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Long-term response of an
estuarine ecosystem to
drastic nutrients changes
in the Changjiang River
during the last 59 years:
A modeling perspective

Shenyang Shi1, Yi Xu2*, Weiqi Li2 and Jianzhong Ge2,3

1Project Management Office of China National Scientific Seafloor Observatory, Tongji University,
Shanghai, China, 2State Key Laboratory of Estuarine and Coastal Research, East China Normal
University, Shanghai, China, 3Institute of Eco-Chongming, Shanghai, China
The riverine nutrient inputs to the ocean reflects land-use changes and can

affect the health of coastal environments over time, especially for a highly-

anthropogenically influenced river-estuary-shelf system. To investigate the

impact of riverine inputs on the Changjiang Estuary ecosystem at a multi-

decadal time scale where long-term observations are limited, we built a three-

dimensional physics-biogeochemistry-coupled model system based on the

Finite-Volume Community Ocean Model (FVCOM) and the European Regional

Shelf Ecosystem Model (ERSEM). Our model successfully simulated the

temporal and spatial nutrient variabilities in the river-estuary-shelf

con7tinuum from 1960 to 2018. The results showed increasing trends of

nitrate and phosphate and fluctuating silicate variability, thereby leading to

rising nitrogen (N) to phosphorus (P) ratios and decreasing silicon (Si) to N and P

ratios. Such changes in the stoichiometric relationship of nutrient species also

alter the community structure of the primary producers in estuaries. Our model

showed a general increase of diatoms over the 59 years, corresponding to

decreased proportions of micro-phytoplankton and pico- phytoplankton. With

different backgrounds of light and nutrient limitations in the river and inner

shelf, our model suggests that the trend of the diatom proportion in the light-

limited river mouth is more associated with silicate variability, with decreased

diatom proportions occurring in the 2000s. Our model relates the

hydroclimate, nutrient load, and biogeochemical cycling, reproducing

estuarine ecosystem variability and clarifying issues such as the causality of

the ecosystem interactions.
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Introduction

Human civilization originated in areas around large rivers;

the ecological environment of rivers and estuaries is closely

related to human life. Agriculture and industry developed

rapidly after the Second World War, leading to extensive use

of fertilizers and detergents (Bennett et al., 2001; Galloway and

Cowling, 2002; Duan et al., 2007). Disposal of sewage and

wastewater has caused the water quality of rivers and estuaries

to deteriorate. While pollution accumulates in rivers, estuaries

are influenced by both point and non-point pollution sources,

which has changed such ecosystems significantly in the last

century (Rabalais et al., 2009; Wang et al., 2013; Powers et al.,

2015; Dai et al., 2016). Large rivers are essential in this

terrestrial-estuary linkage. Therefore, anthropogenic

perturbations inevitably affect rivers, and so are estuaries

(Howarth et al., 2000; Scavia et al., 2000; Howarth and

Marino, 2006; Bricker et al., 2008; Oviatt et al., 2017). To

some degree, nutrients and phytoplankton can be indicators of

productivity and ecological health of estuaries (Glé et al., 2008;

Enawgaw and Lemma, 2018). Over the past few decades, many

large estuaries around the world have experienced dramatic

ecological changes. In North America, the Mississippi River

has shown a drastic increase in nitrogen and phosphorus since

the 1950s, with dissolved inorganic nitrogen (DIN) and total

phosphorus frequently exceeding 150 mM and 7 mM, respectively

during the 1980s (Lohrenz et al., 2008), and riverine silicon has

decreased since 1960 because of the stimulation and burial of

freshwater diatoms (Rabalais et al., 1996; Houser et al., 2010;

Leong et al., 2014). Therefore, the nutrient ratio and

phytoplankton species composition in the coastal area of the

Mississippi River has changed (Dortch et al., 2001; Smits et al.,

2019; Stackpoole et al., 2021). In Europe, the nutrient

concentration in the Scheldt Estuary increased significantly

from 1965 to the mid-1970s and decreased from 1980 to 2002,

which was positively correlated with the river discharge. Because

of the difference in nutrient change ratios, the function of the

estuary has shifted from a net nitrate producer to a net consumer

(Soetaert et al., 2006; Middelburg et al., 2011).

The Changjiang Basin is 1.8 million square kilometers in

total, accounting for 18.8% of China’s land area (Zheng et al.,

2020). It has abundant natural resources and is the most densely

populated area in China. Like other giant rivers and estuaries,

anthropogenic activities significantly affect the Changjiang Basin

and estuary (Huang et al., 2001; Chen et al., 2015; Xu et al., 2015;

Dai et al., 2016). Many studies have focused on ecosystem

changes in the Changjiang Estuary, including eutrophication,

nutrient stoichiometry, and a regime shift. Hydraulic

engineering and wastewater discharge are considered as a

critical factor impacting the Changjiang Estuary ecosystem

during the past few years (Yang et al., 2006; Gao and Wang,

2008; Dai et al., 2011; Li et al., 2015). As of 2018, over 50,000

dams have been built in the Changjiang Basin. These dams
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mediate water volume and mitigate floods while decreasing

sediment discharge to approximately 140 Mt/y (Dai et al.,

2008; Hu et al., 2009; Yang et al., 2018b). Concurrently,

dissolved silicate has decreased by 30% from the 1960s to the

2000s due to large amounts of sediment trapping by the dams

(Dai et al., 2011; Wang et al., 2018). Agriculture and industry

began to develop in the 1960s, drastically increasing nitrate and

phosphate loads which are associated with fertilizer usage and

domestic sewage (Xing and Zhu, 2002; Duan et al., 2007; Zhou

et al., 2008; Yan et al., 2010; Liang and Xian, 2018). From the

1960s to the 1990s, the amount of nitrogen fertilizer rapidly

increased 15-fold from 1.0×108 kg to 1.50×109 kg, and

phosphorus fertilizer increased approximately 12-fold from

4×107 kg to 5.0×109 kg (Duan et al., 2000; Duan et al., 2007;

Shen and Liu, 2009; Shen et al., 2020). The use of nitrogen and

phosphorus fertilizer still increased steadily after 1990s (Liu

et al., 2022). As a result, the DIN concentration increased

threefold, and the concentrations of dissolved inorganic

phosphorus (DIP) and dissolved organic phosphorus increased

by 30% (Yu et al., 2012; Liu, 2017). Because of the different

nutrient loading rates, the N: P: Si ratio has changed (Jiang et al.,

2014). For example, the N/P ratio was ~30-40 in the early 1960s,

and it was reported to reach 103 and 268 in 1985 and 1997,

respectively (Gu et al., 1981; Wong et al., 1998; Shen and Liu,

2009); a factor of 17-fold greater than the Redfield ratio (Si:N:P:

~16:16:1). The increased input of N and P into an estuary can

result in eutrophication, directly or indirectly linked to harmful

algal blooms (Wang, 2006; Shen and Liu, 2009) and hypoxia

(Wang et al., 2016a). Concerning the bloom frequency in the

Changjiang Estuary, diatom blooms have decreased due to

silicate trapping. Dinoflagellate blooms tend to be more

frequent because of nutrient increases (Jiang et al., 2014).

Our knowledge of the Changjiang nutrient flux is essentially

based on hydrographic data measured at river gauge stations,

which are usually located upstream (Zhang et al., 2021). How

these riverine nutrients are processed downstream and their

contribution to the estuary ecosystem over a longer time scale

are poorly understood. The times and places of the existing

studies of Changjiang Estuary are limited (Li et al., 2007; Zhou

et al., 2008; Jiang et al., 2014; Yang et al., 2015; Luan et al., 2016;

Jiang et al., 2017; Jiang et al., 2018a). Available studies mostly

used sediment core sampling and satellite datasets (Henson

et al., 2010; Jin et al., 2010; Cheng et al., 2014; Zhu et al., 2014;

Chen et al., 2017; Zhang et al., 2021). Therefore, the data based

on riverine hydrographic stations and dispersed sampling could

be biased concerning the seaward river fluxes and the ratios of

nutrient species related to estuary ecosystem dynamics (Zhang

et al., 2021).

Numerical models coupled with physical and biogeochemical

dynamics are an effective way to improve our understanding of the

impact of riverine nutrient inputs on ecosystem function in this

land-sea boundary. Different models have been developed to

compensate for the lack of empirical data and study how
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ecosystems respond to environmental changes (Riley, 1949; Fasham

et al., 1990; Sarmiento et al., 1993; Franks and Chen, 2001; Spitz,

2003; Gruber et al., 2006). In Ge et al. (2020a), the Finite-Volume

Community Ocean Model (FVCOM) and the European Regional

Shelf Ecosystem Model (ERSEM), was used to study the effect of

offshore sediment front on seasonal marine ecosystem dynamics;

the interannual variability of nutrient and phytoplankton in the

Changjiang Estuary and shelf from 1999 to 2017 were discussed

based on this model in Ge et al. (2020a). However, none of these

studies involved simulations on a multi-decadal scale. In this study,

based on a delicate grid design that can refine different spatial scale

from the river channel to the estuary and the shelf, we used the

same FVCOM and ERSEM coupled model to simulate long-term

(59 years) variations of major ecosystem components along the

Changjiang Estuary, with the objectives of (1) presenting the

historical state, including the temporal and spatial distribution of

nutrients in the river-estuary-shelf continuum; (2) investigating

when and where the phytoplankton communities have changed in

the estuary and inner shelf and how these changes relate to the

trends of nutrient variability. For this study, we hope to use the

coupled model driven by long-term empirical upstream nutrient

data to assess the present state of the Changjiang Estuary and

compare it to previous states.
Data and methods

Study domain and long-term evolution
of river inputs

Our study area included the downstream of the Changjiang

Basin, west of Datong (DT) station, to the east at 124°E,

representing a continuum of river channel, river mouth, and

inner shelf (Figure 1). Regarding river discharge, we only

considered the Changjiang River, the fourth largest river in the

world (Milliman and Farnsworth, 2011), originates in the

Qinghai-Tibet Plateau (Wang et al., 2016b), flows through 19

provinces, and then into the East China Sea (Figure 1A). Until

the end of the twentieth century, DT (Figure 1A) was still the

most downstream hydrographic station in the Changjiang Basin.

River discharge used in this study was collected at DT

(Figure 1A) (http://xy.cjh.com.cn/). Nutrient data at the DT

station and nearby sites were collected from different sources,

i.e., previous studies conducted from 1960 to 2019 (Dai et al.,

2011; Gao et al., 2012; Zhu et al., 2014; Li et al., 2021), and our

own measurements made since 2013 (Ge et al., 2020a; Ge et al.,

2020b; Ge et al., 2021). A detailed description of the nutrient

sources can be found in Table 1.

We collected approximately 60 years of annual mean surface

runoff and riverine nutrient data (Figure 2). Significant interannual

variability occurs along this time series. The strongest inundation in

1998 corresponded with the most extensive runoff in 1998 in the

time series (over 1.2×1012 m3/yr). In contrast to the fluctuating
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annual discharge, the sediment load clearly decreased, from to 500

Mt/yr to 100 Mt/yr continuously (the red curve in Figure 2A). This

phenomenon is consistent with the results in Luan et al. (2016), that

sediment was trapped in reservoirs mainly due to the construction

of water conservation projects (Yang et al., 2015; Luan et al., 2016;

Yang et al., 2018b). Riverine nutrient variabilities also showed

distinct trends. Increasing trends from 1960 to 1980 were clearly

seen in the nitrate and phosphate time series (with slopes of 1.98

(p<0.001) and 0.02 (p<0.001), respectively). By 2018, the nitrate and

phosphate levels had increased by approximately 15-fold and two-

fold, respectively, compared to the early 1960s. In contrast, silicate

showed only a slightly increasing trend (Figure 2D). The Pearson

correlation coefficients for these three nutrients were less than 0.001.

Therefore, the fitted curves showed significant correlation, and the

trends for the nitrate, phosphate, and silicate concentrations were

reliable. However, there is little empirical data for ammonium, so

that trend line does not accurately represent the ammonium

concentration (Figure 2E).
Coupled model system and
configuration

To describe the long-term variations of ecosystems in the

Changjiang Estuary continuum during dramatic environmental

changes, we used a physics-biogeochemistry coupled FVCOM-

ERSEM model to describe the variability of major nutrients and

the phytoplankton community during the past few decades.

FVCOM (Chen et al., 2003) discretizes space into an

unstructured triangular grid in the horizontal direction and uses

terrain tracking coordinates vertically; thus, it is suitable for the

complex situations that characterize estuarine and coastal areas. The

use of scalar conservation equations makes FVCOM user-friendly

for multidisciplinary research. The ERSEM model is one of the

most comprehensive models for the low-trophic marine food web

(Butenschon et al., 2016) and has been widely used in the

simulation of biogeochemical processes in coastal areas (Elkalay

et al., 2012; Sankar et al., 2018; Jardine et al., 2021). The ERSEM has

complex ecosystem components, including nutrients,

phytoplankton, zooplankton, benthos, bacteria, iron, light

extinction, calcification, and alkalinity. In ERSEM, four functional

types of primary producers were considered (diatoms, micro-

phytoplankton, pico-phytoplankton, and nano-phytoplankton),

which allowed us to identify the long-term changes in

phytoplankton communities when nutrient concentrations and

ratios change. The coupling of these two models has been

successfully applied in physical and ecosystem modeling in the

Changjiang Estuary and adjacent regions for both episodic events

and decade-scale modeling (Ge et al., 2020a; Ge et al., 2020b; Ge

et al., 2021).

The unstructured triangle grid used in this study is of

medium-resolution and covers the entire study area. It covers

the Changjiang Estuary, Hangzhou Bay, and the inner shelf of
frontiersin.org

http://xy.cjh.com.cn/
https://doi.org/10.3389/fmars.2022.1012127
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shi et al. 10.3389/fmars.2022.1012127
the East China Sea. In the coastal region, river mouth, and in

other complex terrains, the resolution of the grid was adjusted to

2-3 km to ensure that detailed hydrodynamic processes could be

geometrically fitted in the model. The hydrodynamic model

FVCOM involves FVCOM-SED and FVCOM-SWAVE with

current-wave–sediment interactions (Wu et al., 2011). The

simulation period was 1960–2018, and the output was daily

averaged. The nutrients and dissolved oxygen of the open

boundary were monthly climatologies obtained from the 2013

World Ocean Atlas dataset. The model was driven by a

reanalysis of atmospheric forcing data at 3-h intervals,
Frontiers in Marine Science 04
provided by the National Centers for Environmental

Prediction from 1960 to 1980 and datasets of ERA-Interim

from the European Center for Medium-Range Weather

Forecasts (ECMWF) from 1980 to 2018. We used surface air

temperature, pressure, relative humidity, winds at a 10m altitude

above the sea surface, downward longwave radiation, and net

shortwave radiation to specify the surface fluxes of momentum

and buoyancy based on bulk formulae (Fairall et al., 2003). At

the open boundary, we specified the temperature, salinity,

nitrate, total inorganic carbon, alkalinity, and dissolved oxygen

using the output of a regional model in this study domain
FIGURE 1

Diagram of the study area [modified from Ge et al. (2020a)] (A) Location of the Changjiang Basin, the Three Gorges Dam (TGD), Datong Station,
and Xuliujing Station. (B) Changjiang Estuary and inner shelf of East China Sea. Site 1 (at the river channel), site 2 (at the river mouth), and site 3
(at the inner shelf) are typical sites that were chosen (red dots). The dashed line denotes the boundary of the turbidity maximum zone.
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described in Ge et al. (2013). The major tidal components along

the lateral open boundary, including eight primary harmonic

constituents M2, S2, N2, K2, K1, P1, O1, Q1, were determined

from the TPXO 8-atlas (Egbert and Erofeeva, 2002). The riverine

inputs of nutrients and freshwater were based on the empirical

data plotted in Figure 2. In our simulation, we also included the

benthic components of the ERSEM to consider the effects of

the benthic ecosystem on the pelagic ecosystem. The flux

from the benthos to the water column was simplified as a

remineralization process from dissolved organic matter to

inorganic matter.
The Empirical Orthogonal Function
(EOF) analysis

EOF is a method that extracts an eigenvalue from a large-

scale dataset. Such EOF analyses were widely used to compress
Frontiers in Marine Science 05
the spatial and temporal variability of large datasets down to a

set of dominant, mathematically orthogonal (independent)

spatial functions and associated time-varying amplitudes (PCs)

(Briggs, 2007; Dawson, 2016). It has been widely used in

meteorology and oceanography (Lian and Chen, 2012; Qi

et al., 2014; Roundy, 2015; Zhong et al., 2020; Grams, 2021).

The EOF analysis was used to evaluate when and where the most

dominant phytoplankton structure variabilities occurred during

the 59-year time series.
Results

Verification of simulated nutrients
and phytoplankton

To investigate nutrient and phytoplankton, we selected three

specific sites downstream of Xuliujing to 124°E, which
TABLE 1 Different sources of nutrient data collected from 1960 to 2018.

Time Station Reference

1964 E4 (122.8°E, 31°N) (Zhu et al., 2014, 2017)

1965 E4 (122.8°E, 31°N) (Zhu et al., 2014, 2017)

1966 E4 (122.8°E, 31°N) (Zhu et al., 2014, 2017)

1970 E4 (122.8°E, 31°N) (Zhu et al., 2014, 2017)

1973 Datong (Liu and Shen, 2001)

1975 E4 (122.8°E, 31°N) (Zhu et al., 2014, 2017)

1978 E4 (122.8°E, 31°N) (Zhu et al., 2014, 2017)

1980 E4 (122.8°E, 31°N) (Zhu et al., 2014, 2017)

1981 E4 (122.8°E, 31°N) (Zhu et al., 2014, 2017)

1985 Xuliujing (Shen, 1993)

1986 Xuliujing (Shen, 1993; Zhu et al., 2014, 2017)

1988 Xuliujing (Zhou et al., 2008)

1997 Xuliujing (Duan et al., 2000; Shen and Liu, 2009)

1998 Datong (Duan et al., 2008; Zhou et al., 2008; Zhu et al., 2014, 2017)

1999 Datong (Duan et al., 2008)

2000 Xuliujing (Zhou et al., 2008)

2001 Xuliujing (Zhang et al., 2007; Zhou et al., 2008)

2002 Xuliujing (Zhou et al., 2008)

2003 Xuliujing (Chen et al., 2010)

2004 Datong (Shi and Liu, 2009; Zhu et al., 2014, 2017)

2005 Datong (Shi and Liu, 2009; Zhu et al., 2014, 2017)

2006 Datong (Shi and Liu, 2009; Yao et al., 2009; Zhu et al., 2014, 2017)

2007 Datong (Zhang et al., 2007; Shi and Liu, 2009)

2009 Xuliujing (Gao et al., 2012)

2010 Xuliujing (Gao et al., 2012)

2013 Jiuduansha (Chen et al., 2010)

2014 Xuliujing This study

2015 Xuliujing This study

2016 Xuliujing This study

2017 Xuliujing This study
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represented the river channel, the river mouth, and the inner

shelf (red dots in Figure 1B) dynamics during the past 59 years.

We used various in-situ observational data to verify the

reliability of our numerical biogeochemical model results. We

used various in-situ observational data to verify the reliability of

our numerical biogeochemical model results. Based on previous

studies, the nitrate concentration in the 1960s in Changjiang

was ~20 mM and was maintained at this level for the next two

decades. In the 1980s, the DIN concentration increased to 80

mM, then exceeded 100 mM in the 2000s (Jiang et al., 2010; Jiang

et al., 2014; Liang and Xian, 2018; Shen et al., 2020). This is

consistent with our simulated nitrate concentration at the site

near Xuliujing station (Figure 3A, site 1). For the saline sites, the

documented nitrate concentration was ~10 mM in the 1960s,

which increased to ~30 mM in the 1980s, then continued to grow

to ~45 mM in the 2000s (Jiang et al., 2014). Our simulated time

series of nitrate concentrations at representative stations in the

saline section (Figure 3B) exhibited the same magnitude as

Jiang’s, however, it was slightly lower than that reported by

Liang and Xian (2018). The observed phosphate concentration

in the river site fluctuated from ~0.5 mM before 1980, increasing

to ~1.5 mM in the 1990s (Shen et al., 2020). Our simulated

phosphate (Figure 4A) are larger than those in Jiang et al. (2010),

which were ~0.5 mM before the 1980s, ~0.7 mM during the 1980s

and ~1.2 mM in the 2000s. After 2003, the phosphate

concentration increased quickly with sharp fluctuations

(Figure 4A). The fluctuations since 2003 can be found in Liang

and Xian (2018); however, they occurred early in our simulation.

For the phosphate concentration in the saline section (site 3),

our model successfully reproduced the concentrations observed

by Jiang et al. (2014) and Liang and Xian (2018) (Figure 4C). We

didn’t see a significant trend for the simulated silicate

concentration. It essentially remained between 100-150 mM
from 1985 to 2014. This is consistent with the results of Jiang

et al. (2014) and Liang and Xian (2018) (Figure 5A). For the

saline site (site 3), the long-term silicate trend is similar to that of

Jiang et al. (2014), however, the annual average silicate was less

than 20 mM, but in Jiang et al. (2014), it fluctuated around 30 mM
(Figure 5C). The simulated nutrient concentrations were in the

same order of magnitude and indicated similar temporal

variability as the observations.

Data collection for the validation of the dominant

phytoplankton species is more complicated. According to the

sampling method, the empirical phytoplankton data can be

divided into net-collected and water-collected phytoplankton.

These different sampling methods can yield phytoplankton of

different sizes and species. The parameters representing the

condition of the phytoplankton, such as composition,

abundance, and biomass, are also different. Phytoplankton also

agglomerate; therefore, observations vary greatly over time and

space. Hence, there was a deviation between the data from

previous studies and the model results. Previous studies have

documented that the annual mean diatom ratio in the
Frontiers in Marine Science 06
phytoplankton communities was over 80% before 1990 and

then decreased to 69.8% (Zhou et al., 2008; Jiang et al., 2014).

The simulated data showed a similar trend, but the annual mean

diatom ratio was lower, which varied in the range of 51.5% –

52% and 48.3 – 51.2% after 2000 at site2 and site3,

respectively (Figure 7).
Simulated long-term variability
of nutrients

Our model fit the observed data well for a specific time

frame, it successfully simulated the seasonal and long-term

nutrients variations at different geographical locations.

Compared with site 1, which is influenced by riverine

nutrients, the time series of nutrients at sites 2 and 3 are

influenced more by oceanic water, thus indicating significant

seasonal variations because of nutrient uptake by phytoplankton

(Figures 3–5).

The nitrate concentration at the three sites showed a

pronounced increasing trend from 1960 to 2019 (Figure 3).

The Mann-Kendall test (Table 2) suggested a significant

increasing trend (the t value of the three sites was greater than
0.7, and the slope was positive with p< 0.001). Site 1, which is

located in the river channel, had a nitrate concentration above

160 mM during the last decade. It was 140 mM for site 2, located

in the river mouth, and much lower for site 3, located on the

shelf. This suggests that the farther offshore the location, the

lower the nutrient concentration. This phenomenon is

associated with the geographical features in this continuum.

The nutrient concentration is more greatly affected by freshwater

dilution at the river mouth, while it is more influenced by the

phytoplankton uptake offshore beyond the maximum turbidity

zone. The same pattern can be observed from the ten-year

moving average (blue lines in Figure 3).

The long-term variability of nitrate during the 59 years of

simulations can be divided into three phases: 1960–1980 (a

steady increase), 1980–2010 (a rapid increase), and 2010–2018

(violent fluctuation). From 1960 to 1980, nitrate at the three sites

was maintained at a relatively low level (~20 to ~30 mM in the

estuary area and ~7 mM in the coastal region). The concentration

gradually increased to 60 mM by the end of the 1970s. During the

second phase, nitrate increased rapidly following the rapid

economic growth in China since the early 1980s. The nitrate

concentration at site 1 almost tripled owing to increasing

emissions of industrial and agricultural sewage, which led to

eutrophication in the Changjiang River during this period

(Wang, 2006). During the last phase, the nitrate concentration

fluctuated; however, it generally showed a steady increasing trend.

Similar to nitrate, the phosphate concentration increased at

the three sites during the 59 years (Figure 4), but at a lower rate.

Both site 1 and site 2 showed decreasing trends from 1960 to

1970, with the phosphate concentration falling from 0.7 mM to
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0.1~0.2 mM. From 1970 to 2018, the concentration showed a

steadily increasing pattern in the river channel (from ~0.2 mM
to ~2 mM) and from ~0.2 mM to ~1.5 mM in the river mouth

(Figures 4A, B). For the inner shelf at site 3, the phosphate

concentration showed a slightly increasing trend compared with
Frontiers in Marine Science 07
sites 1 and 2. From the Mann-Kendall test for phosphate, the

slopes of these three sites were all positive (P< 0.001) (Table 2).

The t values for sites 1 and 2 were 0.67, but for site 3 it was 0.34,

suggesting a weaker increasing trend at site 3 compared with the

other two sites.
FIGURE 2

Empirical annual water runoff data (blue line) and sediment load (red line) at Datong Station (A). Observed (red dots) and empirical data (blue
lines) for nitrate (B), phosphate (C), silicate (D), and ammonium (E) at Datong and nearby sites.
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The temporal trends in the silicate concentrations suggested

that silicate was the most stable nutrient component in the river-

estuary-shelf continuum. There was no pronounced trend in the

variability of silicate during our simulation period, especially for

the river site (site 1) (Figure 5). This was also confirmed by the

Mann-Kendall test, which suggested non-significant trends

showing much higher P values (Table 2). Such a difference is

reasonable because N, P, and Si are associated with different

biogeochemical processes. The N and P concentrations have

been strongly influenced by anthropogenic nutrient sources,

whereas the primary silicate source within the Changjiang

Basin is the weathering of rocks. From the time series for the

silicate concentration, we can interpret the interannual

fluctuations of silicate during specific periods. After 2003, the

silicate content decreased significantly when the Three Gorges

Dam (TGD) was completely put into operation (during 2003–

2011: r = -0.46, p< 0.001), which suggests a retention effect of the
Frontiers in Marine Science 08
TGD (Ding et al., 2019). For the oceanic site, a decreasing trend

of silicate in the 2000s could be associated with its increased

utilization by a diatom bloom as a result of increases in DIN and

DIP after 2000.
Nutrient ratios and phytoplankton
community composition

The nutrient stoichiometry also dramatically changed

because of the different rates of change in nutrients. Generally,

sites 2 and 3 showed similar increasing trends in the nitrate-to-

phosphate ratio (N/P), with slopes of 0.38/a and 0.37/a,

respectively (Figure 6A). The N/P ratio at site 2 was almost

three times the Redfield ratio (16:1) by the end of 2018, and that

of site 3 was close to the Redfield ratio before 1980 and increased

significantly thereafter, reaching ~35:1 by the end of 2018. Our
FIGURE 3

Modeled time series of nitrate concentration at the three sites. (A: site1, B: site2, C: site3). Black lines demonstrate the daily averaged nitrate
concentration, red lines are annual averaged values, and blue lines indicate ten-year moving averaged trend.
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results suggest that water in the river mouth was more likely to

be phosphate-limited during the 59 years, whereas on the inner

shelf, there was no phosphorus limitation before 1980, but it

became phosphate-limited after that.

Si/N and Si/P decreased owing to the rapid increase in N

and P, while silicate evidenced a stable change (slope=-0.05/a

and -0.03/a, respectively) (Figures 6B, C). At site 2, the Si/N ratio

decreased from ~3.5-fold of the Redfield ratio (Si/N=1) to half of

that at the end of our simulation. The cut-off point when the Si/

N became less than 1 occurred around 2007, which suggests a

possibility of silicate limitation since that time. The same

variability occurred at site 3, but with a lower decreasing rate

of Si/N. We attribute this to a less significant increasing trend of

N at Site 3 when compared with the rapidly increasing N trend at

site 2 (Figure 6B). The trend for Si/P also decreased at site 2;

however, we did not find a significant decreasing trend at site 3

(Figure 6C), probably because of a much more drastic increase in

the phosphate concentration at site 2 than at site 3.
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Changes in the stoichiometric relationship of the nutrient

species could alter the community structure of the primary

producers in the Changjiang Estuary (Zhou et al., 2008; Chu

et al., 2014). Previous studies have demonstrated that diatoms

are the dominant species in the Changjiang Estuary (Jiang et al.,

2014). Therefore, we assessed the variability of the diatom

proportion in the phytoplankton community first. Our results

were arrived at by calculating the percentage of diatom

chlorophyll in the primary producers. In our simulation,

diatoms dominate the phytoplankton community at sites 2

and 3, accounting for an average of 52.6% and 50.8%,

respectively. As shown in Figure 7, the diatom proportions in

the river mouth and inner shelf have been changed over the 59

years. Specifically, there was an increased frequency of diatom

proportion by the year of the 2000, and decrease of that after.

The long-term change of diatom proportion could be associated

with changes in the riverine nutrient loads, including a

consistent increase in nitrate and a decline in silicate after
FIGURE 4

Modeled time series of phosphate concentration at the three sites. (A: site1, B: site2, C: site3). Black lines demonstrate the daily averaged
phosphate concentration, red lines are annual averaged values, and blue lines indicate ten-year moving averaged trend.
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2003 due to sediment trapping in the upstream reservoirs. With

the decrease in Si/N after 2003, the proportion of diatom species

began to decrease.

To further address the variabilities of other phytoplankton

species on the estuary and inner-shelf. We checked the

timeseries of micro-phytoplankton, nano-phytoplankton and

pico-phytoplankton at site 2 and site 3 (Figure 8). It

demonstrated that the fraction of micro-phytoplankton at site

2 (Figure 8A) is more than 20% and is larger than that of nano-

phytoplankton (~15%) and pico-phytoplankton (~10%).

However, at site 3 which located further offshore (Figure 8B),

the nano-phytoplankton becomes the dominant specie among

the three species. The proportion of micro-phytoplankton and

pico-phytoplankton both remain at ~15%. As for the trended

changes, the fraction of micro-phytoplankton at site 2 has

declined since the late 1960s (Figure 8A). For site 3, both the

pico-phytoplankton indicates the most significant decreasing

trend (Figure 8B). These declines of smaller phytoplankton
Frontiers in Marine Science 10
species correspond with the increase of diatoms proportions

simultaneously, which is associated with the change of

nutrient ratios.
Spatial patterns of nutrients and
phytoplankton variabilities

After analyzing the time series of nutrients and

phytoplankton at the selected sites, we investigated how the

changes in riverine nutrient inputs led to the temporal and

spatial variability of nutrients and the associated phytoplankton

distributions in this river-estuary-shelf continuum. We used the

concentration in 1960 as the background value and calculated

the percentage changes of nutrients in the next 10, 20, 30, 40, 50,

and 60 years. From 1960 to 1969 (Figure 9), the nitrate

concentration barely changed in the entire study area. As the

nitrate input from the Changjiang increased gradually, it
FIGURE 5

Modeled time series of silicate concentration at the three sites. (A: site1, B: site2, C: site3). Black lines demonstrate the daily averaged silicate
concentration, red lines are annual averaged values, and blue lines indicate ten-year moving averaged trend.
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accumulated in the estuary and began to spread out to the sea. By

the end of the 1970s, a small part of the inner shelf, the nitrate

concentration increased by about 50% of its original value and

nearly 80% in the river channel (Figure 9B). After 1980, the
Frontiers in Marine Science 11
Changjiang Basin experienced a rapid nutrient increase over the

next 30 years. In 1989, the river mouth and Hangzhou Bay

nitrate concentrations were ~1.5-fold greater than those in 1960.

Then, the nutrients started to spread further south of Hangzhou
FIGURE 6

Nutrient ratios of N/P (A), Si/N (B), Si/P (C) at site 2 (red) and site 3 (green). The dashed lines are the regression fitting of the nutrient ratios. Blue
lines indicate threshold of the Redfield ratio.
TABLE 2 Mann-Kendall test of nutrients and phytoplankton at three sites.

Site1 Site2 Site3

t slope p t slope p t slope p

NO−
3 0.85 2.104 <0.001 0.81 1.142 <0.001 0.7 0.178 <0.001

PO3−
4 0.67 0.026 <0.001 0.67 0.015 <0.001 0.34 0.001 <0.001

SiO2−
3 0.25 0.252 <0.05 0.28 0.183 <0.05 0.037 0.008 0.67

N/P -.031 -1.49 <0.05 0.24 0.35 <0.05 0.711 0.35 <0.001

Si/N -0.82 -0.05 <0.001 -0.8 -0.04 <0.001 -0.78 -0.03 <0.001

Si/P -0.65 -6.53 <0.001 -0.6 -2.02 <0.001 -0.18 -0.08 <0.05

Diatoms proportion 0.28 2.91×10-5 <0.05 0.12 1.05×10-3 0.176 0.37 4.7×10-4 <0.001

Dinoflagellate proportion -0.28 -34.1 <0.05 -0.12 1.05×10-4 0.176 -0.37 -4.7×10-3 <0.001
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Bay (Figure 9C). This pattern persisted during the 1990s

(Figure 9D). Until 2009 (Figure 9E), a large portion of the

inner shelf was affected by nitrate from the Changjiang runoff,

which could reach as far as 124.5°E in the east. At the river

mouth, the nitrate concentration increased to 400% of the

background value in 1960. During the 2010s, the nutrients

from the Changjiang runoff remained stable because of

wastewater discharge control (Shen et al., 2012; Shen et al.,

2020). The riverine input affected area expanded north of the

Jiangsu coastal area (Figure 9F). Phosphate showed a different

pattern than nitrate (Figure 10), beginning to increase rapidly in

the 2000s to a maximum of 200% (Figure 10E). At the same

time, high phosphate levels also extended offshore, but unlike

nitrate, this extension was limited to 123°E (Figures 10E, F).

With variations in nutrient concentrations and nutrient

proportions, the phytoplankton community also shifted in the

whole estuary. While the nitrogen loads were accelerating,

silicate did not increase significantly and even decreased after

2000; consequently, the Si/N ratios continued to decrease and

have declined to lower than the Redfield ratio in recent decades.

The silicate concentration is more likely to regulate diatom

growth than other types of phytoplankton, e.g., dinoflagellates;

thus, the diatom biomass decreased with the declining Si/N ratio.

Therefore, the structure of the phytoplankton community

changed. Our analyses of the diatom proportion over the

whole study domain suggest that diatoms typically dominate

the phytoplankton community of the Changjiang Estuary and
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inner shelf, contributing to more than 50% of the surface

chlorophyll values (Figure 11A). To compress the spatial and

temporal variability of the diatom proportion maps into a set of

dominant modes with spatial functions and associated time-

varying amplitudes, we employed EOF analyses on the 59 years’

time series (Figures 11B, C). The first EOF mode of diatom

proportion explained 32.4% of the total variance. The spatial

coefficients are positive over most of the inner shelf, with the

most significant spatial variance in the Jiangsu coastal. There

Changjiang Estuary also experienced remarkable changes. The

temporal variability is shaped as an increasing trend from the

end of the 1960s to the middle of the 1980s and oscillates back

and forth. There has been a 10-years decline since 2000

(Figure 11C). The results of the EOF spatial coefficient and the

temporal amplitude suggest that the diatom proportion change

could be regional. Some areas further offshore on the outer shelf

with negative spatial coefficients (Figure 11B, light blue color)

suggest a diatom decreasing trend along the time series. This is

because the significant changes in riverine nutrients have not

affected these areas; other factors, i.e., temperature increasing

could result in such variability.
Discussion

Based on a delicate grid design that can refine different

spatial scales from the river channel to the estuary and the shelf,
FIGURE 7

Time series of the diatoms proportion at (A) site 2 and (B) site 3. The black lines are ten-year filtered.
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and considering various biogeochemical processes influencing

the phytoplankton dynamics, our model was able to reproduce

the multi-decadal changes in the nutrient distribution and the

associated phytoplankton variability in the river-estuary-shelf

continuum of the Changjiang Basin. In the river channel and the

river mouth, the light was the main factor limiting the uptake of

nutrients by phytoplankton due to a high sediment load. Thus,

the nutrient concentration distribution in this area was mainly

affected by riverine nutrients. Our model successfully showed

that the time series of nutrients at site 1 located at the river

channel were close to the riverine nutrient observations at

Xuliujing station in Zhang et al. (2021). The modeled nitrogen

load increased five-fold from 1970 to 2015. Regarding the

variation in silica, our model captured its stable variability at a

concentration between 100 and 120 mM at the river channel,

which is in the same range of variance as the measurement in

Zhang et al. (2021) during the same period. For the sites over the

estuary, our model results suggest that nutrient dynamics are

influenced by the dilution due to abundant river discharge

(Wang et al., 2014) and the phytoplankton uptake. The

simulated nutrient decrease from the river mouth to the inner

shelf was consistent with observations conducted at a similar

location (Zhang et al., 2007; Jin et al., 2010; Liu et al., 2014). Our
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model can also present the nutrient element variabilities in

different regions. As shown in Figure 4, the phosphate in the

inner shelf (site 3) did not show a prominent increasing trend

compared with the other riverine sites (i.e., the river channel and

the river mouth). This was different from the nitrate variability

that all three sites indicated a significant increase in nitrate. The

difference is that nutrient at site 3 is much more influenced by

phytoplankton activity than sites 1 and 2, making the nutrient

concentration processes more complicated. Moreover, the

Changjiang Estuary is phosphorus-limited (Li et al., 2007;

Duan et al., 2008; Ge et al., 2020a), and the increasing riverine

phosphate will be consumed by phytoplankton in response,

thereby slowing the rate of increase of phosphate at site 3. The

nutrient change map confirmed that a significant increase in

phosphate only existed in the river channel within the maximum

turbidity zone; however, the nitrate increase could reach further

offshore because of abundant leftover nitrate.

Based on the reproduced nutrient time series, our model

simulated the community structures of the primary producers in

the estuary. A significant increase in primary production during

the 59 years was presented. Our model also successfully

reproduced the change in the phytoplankton functional type

during this period. The diatom proportion is relatively low In the
FIGURE 8

Time series of other phytoplankton proportions at (A) site 2 and (B) site 3. P2 denotes nano-phytoplankton, P3 denotes pico-phytoplankton, P4
denotes micro-phytoplankton.
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river channel and river mouth due to light limitation compared

with the area beyond the estuarine turbidity maximum zone.

The EOF analysis suggested a significant increase in the diatom

proportion along the 59-year time series. It is worth noting that

there was a period after 2000 in which the diatom proportion

decreased (Figures 7A, 11C). This could be associated with a

decline in riverine silica because of decreases in the sediment

load after the 2000s. Such asymmetric changes in nutrient

stoichiometry could result in a gradual shift to silicate

limitation. Our modeled phytoplankton community generally

shows a similar spatial distribution as described in Liu et al.

(2016), with higher diatom proportion in the estuary and inner

shelf. For the temporal variability, our modeled diatom

proportion decrease are consistent with the findings in Jiang

et al. (2010) and Xiao et al. (2018), it reveals that there are more
Frontiers in Marine Science 14
dinoflagellate blooms in the Changjiang Estuary, especially

after 2011.
Multivariate indicators of Changjiang
Estuary ecosystem

Although there are various hypotheses about the

mechanisms underlying the dramatic ecosystem changes in the

Changjiang Estuary, the anthropogenic impact is believed to be

the main cause. Agriculture and industry developed rapidly in

the Changjiang Basin since the 1980s, resulting in a 30-fold

increase in nitrogen fertilizer use from 1958 to 1985, a 10-fold

increase in phosphorus fertilizer from 1970 to 2010, and

a drastic increase in wastewater (Duan et al., 2007;
FIGURE 9

Distribution of the changing percentage in the nitrate concentration during (A) 10 years, (B) 20 years, (C) 30 years, (D) 40 years, (E) 50 years,
and (F) 60 years.
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Powers et al., 2015). The amount of fertilizer use increased while

the utilization efficiency continued to decrease; this resulted in

nitrogen and phosphorus accumulating in the soil and rising

their loads into the waters (Bouwman et al., 2013; Liu et al., 2015;

Yuan et al., 2018). Due to industrial wastewater treatment,

nitrogen and phosphorus from discharged industrial sewage

account for only 1/3 of agricultural wastewater (Bouwman

et al., 2005). Therefore, fertilizer use is the main reason for the

increasing nitrate and phosphate concentrations in Changjiang

and the adjacent coastal areas (Jiang et al., 2010). Before the

1970s, the concentration of nutrients in Changjiang remained

low. Since the 1980s, the nitrate and phosphate levels increased

rapidly (Duan et al., 2007; Powers et al., 2015). Our model could

reproduce nutrient variabilities associated with these activities,

e.g., the nitrate and phosphate concentrations increased by
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5- and 10-fold, respectively, from 1960 to 2018, with an

evident increase starting in the 1980s (Figures 3A, 4A).

Dam construction is also a cause that should be mentioned.

Since the 1950s, the increased damming has led to sediment

retention and reduced the suspended sediment concentration in

Changjiang (Yang et al., 2011; Yang et al., 2018a; Liu et al., 2020);

(Guo et al., 2020). According to relevant research, the annual

sediment load at the Yichang station decreased by 97% from the

1950s to the 2010s (Guo et al., 2020), and at the DT station, it

decreased by 16% from the 1960s to the 2010s (Figure 2A). Due

to hydrological engineering, especially the impoundment of the

TGD, the annual sediment load decreased, which led to reduced

turbidity, decreased light limitation, and thus increased primary

production in the Changjiang Estuary (Wang et al., 2017). In

addition to affecting the physical conditions in the river and the
FIGURE 10

Distribution of changing percentage in the phosphate concentration during (A) 10 years, (B) 20 years, (C) 30 years, (D) 40 years, (E) 50 years,
and (F) 60 years.
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estuary, the decline in sediment discharge also causes silicate

retention (Li et al., 2007; Ding et al., 2019). With increasing

nitrate and phosphate and constant silicate, the ratio of nutrients

changed, which caused phosphorus and silicate limitations. The

dominant phytoplankton species shifted to dinoflagellates that

do not need silicon for growth (Zhou et al., 2008; Jiang

et al., 2014).

A global warming-induced sea surface temperature (SST)

increase is another essential factor that should be considered.

Temperature changes and eutrophication are known to affect

phytoplankton communities, and when simultaneous changes

occur in both temperature and nutrient load, the effects become

more complicated. A broadly accepted conclusion from previous

studies is that the marginal seas of China experienced a robust,

persistent SST increase in the last few decades until the late

1990s (Xie et al., 2002; Wang and Wang, 2013; Pei et al., 2017),

followed by a significant cooling trend after, which was

associated with a so-called regime shift (Kim et al., 2018).

Diatoms prefer lower temperature and higher nutrient

concentrations, whereas dinoflagellates are less sensitive to

temperature and nutrient variations but tend to prevail under

low phosphorus and high N:P ratio conditions (Letelier et al.,

1993; Xiao et al., 2018). Previous studies have reported that the

phytoplankton in the Changjiang Estuary have shifted to

subtropical-tropical and high-salinity species to some degree,

e.g., Temoraturbinata, a tropical-subtropical, high-salinity

copepod species, became the dominant species in the summer
Frontiers in Marine Science 16
of 2004 (Jiang et al., 2014). Such species adapted to a warm

environment are also spreading (Jiang et al., 2017; Jiang et al.,

2018b), and species that could not adapt to high temperatures

migrated northward. Based on the EOF analysis of the modeled

diatom proportion, we saw the most significant increasing trend

was at the coast of Jiangsu, which suggests that in addition to the

role of nutrients, lower temperature lower temperatures may

also be responsible for the diatom increase. This variability is

very close to the temporal variability of silicon (Figure 5) and

SST (Kim et al., 2018). However, we couldn’t identify which was

the dominant factor for diatom variability in this study. More

diagnostic runs are needed in future studies.
Comparison with other estuaries

Due to continued intense anthropogenic impacts worldwide

and global climate change, giant rivers and their corresponding

estuaries have changed significantly since the 1950s.

Eutrophicat ion is a widespread phenomenon. The

concentrations of N and P in the Mississippi River have

increased drastically since the 1950s (Lohrenz et al., 2008;

Smits et al., 2019). Silicate has decreased due to the burial of

freshwater diatoms since 1960 (Rabalais et al., 1996). Since the

1950s, nutrients in the Chesapeake Bay have increased and

resulted shifts of nutrient structure and phytoplankton species

(Prasad et al., 2010; Harding et al., 2015). The Black Sea also
FIGURE 11

(A) Model simulated diatom proportion climatology calculated based on the model output from 1960 to 2018. (B) The spatial coefficient of the
first empirical orthogonal function (EOF) mode of diatom proportion. (C) The temporal amplitude of the first EOF mode.
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experienced eutrophication; however, after the dam construction

in the 1970s, the silicate load decreased by over 60%. The

influence of Si/N ratio on phytoplankton structure was more

considerable than that of eutrophication. The phytoplankton

community shifted from diatoms to coccolithophores and

flagellates (Humborg et al., 1997; Yunev et al., 2007; Daskalov

et al., 2017). For the Nile River, the construction of the Aswan

High Dam in 1964 caused a significant decline in sediment,

discharge, and silicate flux. However, the Nile River did not

experience eutrophication at that time because of limited

nutrient inputs (Chen et al., 2021). Therefore, phytoplankton

and fish populations continued to decline because of nutrient

limitation. The ecosystem recovered until the early 2000s

because of increasing nutrient input (Chen et al., 2021). All

these studies indicate that most giant rivers and their

corresponding estuaries have suffered eutrophication since the

1950s and the 1960s because of increasing N and P inputs from

anthropogenic activities. The construction of dams caused the

concentration of silicate to decrease, resulting in a shift in the

structure of the nutrients and phytoplankton communities.
Uncertainties

We used the FVCOM-ERSEM biogeochemical model to

simulate long-term nutrients and phytoplankton variability in

the Changjiang Estuary. Some limitations of our study require

further improvement. First, besides the simplified the

biogeochemical processes described by the model, the model

boundary inputs of nutrients were also simplified due to limited

data sources. For example, the river discharge was based on the

historical data at DT station which is located upstream from the

river mouth. The riverine nutrient flux could be biased because

we did not consider the river discharge and nutrient inputs along

the drainage basin from DT to Shanghai; thus, the critical roles

of megacities located at Changjiang deltas were not properly

considered. Although our model can simulate the multi decadal

variabilities, its ability to represent the interannual anomalies is

limited. As we know, strong El Niño events are usually followed

by massive summer monsoon over the Changjiang river basin,

e.g., the crucial summer water catchments were followed by the

peak of two major El Niño events in 1982/1983 and 1997/1998.

These two massive summer flooding events were clearly seen

from the annual water runoff time series (Figure 2) which has

been used as the river boundary input in the model. However,

the relationships between our simulated nutrient and

phytoplankton time series and ENSO signal are less obvious.
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Although the El Niño signal can be seen in the physical forcing,

the phytoplankton growth is regulated by both the physical

forcing and nutrients in the model, thus, lack of riverine nutrient

observational data in these years (e.g., 1982/1983) could lead to

the bias of our simulated phytoplankton variabilities.

Considering the model limitation and the main focus of this

study is on multi-decadal variability, we didn’t claim the ENSO

influence on the ecosystem variability.

In this study, we did not consider the long-term variability of

nutrient inputs from other open boundaries, e.g., the Kuroshio,

which flows on the external edge of ECS and transports a

massive amount of warm, saline water and nutrients into the

ECS shelf. Regarding the underlying mechanisms for long-term

ecosystem change, more model sensitivity runs are needed to

specify how these mechanisms act individually or in concert in

this interlinked large River Delta. We also need more

observational datasets to verify our simulated results and

examine other important aspects of the Changjiang Estuary

ecosystem with our model, such as hypoxia, acidification, and

zooplankton community status.
Summary

Using a physics-biogeochemistry coupled FVCOM-ERSEM

model, we simulated 59 years of ecosystem variations in the

Changjiang Estuary. Our model was driven by long-term

Changjiang nutrient observations and realistic atmospheric

forcing and coupled with key hydrodynamics processes in the

river. The model successfully simulated the nutrient concentration

gradient from the river channel to the inner shelf and described how

these variabilities lead to the temporal and spatial variabilities of

nutrients and associated phytoplankton distributions on the

adjacent shelf. Our model simulations further supported the

results of nutrient ratio variabilities and associated shifts of

phytoplankton species in previous studies in the Changjiang

Estuary, which are based on discontinuous observations with

limited temporal and spatial scales. Our coupled hydrodynamic-

biogeochemical model could compensate for the deficiency of

limited observations, especially in the study of long-term spatial

and temporal variabilities in the ecosystem.
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