopancreas, and adductor muscle were obtained from 10

pearl oysters and immediately stored in liquid nitrogen for

further use. The total RNA was extracted from the samples
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according to a previously reported method (He et al., 2020).

After obtaining the total RNA from various tissues, it was reverse

transcribed into cDNA. Based on the obtained cDNA sequence,

a pair of specific primers of PmlysG was designed using Primer

Premier 5.0 (Table 1). The quantitative level of PmlysG in each

tissue was detected through the premix and lightcyclr96 real-

time PCR system (Roche) according to a previously reported

method (Liang et al., 2022).

The PmlysG transcript expression level in the hepatopancreas

was quantified in terms of PAMPs, including LPS, PGN, PolyI:C

to determine the possible role of PmlysG in immune responses.

Healthy P.f. martensii (n = 320) samples were randomly divided

into four groups(n = 80 per group), including LPS, PGN, PolyI:C,

and PBS (control). The experimental groups (LPS, PGN, and

PolyI:C were injected with 100 mL of LPS (10 mg/mL), 100 mL of

PGN (10 mg/mL), and 100 mL of PolyI:C (10 mg/mL), respectively.

The control group was injected with 100 mL of PBS. The mRNA

expression levels of PmlysG were determined at 0, 3, 6, 9, 12,24,

48,72, and 96 hours after stimulation with PAMPs. The relative

expression levels of the target genes were determined by the 2^-

DDct method (Livak and Schmittgen, 2001), using GAPDH as the

reference gene.
Prokaryotic expression and purification

PCR fragment encoding the mature peptide of PmlysG was

amplified using the specific primers PmlysGR and PmlysGF. The

PCR product digested withM1uI/HindIII was subcloned into pET-

28a (+) digested with the same enzymes to obtain the plasmid

pET28a-PmlysG. The pET28a-PmlysG compound was verified

through restriction enzyme digestion and DNA sequencing.

The recombinant plasmid pET28a-PmlysG was transferred

into the BL21 (DE3) competent cells. An excellent single colony

was inoculated in 4mL medium containing 50 mg/mL of

kanamycin. When the OD reached 0.6 ~ 0.8, the isopropyl-

beta-D-thiogalactopyranoside (IPTG)was added to a final

concentration of 0.5 mM, and then induced at 15°C and 37°C.
TABLE 1 Primers used in this study.

Primers Sequence (5’-3’) Purpose

PmlysG-3’-inner
PmlysG-3’-outer

TGGGGAGACAACCATCATGCTT
GCATCGCAAAACGAAGTGAAAT

3’fragment

3’fragment

PmlysG-5’-inner ACTCCCAAAGAAATGCCCAACA 5’fragment

PmlysG-5’-outer TGTCTCCCCATCCATTCGTTGA 5’fragment

PmlysG-F TGTTGGGCATTTCTTTGGCCAGC Intermediate fragment

PmlysG-R GTCTCCCCATCCATTCGTTGA Intermediate fragment

PmlysG-RT-F TACCTTGTTGGGCATTTCTTTG qRT-PCR

PmlysG-RT-R TGGAGGGGATACAACACCGTCT qRT-PCR

GAPDH-F GCAGATGGTGCCGAGTATGT qRT-PCR

GAPDH-R CGTTGATTATCTTGGCGAGTG qRT-PCR
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The fusion protein was purified using the HisBind purification

kit (Pharmacia, Sweden), following the manufacturer’s protocol.
Antimicrobial assay

Several purified proteins were used against Vibrio

parahaemolyticus, Aeromonas hydrophila, Pseudomonas

aeruginosa, Staphylococcus aureus, Micrococcus luteus, Bacillus

subtilis, and Escherichia coli to assess their antibacterial activities.

Briefly, each bacterium was cultured in a 2216E liquid medium

to the logarithmic growth phase. The bacterial solutions were

centrifuged (3000 xg, 10 minutes), washed thrice using 1xPBS,

and resuspended in PBS. The purified protein (50 mL, 500 mg/
mL) was mixed and incubated with 50 mL of each bacterial

suspension at room temperature for 2 hours using PBS as a

negative control. The mixture was then incubated at 37°C and

the OD600 values at 0, 1, 2, 3, 4, 5,6, 7, 8, 9, 10, 11, and 12 hours

were measured using a microplate reader(EnSpire,

PerkinElmer). Each experiment was conducted in triplicate.
Transmission electron microscopy

Approximately 200 mL of rPmlysG and 200 mL of bacterial

solution in the exponential growth period were mixed at 37 °C for

2 hours using PBS as the control. The mixture was centrifuged at

3000 rpm and room temperature for 10 minutes for deposition

and then washed thrice with PBS to remove impurities. Later, 200

mL of 2% sodium phosphotungstate aqueous solution was added

to the bacterial suspension, which was then dropped on copper

grids. The samples were air-dried after removing the residual

water using filter paper for 5 minutes. Finally, the images were

observed using a JEM-1230 JEM-1400 (Japan Electronics Corp)

microscope under standard operating conditions.
Statistical analysis

All experimental data were analyzed by One-way analysis of

variance (ANOVAs) using SPSS 19.0 (IBM, USA). The

differences between means were considered significant at P <

0.05 and extremely significant at P < 0.01.

Results

Characterization of PmlysG

As depicted in Figure 1, the PmlysG cDNA is 973 bp long

and contains a 3’ untranslated region (UTR) of 121 bp and a 5’

UTR of 84 bp. The PmlysG cDNA includes an ORF of 769 bp,

encoding 255 amino acids. The predicted molecular mass of the

PmlysG is 27.26 KDa, with an isoelectric point (pI) of 7.27. The

highest hydrophobicity continuously appears from position 8,
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with an index of 2.844. The highest hydrophilicity (hydrophilic

protein) appears at position 198, with an index of -2.289 and an

overall average coefficient of -0.306. The positively charged

residue (Arg + Lys) is 15, and the negatively charged residue

(ASP + Glu) is 15, indicating that PmlysG is a neutral charge.

The amino acids at positions 1-16 have a signal peptide

(Supplementary Figure S1). The secondary structure predictions

suggested that the active protein mainly contains random coils

(51.70%), extended strands (12.94%), a-helices (30.20%), and b-
turn (5.49%). The domain analysis identified a single d153I_

domain containing 176 amino acids (Supplementary Figure S2).
Multiple sequence alignment and
phylogenic relationships

The alignment of PmlysG with the G-type lysozyme of other

species indicated that PmlysG was similar to the g-type lysozyme

in Argopecten irradians (60.5%), Mytilus galloprovincialis

(58.74%), Azumapecten farreri (57%), and Haliotis discus

(45.88%). The consistent similarity among the species reached

55.76% (Figure 2), based on which a phylogenetic tree was

then constructed.

The phylogenetic tree classification of PmlysG showed that

invertebrates and vertebrates formed a separate large branch. P.f.

martensii shared the closest genetic relationship with Argopecten

irradians , Azumapecten farreri , and Mizuhopecten

yessoensis (Figure 3).
Quantitative analysis of PmlysG in
different tissues

The expression levels of PmlysG in the hepatopancreas,

gonads, hemocytes, gill, adductor muscle, and mantle were

analyzed using qRT PCR under normal physiological

conditions. The PmlysG mRNA was ubiquitously expressed in

various tissues, with significantly high expression in the

hepatopancreas (P < 0.01) (Figure 4).
The mRNA expression of PmlysG after
PAMPs stimulation

Compared with the control, the PmlysG mRNA expression

rapidly increased in the hepatopancreas at 6 hours after LPS

stimulation, reaching the maximum level at 72 hours (P<0.01),

then it quickly returned to the normal level at 96 hours

(Figure 5A). Moreover, PmlysG mRNA began to increase at 3

hours after PGN stimulation, reaching the maximum level at 6

hours (P < 0.01), then decreased at 12 hours, increased at 24

hours, gradually decreased at 48 hours, and finally returned to

the normal level (Figure 5B). However, after PolyI:C stimulation,
frontiersin.org
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PmlysGmRNA did not change in the first 12 hours, but began to

rise at 24 and 48 hours, reaching a maximum at 72 hours (P <

0.05), then began to decline after 72 hours (Figure 5C)
Induced expression and purification of
the PmlysG

The digested PmlysG gene fragment was about 1570 bp

(Figure 6A). The successful construction of vector pET28-

PmlysG was verified through sequencing. Further validation

showed that 26.52 KDa protein was present in the

recombinant bacteria but not in the negative control.
Frontiers in Marine Science 05
Moreover, no target bands were found in lanes 3 and 4 of the

supernatant at 15 °C and 37 °C. However, Clear target bands

appeared in lanes 1 and 2 (whole bacteria), 5 and 6

(precipitation) of the experimental groups at 15 °C and 37 °C

(Figure 6B). Western blot further verified the 27 kDa clear single

staining bands, and the positions of the lanes were consistent

with the above positions. Further analysis showed that the

recombinant protein induced at 15 °C (lane 5) was brighter

than the one induced at 37 °C (lane 6) (Figure 6C). These results

indicate that the product is mainly expressed as an inclusion.

Since the recombinant protein was expressed as an inclusion

body, it was dialyzed, renatured, and transferred to a soluble

buffer (PBS, 10% glycerol, 1 mL arginine, pH 7.4).
FIGURE 1

A cDNA sequence and predicted amino acid sequence of PmlysG. Red font indicates start codon and stop codon, the straight line indicates
signal peptide, and the shaded portion shows the d153I_ domain.
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Antimicrobial activity

Seven bacteria, including three gram-positive bacteria and

four gram-negative bacteria, were determined in the bacterial

inhibition experiment. The purified protein (500 mg/mL)

significantly inhibited the growth of gram-negative species (V.

parahaemolyticus, A. hydrophila, and P. aeruginosa) (P<0.05)

(Figure 7), but exhibited little effect on the growth of S. aureus,

M. luteus, B. subtilis, and E. coli (Supplementary Figure S3).
Frontiers in Marine Science 06
Transmission electron microscope
observation

The morphological characteristics of V. parahaemolyticus and

A. hydrophila after interacting with rPmlysG were visualized using

TEM to assess the antibacterial mechanism of g-type lysozyme in

P.f. martensii. The exterior of the control V. parahaemolyticus

(Figures 8A-C) was clear, and the contents were dense and

uniform. The middle of V. parahaemolyticus shrank after
FIGURE 2

PmlysG Homology alignment and the coincident amino acids. Light blue and pink indicate that the similarity is more than 75% and 50%,
respectively. Navy blue: Consensus amino acids.
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rPmlysG treatment (shown by an arrow in Figures 8D, E).

Meanwhile, plasmolysis was observed (shown by the arrow in

Figure 8F), indicating that the cell wall collapse led to the release of

local contents from the cell. The control group of A. hydrophila is

shown in Figures 8G–I. The cell appeared thin with a clear edge
Frontiers in Marine Science 07
and uniform content, whereas the bacterial cell wall was irregular

in the experiment group of Aeromonas hydrophila (Figure 8J).

Further magnification revealed that these two cell walls were

dissolved, and the contents were lost in the hollow state (shown

by an arrow in Figures 8K–L).
FIGURE 3

PmlysG Phylogenetic tree construction (Neighbor-joining method). GenBank accession numbers for some species are as follows: Cynoglossus
semilaevis (AEQ19605.1), Solea senegalensi s(CCA95109.1), Dicentrarchus labrax (AIE45885.1), Tachysurus fulvidraco (ALD84262.1), Ambystoma
mexicanum (AEQ98812.1), Haliotis discus (AGQ50335.1), Mytilus galloprovincialis (AFQ35865.1), Physella acuta (ADV36303.1), Mizuhopecten
yessoensis (AEY77130.1), Argopecten irradians (AAX09979.1), Azumapecten farreri (ABB53641.1).
FIGURE 4

Quantitative analysis of PmlysG gene expression. He: Hepatopancreas, Gi: Gill, Go: Gonad, M: Mantle, H: hemocytes, A: Adductor muscle.
*, P < 0.05; **, P < 0.01.
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Discussion

Innate immunity is the first line of defense in marine

invertebrates against pathogenic attacks (Wang et al., 2018;

Cao et al., 2019). Lysozyme is a vital component of innate

immunity and has been detected in body fluids and tissues of

many bivalve scallops (McHenery and Birkbeck, 1982;

Matsumoto et al., 2006). Besides, the g-type lysozymes have

also been identified in vertebrates and some mollusks (Zhao

et al., 2007). Therefore, studying the structure and immune

characteristics of g-type lysozymes in P.f. martensii is of great

significance. In this study, a g-type lysozyme gene, encoding a

polypeptide with 255 amino acids, was isolated from P.f.

martensii. Sequence analysis showed that the PmlysG gene

contain a d153I_domain. Following the alignment of domain

structure and NCBI prediction, the protein was deduced to be a

g-type lysozyme. The physical and chemical properties analysis

revealed that PmlysG formed a signal peptide at positions 1-16

amino acids, indicating that PmlysG is a secretory protein. This
Frontiers in Marine Science 08
was consistent with the description of Chlamys farreri (Zhao

et al., 2007) and gastropod Oncomelania (Zhang et al., 2012). All

these species had a signal peptide, indicating the presence of

secretory proteins (Irwin and Gong, 2003). It is likely that

activation of PmlysG expression is a host immune defense

directed against general bacterial invasion. Moreover, there

was no transmembrane structure, indicating that the protein

was not a transmembrane protein. In contrast, the signal peptide

is not common in the g-type lysozymes of fish. Only a few fish g-

type lysozymes have secretion signals, such as the g-type

lysozymes from Salmo sala (Kyomuhendo et al., 2007), but

lacks the disulfide bond and N-terminal signal peptide, which

is consistent with the lysozymes from C. idellus (Yin et al., 2003),

Scophthalmus maximus (Zhao et al., 2011), and Epinephelus

coioides (Wei et al., 2014). PmlysG has three conserved catalytic

sites (Glu, Asp, Asp), the critical involvement of Glu and Asp in

the catalytic activity, also indicate that the Glu residue has

pivotal role in the structural stability of G-type lysozyme

(Hirakawa et al., 2008). It can promote G-type lysozyme
A

C

B

FIGURE 5

The PmlysG mRNA expression level in the hepatopancrease of P.f martensii after PAMPs stimulation. (A) LPS stimulation. (B) PGN stimulation, (C)
PolyI: C stimulation. The asterisks *, P < 0.05, **, and P < 0.01 indicate significant differences between the control and stimulation groups.
Vertical bars represent the mean ± SD (n=5).
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catalyze the hydrolysis of the b-1,4-glycosidic linkage between

N-acetylmuramic acid and N-acetylglucosamine alternating

sugar residues in the bacterial cell walls and peptidoglycan.

The crystal structures of GEL, free and complexed with

(GlcNAc)3, revealed that the three-dimensional position of

Glu73 in GEL is analogous to those of Glu35 in HEL and

Glu11 in T4L, which are believed to act as a general acid to

donate a proton to the glycosidic bond, thereby facilitating bond

cleavage (Weaver et al., 1995; Kawamura et al., 2006).

Multiple sequence alignments showed that the g-type

lysozymes of PmlysG had high similarity with other species,

with the highest similarity in Argopecten irradians (60.5%),

indicating that PmlysG maintains high conservatism during

evolution. Evolutionary analysis showed that P.f. martensii

could cluster with Argopcten irradians, Azumapecten farreri,

and Mizuhopecten yessoensis, consistent with the relationship of

species evolution.

Therefore, assessing the functional characteristics of PmlysG

is highly necessitated. Herein, the qRT-PCR analysis showed
Frontiers in Marine Science 09
that PmlysG mRNA was expressed in all tissues. Moreover, the

mRNA expression was the highest in hepatopancreas compared

with other tissues. Previous studies have detected lysozyme

activity in the hepatopancreas of several marine bivalves. The

mRNA expression level of Meretrix meretrix was higher in the

hepatopancreas than in other tissues (Yue et al., 2011). The high

expression level of PmlysG mRNA in the hepatopancreas

indicate that it is the primary site for the synthesis of g-type

lysozymes. These results confirm that PmlysG is a digestive

enzyme that can protect digestive organs from bacterial

attacks. Digestive lysozymes may have a potentially low pH

and isoelectric points and higher resistance to proteases

(Callewaert and Michiels, 2010).

After LPS stimulation, the mRNA expression level of PmlysG

reached a maximum at 72 hours. After PGN stimulation, the

mRNA expression level of PmlysG reached a maximum at 6

hours, then increased for the second time at 48 hours. After

PolyI:C stimulation, the mRNA expression level of PmlysG

reached a maximum at 72 hours. Although the three
A

C

B

FIGURE 6

Construction of PmlysG recombinant protein. (A) Verification of recombinant plasmid of PmlysG 1: Bands of interest M: Maker. (B) SDS-PAGE
(C) Western Blot. PC1: BSA (1 mg); PC2: BSA (2 mg); M1,M2: Marker; NC(whole bacteria): Cell lysate without induction; 1: Cell lysate with
induction at 15°C for 16 hours; 2: Cell lysate with induction at 37°C for 4 hours; NC1(supernatant): Supernatant of cell lysate without induction;
3: Supernatant of cell lysate with induction at 15°C for 16 hours; 4: Supernatant of cell lysate with induction at 37°C for 4 hours; NC2
(precipitation): Debris of cell lysate without induction; 5: Debris of cell lysate with induction at 15°C for 16 hours; 6: Debris of cell lysate with
induction at 37°C for 4 hours.
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stimulation modes mediated immune response, they had

different effects with time. For instance, the mRNA expression

was the highest at 72 hours after LPS and PolyI:C stimulation,

suggesting that PmlysG might be less involved in the immune

response of pathogens containing LPS and PolyI:C in the early

stage. Similarly, the mRNA expression was maximum at 6 hours

after PGN stimulation, indicating that PmlysG might quickly

participate in the immune defense of PGN model pathogens.

These results were consistent with the g-type lysozymes of other

species stimulated with PAMPs. For instance, PalysG identified

in Physa acuta could sustain high expression in the

hepatopancreas within 8-48 hours after LPS stimulation (Guo

and He, 2014). CalysG identified in Carassius auratus could

sustain high expression in the hepatopancreas within 6-48 hours

after LPS stimulation (Wang et al., 2016). These results show

that PmlysG has various biological functions, and it is a

multifunctional molecule essential for digestive function and

host immune response.

The rPmlysG was used to identify the antibacterial

properties. Several studies have indicated that some g-type

lysozymes could inhibit microbial growth. For instance, a g-

type lysozyme isolated from Chlamys farreri (Zhao et al., 2007)

(rCFlysG) can inhibit V. parahaemolyticus, V. splendidus, and V.

anguillarum. Similarly, a g-type lysozyme of salmon can inhibit
Frontiers in Marine Science 10
the growth of Aeromonas hydrophila (Zhang et al., 2018). The

recombinant g-type lysozyme of grass carp can inhibit A.

hydrophila, V. parahaemolyticus, and Bacillus cereus (Ye et al.,

2010; Yang et al., 2016). Additionally, rPmlysG showed potent

lytic activity against V. parahaemolyticus, A. hydrophila, and

Pseudomonas aeruginosa. However, the activity was less for

gram-positive bacteria. Studies have reported that the

antimicrobial action occurs through the hydrolysis of b-1,4-
glycosidic linkage between N-acetylmuramic acid and N-

acetylglucosamine alternating the sugar residues in the PGN of

bacterial cell walls, thereby inducing bacterial cell lysis

(Mohapatra et al., 2019). In this study, rPmlysG damaged the

cell wall of V. parahaemolyticus and A. hydrophila, inducing the

release of bacterial contents. This attack pattern was consistent

with the Chitosan-lysozyme nanoparticles (CS-Lys-NPs) (Wu

et al., 2017c). This experiment provides insights into

immunological research and disease control in P.f. martensii.
Conclusion

In this study, a g-type lysozyme gene was successfully cloned

from P.f. martensii. The amino acid sequence of PmlysG shared a
A

C

B

FIGURE 7

Antibacterial activity of rPmlysG. Control group: PBS. Experimental groups; (A) V. parahaemolyticus challenge; (B) A hydrophila challenge; (C)
Pseudomonas aeruginosa challenge.
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high similarity with other known shellfish. The mRNA

expression analysis indicated that PmlysG was highly

expressed in the hepatopancreas. PAMPs stimulation induced

an immune response in the body, and rPmlysG exhibited

significant antibacterial activity. Overall, these results confirm

that the g-type lysozyme plays a key role in the innate immunity

of P.f. martensii.
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