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Porpoises after dark: Seasonal
and diel patterns in Pacific
harbour porpoise (Phocoena
phocoena vomerina)
aggregations at one of North
America’s fastest growing ports

Karina Dracott1*, Chloe V. Robinson1, Alice Brown-Dussault1,
Caitlin Birdsall 1,2 and Lance Barrett-Lennard1,3

1Whales Initiative, Ocean Wise, Vancouver, BC, Canada, 2Marine Education and Research Society
(MERS), Port McNeill, BC, Canada, 3Cetacean Conservation Research Program, Raincoast
Conservation Foundation, Sidney, BC, Canada
Pacific Harbour Porpoise (Phocoena phocoena vomerina) occupy a large

range throughout coastal waters of British Columbia. Despite their wide

distribution, they remain largely data-deficient regarding abundance and

population trends, and as such are listed as Special Concern under the

Species At Risk Act. Harbour porpoises are also particularly sensitive to

disturbance, especially vessel-related acoustic disturbance. Large

aggregations of harbour porpoise have been documented in waters around

the entrance to the Port of Prince Rupert during the winter months, however

little is known about the annual fine-scale activity of this species in this highly

trafficked area. In this multi-year study, we used a combination of land-based

visual surveys and passive acoustic monitoring (PAM) devices (C-PODs and F-

PODs) to address data gaps regarding density, diel patterns, and seasonality of

harbour porpoise around Prince Rupert. Echolocation activity was detected

during 96% of the 1086 C-POD deployment days and 100% of the 727 F-POD

deployment days, with 86% of visual surveys recording harbour porpoise

presence. We detected strong seasonal and diel trends in activity, with

echolocation peaks between April and June and during the hours of

darkness throughout the year. There was a notable increase in daytime

activity of harbour porpoise between January and March, which coincides

with the months of large aggregation observations. This study indicates that

despite the constant presence of large vessels, harbour porpoise continue to

persist within waters surrounding Prince Rupert. This suggests the area is an

important habitat for this species and also may indicate some extent of

acclimatization to localized disturbance.

KEYWORDS

passive acoustic monitoring (PAM), Pacific harbour porpoise, vessel disturbance,
echolocation behaviour, Port of Prince Rupert, GAM (generalized additive model)
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Introduction
The Pacific harbour porpoise (Phocoena phocoena

vomerina) is a recognised subspecies of harbour porpoise,

which inhabits the north Pacific from California to northern

Japan (Gaskin, 1984; Ridgway et al., 1998; Taguchi et al., 2010).

This species is listed as ‘Special Concern’ under the Species At

Risk Act (Government of Canada, 2002). Populations of Pacific

harbour porpoise (hereafter PHP) in the eastern part of their

range are considered to exist as smaller sub-units, with no to

limited exchange of genetic material between these populations

(Chivers et al., 2002; Taguchi et al., 2010). Despite the

continuous distribution of PHP along the north Pacific, PHP

are primarily found in shallow bays, sounds, estuaries, and

harbours due to the species’ foraging and diving capabilities

and prey distribution (Goodwin, 2008; Nichol et al., 2013).

Characterized by deep channels, large tidal influx and

proximity to the Skeena River estuary, the entrance to the Port

of Prince Rupert is an area where high marine productivity and

porpoise presence coincide with vessel traffic. PHP typically

target schooling fish species such as Pacific herring (Clupea

pallasi), Pacific sardines (Sardinops sagax), walleye pollock

(Theragra chalcogramma), Pacific hake (Merluccius productus)

and Pacific sand lance (Ammodytes hexapterus) (Nichol et al.,

2013; Elliser et al., 2020).

An extensive network of citizen scientists has facilitated a

better understanding of population aggregations of PHP

presence throughout their range. The B.C. Cetacean Sightings

Network (BCCSN) has collated sightings of PHP since 1955 via

observer reports through mediums including the WhaleReport

app and paper logbooks. Identified seasonal hotspots of PHP

include southeastern Haida Gwaii, Chatham Sound and

northern Vancouver Island between May and September and

around eastern Haida Gwaii,, western Vancouver Island and the

Gulf Islands between October and April, and southeast

Vancouver Island between May and October (Hall, 2004;

Wright et al., 2021). Due to their coastal distribution, there is

extensive overlap between PHP range and anthropogenic

activity, particularly in productive waters such as those in

Chatham Sound (Clarke and Jamieson, 2006; Skov and

Thomsen, 2008; Fisheries and Oceans Canada, 2009).

Unusually large harbour porpoise aggregations have been

reported to occur in the vicinity of the Port of Prince Rupert,

which we suspect serves as a regionally important habitat area

for the species. Supporting this, there has been documentation of

extensive feeding and mating activity (Caitlin Birdsall,

pers.comms). This combination of anthropogenic activity

overlap and high sensitivity of PHP to acoustic and physical

disturbance (Wisniewska et al., 2016) signifies high vulnerability

of the species. Additional threats, such as fishing gear

entanglement, overfishing, habitat degradation, and

contamination by persistent bio-accumulative toxic chemicals
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are also of great concern for this species (Fisheries and Oceans

Canada, 2009). Gathering data on these small, elusive cetaceans

is notoriously difficult, leading to a poor general understanding

of their ranges, population structures, diet, and breeding

phenology in the north Pacific.

Harbour porpoise (HP) populations across the North

Atlantic are subject to similar threats and environmental

pressures as PHP, however more data is available on HP

distribution, densities, abundance and diel patterns, and the

threats facing them are better understood. Numerous studies

have highlighted fluctuations in diel patterns of HP echolocation

activity, through employing passive acoustic monitoring (PAM)

devices, such as C-PODs (Continuous Porpoise Detector) and F-

PODs (Full waveform capture Porpoise Detector) and how this

relates to the impact of anthropogenic threats (Goodwin, 2008;

Todd et al., 2009; Hall, 2011; Jeffries, 2012; Brandt et al., 2014;

Benjamins et al., 2017; Williamson et al., 2017; Schartmann,

2019; Osiecka et al., 2020). In addition to monitoring HPs

acoustically, data on HP habitat use and abundance has also

been generated through land-based (e.g. (Oakley et al., 2017)),

aerial (Jefferson et al., 2016), and boat-based surveys, including

citizen science programs (e.g. (Nielsen et al., 2021)).

Understanding the impact of threats on PHP presence,

echolocation activity, and sub-population health is essential for

determining appropriate management and conservation

strategies in BC (Baird, 2003; Fisheries and Oceans Canada,

2009). To protect and conserve PHP populations, we first need

to bridge existing knowledge gaps regarding population

structure and identification of core habitat (Fisheries and

Oceans Canada, 2009). Outside of the Salish Sea, there is little

information in British Columbia on important foraging habitats,

availability of prey species, location of vital habitats for mating

and birthing and on spatiotemporal variation in core habitat

usage (Baird, 2003; Hall, 2004; Fisheries and Oceans Canada,

2009; Benjamins et al., 2017; Elliser and Hall, 2021; Wright et al.,

2021). The area surrounding Prince Rupert, BC, is an important

area for PHP, based on the observation of seasonal fluctuations

in large aggregations since 2010 (C. Birdsall, BC Cetacean

Sightings Network, pers. comm. 2022). The best estimate of

PHP abundance within northern BC (northern Vancouver

Island to Alaska border) was determined at 1,314 individuals

(Wright et al., 2021), with an estimated abundance of between

100 and 700 within Chatham Sound (Stantec Consulting, 2016),

especially concentrated around Prince Rupert. Since 2016, the

BCCSN has documented the presence of PHP around Tuck

Island (north-eastern BC) year-round. Closely related to the

PHP, Dall’s porpoise (Phocoenoides dalli) have not been

observed within the study site through citizen science surveys

nor land and boat-based surveys, however both transient and

northern resident killer whales (Orcinus orca) have been

documented transiting through here throughout the year.

Within a 10km radius of Tuck Island, there are six active

shipping terminals and three ferry terminals. During 2021 alone,
frontiersin.org
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25 million tonnes of foreign cargo and ~50,000 passengers

passed through these terminals, and the port is one of the

fastest growing in North America (Prince Rupert Port

Authority, 2022a). The DP World Fairview Terminal offers the

fastest connection from Asia to North America and is currently

being expanded to move the equivalent of 1.8 million 20-foot

shipping containers per year, a 33% increase from its current

capacity (Prince Rupert Port Authority, 2022b). This terminal

expansion will significantly increase the number and frequency

of large vessels traversing through the wider study area. It is

likely that the current shipping traffic and port expansion

activity is causing some degree of disturbance to PHP

(Wisniewska et al., 2018; Benhemma-Le Gall et al., 2021) and

that this disturbance will increase as the port expands (Nabe-

Nielsen et al., 2014).

The aims of this study are to: 1) generate data on diel

echolocation activity and densities of PHPs in productive

coastal waters within Chatham Sound and the approach to

Prince Rupert Harbour, which is an important area frequented
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by PHP, 2) identify biotic and/or abiotic predictors of PHP

aggregations within this area and 3) build a comprehensive

picture of PHP habitat use by combining data collected from

surveys, PAM devices, and citizen scientists to conservation

measures in support of PHP in the north-east Pacific.
Materials and methods

Study site

Our study site consisted of a 2 km2 region in Chatham

Sound, southeast of Digby Island near Prince Rupert in north-

western British Columbia, Canada (Figure 1). Canada), this site

was centered around Tuck Island, and is a hotspot of PHP, likely

due to the presence of optimal oceanographic characteristics for

energy-efficient transport and/or prey habitat, such as deep

channels, boils, eddies and tidal rapids (Hall, 2011).
FIGURE 1

Map of study site (purple circle) south of Digby Island (British Columbia, Canada) and harbour porpoise sightings (triangles) reported to the
British Columbia Cetacean Sightings Network (BCCSN) between 2016 and 2021. The black circle indicates the location of the Passive Acoustic
Monitoring (PAM) device (C-POD/F-POD) found at the centre of the study site. The primary shipping lanes are represented by the dotted lines.
Map in bottom left shows the larger map area (within purple box) in relation to North America. BCCSN sightings were filtered to contain only
harbour porpoise sightings with ‘Certain’ and ‘Probable’ confidence levels (n = 2,252).
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Historic harbour porpoise sightings in
Prince Rupert

To obtain records of PHP occurrence around Prince Rupert,

we searched the BCCSN database, consisting of ~300,000

cetacean sightings reports for sightings of harbour porpoise

within the geographical boundary of the wider Prince Rupert

study area (latitude 54.174 to 54.366 and longitude -130.549 to

-130.116). We exported the following data fields: sighting ID,

date of sightings, latitude and longitude (decimal degrees), group

size and identification confidence (determined both by observer

and Ocean Wise staff member who processed the sighting). Each

sighting was given a confidence level by BCCSN staff (Uncertain,

Possible, Probable and Certain) based on the identification

confidence rating given by the observer themselves (Uncertain,

Possible, Probable and Certain) and based on the location,

observer type/organization, experience of the observer with the

BCCSN, and photos submitted by the observer. To maintain

high confidence in sightings, Ocean Wise staff engaged with

observers to clarify and obtain additional information regarding

each sighting submitted. Finally, based on the number of

individuals reported across all the filtered sightings, we then

created aggregation categories of 1 to 5 individuals, 6 to 10, 11 to

30, 31 to 100 and 101+.
C-POD and F-POD deployment

We used a combination of Passive Acoustic Monitoring

(PAM) devices (C-POD and F-PODs) moored 12 feet from

the bottom in 60-80 ft of water to collect echolocation activity

data on PHP. C-PODs (Cetacean – Porpoise Detector) and F-

PODs (Full waveform capture – Porpoise Detector) detect

cetaceans by classifying groups of echolocation signals

(‘trains’) based on the intensity, duration, frequency content,

and variation in inter-click intervals (Sarnocinska et al., 2016). F-

PODs are newer PAM devices compared to C-PODs and use

new electronics and software to capture more information from

the clicks detected. Due to the maximum detection range of

these acoustic devices, our study site encompassed a circle with a

radius of 400m centered on the location of the moored POD.

The C-POD was deployed intermittently and for durations of up

to four months between the 16th of July 2016 to the 18th of

October 2018 (Supplementary Table 1). We deployed F-PODs

for a total period of 24 months consistently (24th of January

2020 to 20th of January 2022) by exchanging the deployed F-

POD with another F-POD simultaneously to avoid gaps in

logging. Deployment logistics, in terms of anchoring and the

use of surface buoys varied between C-PODs and F-PODs

(Supplementary Table 1). Both the C-POD and F-POD

continually monitored clicks between 20-160kHz and stored

data on a single SD card to allow rapid servicing at sea.
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Echolocation click detection

Like other odontocetes, harbour porpoises emit echolocation

clicks in series referred to as click trains. Acoustic files were

adjusted to local GMT-7 and 8 depending on the season of the

deployment and cropped to exclude acoustic data collected

during POD deployment and retrieval time and for time units

with missing or only partial data. We extracted and

characterized narrow-band high-frequency (NBHF) PHP

echolocation click trains using a KERNO classifier built into

both the C-POD and F-POD (Tregenza et al., 2016), applied

‘High’ and ‘Medium’ quality train filters to maximize the

likelihood that the click trains were from porpoises and avoid

false positives (Sarnocinska et al., 2016) and exported the data in

minute bins using the train length duration total (ms) format.

Bins in which HP echolocation was detected by this procedure

are subsequently referred to as ‘Detection Positive Minutes’.

To investigate diel patterns in PHP echolocation activity, the

24 hours of a day were divided into five diel phases: morning,

day, evening, night1 and night2, by comparison with civil

twilight and sun-state tables from the US Naval Observatory

(http://www.usno.navy.mil/) following (Carlström, 2005; Todd

et al., 2009) and accounting for annual differences in daylight

hours. Subsequently, the detections per hour of C-POD and F-

POD recordings were determined for each day and diel phase.
Visual surveys

In addition to detecting PHP via PAM devices, we also

conducted land-based visual surveys during daylight hours at

random periods throughout the same period when the C-POD

was deployed and collecting data (2016-2018). Land-based visual

surveys offer some benefits over vessel-based surveys in that they

do not disturbthe animals (Keen et al., 2020). Vessel-based

surveys can result in vessel avoidance behaviour from PHP,

leading to biased estimates of aggregation size and animal

behaviour (Oakley et al., 2017). Land-based surveys were only

conducted when sea state was between Beaufort 0-2, to improve

detection probabilities (Barlow, 1988; Palka, 1995; Hammond

et al., 2002) and were conducted from Kaien Island adjacent to

the Ridley Island access road, south of Barrett Rock (Figure 1).

Surveys comprised one- to two-hour periods spent continuously

scanning the study site adjacent to the PAM device location

using a 60 x 80mm spotting scope, recording the cumulative

number of PHPs observed within 14 zones delineated by natural

landmarks in 10-minute intervals (including resightings of

individuals recorded in previous intervals). To test whether

there was a significant difference in PHP detections between

visual surveys and the C-POD detector, we ran a McNemar’s test

to compare frequencies on binary outcomes (0=no detection,

1=detection) per survey (McNemar, 1947), and a Spearman rank
frontiersin.org
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correlation test to assess evidence of correlation between the

cumulative number of PHP observed during visual surveys and

the DPM recorded on the C-POD (Spearman, 1904).
Environmental metadata collection

An Ocean Networks Canada underwater monitoring station

located 8.3 km from the study site at depths of 28 and six metres

provided the following hourly data during our study:

Chlorophyll A (mg/L), turbidity (NTU), sea temperature (°C)

and practical salinity (PSU). Sea temperature values were

obtained from Fisheries and Oceans Canada (DFO) Cow Bay

station (no. 6139; Supplementary Table 2), located 8.5 km from

the study site. The Canadian Hydrographic Service provided

daily lunar events for the range of our study period. We recorded

lunar phases as first quarter, full moon, last quarter, new moon,

waning crescent, waxing crescent, waning gibbous and waxing

gibbous. All environmental data were obtained on an hourly

basis throughout the study.
Statistical analyses

For statistical analysis, we retained a total of 727 days

(1,046,880 minutes) of data for the F-POD and (1,509,120

minutes) for the C-POD. Due to the lack of consistent

temporal data collection using the C-POD (Supplementary

Table 3), we chose to conduct statistical analysis on F-POD

data only. All statistical analyses for this data were carried out in

R version 4.12 (R Core Team, 2020) and R Studio version

2021.09.1.372 (R Studio Team, 2021).

To investigate the importance of PHP echolocation activity

covariates using F-POD data, we used Generalised Additive

Models (GAM) with log link functions and negative binomial

distribution to account for overdispersion, using the bam()

function from R package mgcv v. 1.8-38 (Wood, 2022). We

used number of detection positive minutes (DPM) as the

response variable. Before running models, we first tested for

evidence of collinearity in the data using the vif function from

the car R package v. 3.0-12 (Fox et al., 2022), with 5 as a cut-off

value (Craney and Surles, 2002). We assessed the response

variable for autocorrelation via ACF plots using the acf()

function (mgcv package), with 0.2 as the threshold (Nuuttila

et al., 2017). No evidence of autocorrelation was detected,

therefore subsequent models were run without AR1 structure.

We did not detect collinearity among our covariates (Hour,

Month, average Chlorophyll A (mg/L), average practical salinity
(PSU), average sea level (m), average temperature (°C), average

turbidity (NTU), diel phase (Morning, Day, Evening, Night1 and

Night2) and moon phase); therefore, all selected variables were

retained in the model. Non-significant variables (P>0.05) were

sequentially removed from the model by assessing the resulting
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P-values from the Parametric Coefficients and the Approximate

significance of smooth terms for each variable in the model

summary. Final model selection was based on a combination of

Akaike’s Information Criterion (AIC) and the adjusted

R2 values.

We visualized the relationship between DPM and month/

hour for F-POD data using ggplot() function in R package

ggplot2 v.3.3.5. (Wickham et al., 2022). For C-POD data, we

plotted DPM against hour using data from months where data

was collected consistently over the three years (July to October

2016-2018; Supplementary Table 3). This subset of contained

313 days (450,720 minutes) of data. For both F-POD and C-

POD data, we plotted diurnal echolocation activity patterns per

month, using the mean DPM across years.
Results

Harbour porpoise aggregations in
Prince Rupert

After filtering BCCSN data for opportunistic PHP sightings

within the geographical boundary of the wider study area

(latitude 54.174 to 54.366 and longitude -130.549 to -130.116),

we retained 626 sightings. Reports spanned from 1993 to 2022

and consisted of a minimum of 2,647 PHP individuals. We

created aggregation categories of 1 to 5 individuals, 6 to 10, 11 to

30, and 31+ (Table 1). The most common aggregation size was 1

to 5 individuals (541 sightings), followed by 6 to 10 (46

sightings) and then 11 to 30 (27 sightings; Table 1). There

were 12 sightings reports which recorded over 31 individuals

with the largest estimated at between 200 and 1000 individuals

(Fisheries and Oceans Canada, pers.comm). Aggregations of

PHP >11 (n=39) were reported between the months of

December to April (Table 1). The first year in which large

aggregations (>30) of PHP were reported was 2011

(Supplementary Table 4). Since routine monitoring of PHP

began in 2016, the number of sightings per year increase from

around <30 to >50 (Supplementary Table 4).
Land-based surveys versus
C-POD detection

A total of 49 surveys were conducted between July 13, 2016, and

June 28, 2019 (Supplementary Table 3). For 31 of these surveys, the

C-POD was actively recording echolocation activity. PHPs were

detected on 42 of the land-based surveys visually (86%), and the C-

POD detected PHPs during 77% of the 31 surveys it was deployed

for (Supplementary Table 5). In comparing visual and C-POD

detections, PHP were not visually detected for 2 (6%) of the surveys

that had positive C-POD detections and PHP were not acoustically

detected for 4 (13%) of the surveys that had positive visual
frontiersin.org
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detections (Supplementary Table 5). The difference between these

proportions was not statistically significant (McNemar’s chi-

squared = 0, p = 1). The cumulative number of PHP observed

during visual surveys ranged between 1 and 116 (Supplementary

Table 5), with an average of 17 PHP observed per survey. There was

a statistically significant correlation between the cumulative number

of PHP observed and DPM per survey (rs (29) = 0.52, p < 0.05).
GAM model

The final GAMmodel included the following covariates with

porpoise detections: sample year (2020 and 2021), month

(January to December), hour (1 to 24), practical salinity

(PSU), Chlorophyll A (mg/L), and diel phase (Morning, Day,

Evening, Night1 and Night2; Figure 2). This model explained

14.3% of the variation observed (Supplementary Table 6).

Month and sample year were the most important covariates

for determining PHP echolocation activity based on both AIC

and adjusted-R2 values (Table 2). All covariates had significant

effects in the model (Supplementary Table 6).
Monthly variation in echolocation activity

When observing the mean train length duration per month,

peak train length duration occurred between the months of May

to June, with lowest mean train length duration occurring

between the months of July to October (F-POD data;

Figure 3). There was a clear difference in mean train length
Frontiers in Marine Science 06
duration between the two sampling years, with 2020 displaying

higher values for the peak month (47,865) compared to 2021

(16,544; Supplementary Table 7).

For DPM, PHP detections peaked between the months of

May and June, with a secondary peak in echolocation activity

occurring between November to December in 2020 (F-POD

data; Supplementary Table 7). Echolocation activity peaks were

more pronounced in 2020, with mean DPM per hour value

nearly halving from 9.3 in 2020 to 5.3 in 2021 for the same time

period (Supplementary Table 7). Additionally, we did not

observe a secondary activity peak between November to

December in 2021; this time period also has the lowest mean

DPM per hour for all of 2021 (0.9). Echolocation activity was the

lowest between the months of August to November for 2020,

and similar levels of DPM were observed for both F-POD

sampling years between August to November.
Diel variation in echolocation activity

Diel period was an important factor in determining PHP

echolocation activity. The mean detections peaked between the

hours of darkness 23:00-3:00 PST, before sharply dropping off

between the hours of 3:00-5:00/6:00 PST (Figure 4). A similar diel

echolocation activity pattern was observed in the C-POD data

(Supplementary Figure 1). Hourly DPM between 2016 and 2018

for July to October displayed higher echolocation activity during

dark and civil twilight hours compared to daylight hours for all 3

years (Supplementary Figure 1). For F-POD data daylight hours

(between 7:00-20:00 PST on average) were the least echolocation
TABLE 1 B.C. Cetacean Sightings Network (BCCSN) data pull for number of harbour porpoise sightings, including number of individuals, reported
per month within the Prince Rupert wider study area between 1993 and March 2022.

Month Aggregation category

1 to 5 6 to 10 11 to 30 31+ Total

January 33 4 8 4 49

February 16 4 4 3 27

March 33 8 9 3 53

April 33 3 4 1 41

May 38 5 43

June 53 1 54

July 67 4 71

August 79 3 82

September 67 1 68

October 48 6 54

November 40 4 44

December 34 3 2 1 40

Total 541 46 27 12 626
frontier
Sightings are opportunistic and not corrected for effort.
sin.org

https://doi.org/10.3389/fmars.2022.1010095
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Dracott et al. 10.3389/fmars.2022.1010095
active periods for harbour porpoise, with DPMs as low as 310

versus values of >1000 DPM during peak periods (Figure 4).

For individual months, higher levels of daytime echolocation

activity were observed between January and March and in

September for F-POD data (Figure 5). Similarly, despite only

July-October sampled consistently for the three years for C-POD

data, the mean DPM for per month displayed greater extent of

daytime echolocation activity between January and March, with

a peak in nighttime echolocation activity between April and

August (Supplementary Figure 2). This pattern corresponds with
Frontiers in Marine Science 07
the diel echolocation activity per month patterns as observed

with F-POD data (Figure 5).
Environmental influence on echolocation
activity variation

Detections of PHP varied across the range of Chlorophyll A

and practical salinity values recorded. Generally, mean DPM

peaked around 23-24 PSU for practical salinity and for
FIGURE 2

Fitted relationships for our F-POD Detection Positive Minutes (DPM) model based on GAM standard errors. 95% confidence intervals are
represented by the grey areas around the relationship for each smooth covariate and as dotted lines for factor variables. The Y axis displays the
partial residuals for each model covariate generated by regressing the response on the other covariates. A larger Y axis indicates a more
important covariate for DPM of harbour porpoise.
TABLE 2 The relative influence of model covariates for explaining the harbour porpoise activity patterns.

Covariate % decrease in adj. R2 Adj. R2 rank Change in AIC AIC rank

Sampling year 7.284768212 3 73.93 4

Month 51.39072848 1 659.13 1

Hour 10.59602649 2 216.45 2

Chlorophyll 5.960264901 4 107.34 3

Practical salinity 1.986754967 5 28.66 5

Diurnal phase 5.960264901 4 107.34 3
fro
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Chlorophyll A, DPM peaked at 2.5 µg/L and 4.5 µg/L for 2020

and 2021 respectively. Mean DPM was lowest at higher salinities

(>27) and for Chlorophyll A levels < 2.0 µg/L (Supplementary

Figure 3). Levels of Chlorophyll A peaked bi-annually for both

years (April and July), with higher levels of Chlorophyll A in

2021 (Supplementary Figure 4), whereas salinity levels remained

relatively consistent throughout the seasons, with slightly
Frontiers in Marine Science 08
elevated levels between January and May for both years

(Supplementary Figure 5).

Discussion

In this study, we have shown how both passive acoustic

monitoring and land-based surveys can be used to determine
FIGURE 3

Monthly variation in mean click train duration for harbour porpoise across 2020 and 2021 sampling years for F-POD data. Note sample year
begins January 24th and ends January 23rd and 20th respectively.
FIGURE 4

Diel variation in mean harbour porpoise Detection Positive Minutes (DPM) for F-POD data. Dashed line depicts the 95% confidence interval
around the means. Note sample year begins January 24th and ends January 23rd and 20th respectively.
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fine-scale trends in PHP echolocation activity within a highly

trafficked coastal area. Continuous data collection from PAM

devices is demonstrated to being key in understanding the

influence of environmental covariates on PHP echolocation

activity. Through deploying F-PODs on a rotational basis, it is

possible to capture data to extract inter-annual and intra-annual

trends in echolocation activity with confidence.

Visual surveys, whether via a vessel- or land-based platform,

are the most widely used approach for assessing cetacean

presence and distribution (Frasier et al., 2021). Whilst vessel-

based surveys typically cover a wide spatial area and can provide

metrics on abundance and a greater number of behavioural

metrics of observed cetaceans, observations are limited to when

animals surface to breathe, daylight hours, visibility, weather,

presence of vessels and often sea state (Forney et al., 1991;

Soldevilla et al., 2011; Yack et al., 2014; Frasier et al., 2021). For

PHP, we found that both PAM devices and land-based survey

approaches had similar levels of detectability for determining

both presence and relative numbers of PHP within our study

site. The high sensitivity of PAM devices such as C-PODs, F-

PODs and their predecessors (POD and T-PODs) for detecting

HPs is already well known e.g. (Simon et al., 2010; Tregenza

et al., 2016; Jacobson et al., 2017). Harbour porpoise in British

Columbia are subject to predation by Bigg’s killer whales, which

may use the porpoise’ own echolocation signals as an aide to

locating them (Barrett-Lennard et al., 1996). One might

therefore expect porpoises in this part of their range to use
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echolocation sparingly and remain silent much of the time. We

found this not to be the case—indeed, the concordance of visual

and acoustic detections reported here was striking, consistent

with findings reported by Akamatsu et al., 2007. Furthermore,

we detected PHP on 96% and 100% of C-POD and F-POD

deployment days respectively. This suggests that in our study

area the perceived risk of predation by Bigg’s killer whales was

low during our observing periods and/or that the foraging

advantage provided by echolocation outweighed the increased

risk of predation that it posed.

In addition to the high detection rates, the F-POD derived

data demonstrated distinct seasonal and diel variations in PHP

echolocation activity. Seasonality of HPs is relatively well

understood for populations in the UK and Europe; peak

echolocation activity was observed in April for North Sea

populations (Zein et al., 2019), October to March for west

Wales populations (Simon et al., 2010; Nuuttila et al., 2017),

December to February for northwest Ireland populations (Todd

et al., 2009), April to October in Baltic Sea populations

(Sveegaard et al., 2012), and August for northwestern North

Sea populations (Weir et al., 2007). In a majority of cases, local

prey abundance was hypothesized to be driving these inter-

annual peaks of echolocation activity (Weir et al., 2007;

Sveegaard et al., 2012; Schaffeld et al., 2016).

We detected a distinct peak in PHP echolocation activity

between April and August for both years, which corresponded

with the double peak of Chlorophyll A concentrations in April
FIGURE 5

Hourly variation in mean harbour porpoise Detection Positive Minutes (DPM) across months for F-POD data. Data for 2020 and 2021 combined.
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and July (Supplementary Figure 4) and was supported by the

significance of Chlorophyll A as an echolocation activity

predictor for PHP. Elsewhere in the world, HP echolocation

activity is known to coincide with Chlorophyll A concentration

peaks (Tynan et al., 2005; Gilles et al., 2011; Wingfield et al.,

2017; Stalder et al., 2020). In the NE Pacific, Chlorophyll A

concentrations have been shown to highly correlate with

variation in resident fish yield (Ware and Thomson, 2005),

and in particular with the productivity of Pacific herring

(Clupea pallasi) populations (Perry and Schweigert, 2008).

PHP are known to feed on a variety of fish species, including

sand lance (Ammodyies hexapterus), Pacific hake (Merluccius

productus), and Pacific herring (Clupea pallasi) (Hall, 2011;

Nichol et al., 2013), suggesting that the trends in echolocation

activity we observed are related to the presence of prey. Juvenile

herring tend to have greater nutrition-dense prey availability

after the initial May phytoplankton bloom (Foy and Norcross,

1999) and therefore are located more readily in coastal waters in

the northeast Pacific between May and October (Beamish, 1995;

Fisheries and Oceans Canada, 2008; Lewandoski and Bishop,

2018). PHP tend to forage for mostly small fish as opposed to

those focused on by fisheries (Wisniewska et al., 2016), therefore

seasonal trends observed in our study could be largely driven by

presence of nutritionally rich juvenile herring between the

months of May and August.

Additional hydrography variables, including salinity, are

also known to influence the availability and distribution of

important HP prey (van Beest et al., 2018). In the North Sea,

the distribution of Atlantic herring (Clupea harengus),

particularly spawning populations, positively correlates with

salinity levels (Akimova et al., 2016). Salinity levels remained

fairly constant over our 2020 and 2021 study period,

corresponding with salinity ranges previously reported in the

area (Trites, 1952; Johannessen et al., 2020). Slight reductions in

salinity observed after April likely correspond to the spring

freshwater input from the Skeena and Nass rivers into

Chatham Sound (Trites, 1952), however PSU levels did not

drop below 20, which is again consistent with previous studies

(Johannessen et al., 2020). PHP echolocation activity peaked

between 23 and 24 PSU, which coincides with the timeframe

where freshwater input reduced salinity levels. Some studies

have described higher HP presence around the lower end of the

relative salinity range for the area (Edrén et al., 2010; Stalder

et al., 2020), however it is most likely that the trends observed in

our study are driven by the behaviour and habitat preference of

their prey (Fontaine et al., 2010; Sveegaard et al., 2012; IJsseldijk

et al., 2015).

Diel trends in HP echolocation activity elsewhere have been

shown to be influenced by diel trends in the distribution of prey

fish species within the water column (Schaffeld et al., 2016;

Wisniewska et al., 2016). In both the Atlantic and Pacific,
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herring display reduced predator avoidance mechanisms

during the hours of darkness and tend to be located closer to

the surface in less aggregated schools (Cardinale et al., 2003;

Didrikas and Hansson, 2009; Godefroid et al., 2019; Zein et al.,

2019). This greater availability of herring during the night could

explain the mostly nocturnal PHP echolocation activity patterns

observed in this study. HP need to forage nearly continuously to

meet energy requirements (Wisniewska et al., 2016), therefore to

optimize foraging, PHP are likely to follow the vertical

distribution of their prey in the hours of darkness (Zein et al.,

2019). The notable shift between January and March to

increased echolocation activity during daylight hours from

both F-POD and C-POD data, could also be in response to

local forage fish fluctuations. Fish species including sand eels and

sand lance present an inverse pattern to the diel trends of herring

(Santos et al., 2004). Sand lance burrow within soft sediment

during nighttime hours and spend diurnal hours foraging within

the water column (Hobson, 1986). It is therefore possible that

sand lance are more readily available during the daylight hours

between January and March and that PHP are foraging

opportunistically on them (Zein et al., 2019).

Peaks in sightings of PHP aggregations between the months

of December to April co-occur with the increased diel variation

we observed in these winter months. Larger aggregations of PHP

are also good indicators of increased local prey availability

(Sveegaard et al., 2012; Torres Ortiz et al., 2021) and could

also signal evidence of annual social and/or mating interactions

(Herr et al., 2009; Crossman et al., 2014). Similarly, there were

peaks in total number of PHP sightings reported within the

wider study area between July and August over the 23 years,

again corresponding to the peaks in echolocation activity.

Despite not identifying terminal feeding buzzes of PHP in this

study, the proven strong relationship between Chlorophyll A

concentrations, prey availability, and the energetic demands of

PHP means it is likely that a majority of the echolocation activity

observed is prey driven (Schaffeld et al., 2016).

Overall, this study has highlighted key patterns in PHP

occurrence and identified predictors of echolocation activity

patterns observed. It is evident that the area surrounding

Prince Rupert between December and April is key for

supporting large aggregations of PHP, especially during the

daylight hours, and between April to August nocturnal

activities of smaller PHP aggregations. Due to the high

energetic demands of PHP, it is expected than many of these

patterns are directly driven by prey distribution, density and

abundance within Chatham Sound. The combination of high

detection rate and apparent prey-driven responses likely reflects

that the area surrounding Tuck Island at the approach to Prince

Rupert Harbour is important foraging habitat for PHP. HPs

elsewhere have been shown to be highly susceptible to vessel

disturbance (Jenkins et al., 2009; Nabe-Nielsen et al., 2014;
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Oakley et al., 2017), with the effect of cumulative disturbance (i.e.

vessel traffic in combination with other stressors such as prey

availability) likely resulting in detrimental effects on fitness and

individual survivorship (Booth et al., 2013; Dyndo et al., 2015;

Wisniewska et al., 2016). However, as demonstrated in this

study, PHP are currently persisting and continuing to utilize

this highly trafficked area in the north Pacific on an annual basis.

Results of a study from Denmark suggested that, whilst increases

in ship disturbance is known to reduce population sizes,

populations of HP can become resistant to vessel disturbance

if the disturbance is consistent (Nabe-Nielsen et al., 2014). This

suggests that HP are capable of acclimatizing to the disturbance

associated with vessel traffic, providing vessel traffic volumes

remain stable. This is important to consider for PHP in Prince

Rupert; with the expected increased vessel traffic associated with

the ongoing terminal expansion, it is possible that this increased

localized disturbance could result in reductions in population

size (Nabe-Nielsen et al., 2014) and is important to consider for

species at risk management. Ultimately, the findings of this study

could be used to inform management of PHP in the form of

establishing spatial and temporal hotspots based on PHP

activity. These hotspots could inform commercial mariners,

industry (including proposed development and construction

schedules) and recreational boaters of the periods when PHP

are most active and abundant, to potentially mitigate

disturbance during these periods.

Going forward, it will be beneficial to analyse echolocation

train inter-click intervals (ICIs) and rates of feeding buzzes within

the study site to determine foraging rates in relation to presence or

absence of vessels, vessel type and total vessel traffic. To

understand the influence of potential fish prey species on PHP

interannual trends, robust monitoring tools such as

environmental DNA (eDNA) could be employed to gather

information on seasonal presence of fish community

assemblages within our study site (Thomsen et al., 2016;

Sigsgaard et al., 2017). Additionally, in Europe it is well known

that HPs display tide-dependent patterns in occurrence (Johnston

et al., 2005; Pierpoint, 2008; IJsseldijk et al., 2015), therefore it

would be of interest to examine the relationship between PHP and

tide in Chatham Sound to further understand additional abiotic

drivers of PHP echolocation activity and foraging rates.
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