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The measurement of Catch Per Unit Effort (CPUE) supports the assessment of

status and trends by managers. This proportion of total catch to the harvesting

effort estimates the abundance of fishery resources. Marine environmental data

obtained by satellite remote sensing are essential in fishing efficiency

estimation or CPUE standardization. Currently, remote sensing chlorophyll

data used for fisheries resource assessment are mainly from passive ocean

color remote sensing. However, high-resolution data are not available at night

or in high-latitude areas such as polar regions due to insufficient solar light,

clouds, and other factors. In this paper, a CPUE inversion method based on

spaceborne lidar data is proposed, which is still feasible for polar regions and at

nighttime. First, Atlantic bigeye tuna CPUE was modeled using Cloud aerosol

lidar and infrared pathfinder satellite observations (CALIPSO) lidar-retrieved

chlorophyll data in combination with sea surface temperature data. The

Generalized Linear Model (GLM), Artificial Neural Network (ANN) and Support

Vector Machine Methods (SVM) were used for modeling, and the three

methods were compared and validated. The results showed that the

correlation between predicted CPUE and nominal CPUE was higher for the

ANN method, with an R2 of 0.34, while the R2 was 0.08 and 0.22 for GLM and

SVM, respectively. Then, chlorophyll data in the polar regions were derived

using CALIPSO diurnal data, and an ANN was used for Antarctic krill. The

inversion result performed well, and it showed that the R2 of the predicted

CPUE to nominal CPUE was 0.92. Preliminary results suggest that (1) nighttime

measurements can increase the understanding of the diurnal variability of the

upper ocean; (2) CALIPSOmeasurements in polar regions fill the gap of passive

measurements; and (3) comparison with field data shows that ANN-based lidar

products perform well, and a neural network approach based on CALIPSO lidar

data can be used to simulate CPUE inversions in polar regions.
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1 Introduction

Catch Per Unit Effort (CPUE) is essential data in the

assessment and management of fishery resources. CPUE is

proportional to the abundance of fishery resources and serves

as an important relative index of fishery resource abundance

(Chen et al., 2008). During the assessment, a linear relationship

between CPUE and abundance was assumed, but commercial

production data were strongly influenced by temporal factors,

spatial factors, environmental factors, and fishing capacity

(Harley et al., 2001; Erisman et al., 2011). To use more reliable

and representative CPUE data during assessment, it is necessary

to standardize the nominal CPUE data using a statistical model

(Maunder and Langley, 2004; Maunder and Punt, 2004). Thus

the quality of standardized CPUE data and the predictability of

consistent and stable models can be improved to provide better

support for the assessment and management of fisheries

resources (Ward et al., 2013). Marine environmental data

obtained by satellite remote sensing are often essential in

fishing efficiency estimation or CPUE standardization (Guan

et al., 2017).

Research by marine scientists on the standardization of

fisheries data began at the end of the last century (Maunder

and Langley, 2004). Bigelow et al. (1999) standardized the CPUE

using data such as sea surface temperature (SST) and

chlorophyll_a concentration (Chl_a). Daisuke Ochi et al.

(2014) standardized the Japanese bigeye tuna CPUE from

1960 to 2013 using Generalized Linear Model (GLM) and

found that the trend of CPUE varied by region. The

knowledge and research on fisheries data standardization in

China is relatively late, and most of the literature reports are

found in the last decade (Guan et al., 2014). (Chen et al., 2011)

developed a habitat model based on quantile regression to

evaluate the habitat quality of yellowtail forage fisheries in the

Yellow Sea in winter using SST and Chl_a concentrations. The

results found that habitat indices were positively correlated with

CPUE when only SST and Chl_a were considered. Shi et al.

(2020) standardized the CPUE of the Northwest Pacific fallfish

fishery in mainland China by combining the statistical data of

fallfish fishery production in the Northwest Pacific Ocean from

2003 to 2017 with the marine environmental data obtained from

satellite remote sensing. Among these CPUE normalization

models, the GLM and the Generalized Additive Model (GAM)

are two traditional approaches (Venables and Dichmont, 2004),

with GLM being the most commonly used. These two models

are simple and easy to operate and can be computed by user-

friendly software (Rodrıǵuez-Marıń et al., 2003). However, both

methods have significant disadvantages, such as false

assumptions and cross-term processing (Yu et al., 2013). Later,

several nonlinear techniques were applied to standardize CPUE

data, such as artificial neural networks (ANN) and Support

Vector Machine (SVM) methods. ANN has better nonlinear

mapping capabilities and can achieve higher prediction results
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compared to traditional GLM and GAM approaches (Yang et al.,

2015). SVM has several theoretical advantages, such as it has no

local minima in the learning phase (Huang et al., 2004) and has

increased generalization performance over a limited number of

training samples (Mountrakis et al., 2011).

Globally, the application of remote sensing in fisheries is

increasing (Perez et al., 2013), and the use of SST and Chl_a

parameters can provide insight into the marine environment

and help explore fishery resources (Kamei et al., 2014).

Currently, remote sensing data for fisheries resource

assessment are mainly derived from passive remote sensing,

such as the Moderate Resolution Imaging Spectra radiometer

(MODIS). However, high-resolution Chl_a data cannot be

acquired at night and in high-latitude areas such as polar

regions due to factors such as spatial resolution (Guan et al.,

2017), insufficient solar light (Lu et al., 2020), and clouds (Babin

et al., 2015). In addition, passive remote sensing can only

measure the surface or near surface of the ocean and data on

the internal spatial structure of the ocean cannot be retrieved

(Liu et al., 2018). In contrast, lidar as an active remote sensing

technique, has the advantages of rapidity and high resolution

(Chen et al., 2019) and can characterize the vertical structure of

water bodies in favorable weather conditions and at high spatial

resolution. Lidar has a wide range of applications, such as (1) fish

detection (Churnside, 1999; Churnside et al., 2011), (2) plankton

layer (Churnside, 2007; Churnside and Donaghay, 2009), (3)

bathymetry (Irish et al., 2000), and (4) air bubbles (Churnside,

2013) and measurements of (1) ocean surface roughness and (2)

wave detection through the interpretation of phytoplankton

characteristics (Betz, 2015). Cloud aerosol lidar and infrared

pathfinder satellite observations (CALIPSO) launched by NASA

provides imagery that supports the characterization of the

vertical structure of plankton near the ocean surface (Lu et al.,

2021). The orthogonally polarized cloud aerosol lidar (CALIOP)

carried on CALIPSO is the first dual-polarized lidar to provide a

global vertical profile of diurnal elastic backscatter (Lu et al.,

2014). However, few studies have used lidar technology to

standardize CPUE.

In this paper, bigeye tuna and Antarctic krill were selected as

the training data for CPUE standardization. Bigeye tuna are

highly migratory species inhabiting tropical or temperate waters,

with high densities near the equator, while Antarctic krill are

distributed in the Antarctic region. In both regions, passive

remote sensing limitations are attributed to missing data, which

demonstrates the importance of ultisensory approaches. The

inversion of Chl_a using Lidar data can compensate for the

missing data, thus demonstrating the utility of active remote

sensing. A three-step process was applied to populate data gaps.

First, the CALIPSO data were preprocessed and then the

CALIPSO data were used to retrieve Chl_a. Secondly, retrieved

Chl_a and SST data were matched with fishery data, and the

latitude and longitude of CPUE were used as criteria for gridding

these environmental variable data. After that, the Atlantic bigeye
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tuna CPUE and its influencing factors were modeled using GLM,

ANN and SVM models. The effectiveness of the three modeling

approaches was validated and compared. Finally, the ANN

model was applied to model and predict the CPUE of polar

Antarctic krill. The main highlights of this paper are as follows:

(1) Nighttime measurements increase knowledge of upper ocean

diurnal variability; (2) CALIPSO measurements in the polar

regions fill passive measurement gaps; and (3) Comparison with

in situ data indicates that ANN-based lidar products provide

valid CPUE estimates.
2 Materials and methods

2.1 Study area

The catch data of bigeye tuna (Thunnus obesus) from 2008 to

2015 were selected as the model training data. Bigeye tuna are a

warm-water fish, and the production fisheries are mainly located

in equatorial tropical waters and deep-sea basins, such as the

Gambia Basin, Sierra Leone Basin and Brazil Deep Sea Basin.

The Central Atlantic Ocean mainly consists of deep-sea basins

and the Atlantic Ridge with few islands. Therefore, the central
Frontiers in Marine Science 03
Atlantic tuna fishing area was selected as the study area. Figure 1

shows the study area and monthly CPUE statistics for this paper,

the specific study area is 30°S-20°N, 60°W-20°E (Figure 1A).

Fishing is mainly concentrated on the west coast of Africa, with

the highest CPUE values occurring near the equator (20°W-4°E,

6°S-6°N) and decreasing from there. CPUE is divided into four

ranges: less than 1.81; 1.81 to 6.53; 6.53 to 13.8, and more than

13.8 tons/hour (t/h). The highest CPUE is found in the Guinea

Basin and its southwestern waters, with a range greater than 13.8

t/h.

The catch data of Antarctic krill (Euphausia superba) from

2008 to 2015 were selected as the polar model training data.

Antarctic krill are a species of krill that live in the Antarctic

waters of the Southern Ice Ocean, and fishing operations are

mainly in the South Atlantic region. Figure 1B shows a map of

the main fishing areas in the Antarctic region from the

Commission for the Conservation of Antarctic Marine Living

Resources website (CCAMLR, 2017). The fishing areas are

divided into three main Fishing Area (FA) 48, 58 and 88, and

each main fishing area is divided into several subareas. This

paper focuses on modeling and predicting CPUE for the three

main fishing areas and further investigates the CPUE variation

in the three Sub Fishing Area (SFA) 48.1, 48.2 and 48.3 of FA 48.
A B

DC

FIGURE 1

shows the study area and CPUE statistics, (A, B) are maps of the main fishing areas in the Atlantic Ocean and Antarctica, respectively; (C, D) are monthly
CPUE statistics for bigeye tuna and Antarctic krill, respectively, from 2008 to 2015. Where X-axis indicates the year, Y-axis indicates the value of CPUE,
and 1 to 12 are the months, indicating the CPUE values for each month of the year; the unit of CPUE for tuna is T/H, indicating the number of tons (T)
caught per hour (H), and the unit of CPUE for Antarctic krill is T/D, indicating the number of tons (T) caught per day (D).
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2.2 Data

2.2.1 Fishery data
The fishery data of bigeye tuna are obtained online from the

International Commission for the conservation of Atlantic

Tunas (ICCAT) (https://www.iccat.int/en/index.asp), and krill

data are obtained online from Commission for the Conservation

of Antarctic Marine Living Resources (CCAMLR) (https://www.

ccamlr.org/). Production statistics include data from 2008 to

2015, including date of operation, location (longitude and

latitude), catch and operation time. The spatial resolution of

the production data statistics is 1° × 1°, and the time resolution

is months.

CPUE values for bigeye tuna and Antarctic krill for each

month from 2008-2015, respectively are illustrated in

Figures 1C, D. CPUE for bigeye tuna is defined as production

per hour, i year, j month, k longitude, l latitude (resolution: 1° ×

1°) and CPUE for Antarctic krill is defined as production per

day, i year, j month, k longitude, l latitude (resolution: 1° × 1°).

The corresponding nominal CPUE in every 1° × 1° grid is

calculated by:

CPUEi,j,k,l =  o
Catchi,j,k,l

oEi,j,k,l
(1)

where oCatchi,j,k,l refers to the total catch of the ith year, jth

month, kth longitude, and lth latitude. oEi,j,k,l is the

corresponding operation duration.
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2.2.2 Environmental data
Passive remote sensing data (Chl_a and SST data) come

from MODIS-Aqua Level 3 monthly averaged data with a

resolution of 4 km and can be downloaded from the NASA

Oceancolor Web (http://oceancolor.gsfc.nasa.gov). The active

remote sensing data come from Cloud Aerosol Lidar with

Orthogonal Polarization (CALIOP) developed by NASA and

Centre National d’Etudes Spatials (CNES), which include

CALIPSO Level 1B V4.10 data products (Kim et al., 2018),

lidar Level 2 Cloud, Aerosol, and Merged Layer V4.20 products

(http://orca.science.oregonstate.edu/lidar_nature_2019.php).
2.3 Method

The research method mainly includes three steps: Chl_a

inversion, tuna CPUE modeling and model comparison, and

Antarctic krill CPUE standardized modeling. Major research

processes such as data acquisition and analysis are illustrated in

Figure 2. First, the particulate backscatter coefficient (bbp) of

CALIPSO is preprocessed, and the correlation between bbp and

Chl_a of MODIS is established using ANN model, and Chl_a

inversion is performed according to the model. For fishery data,

CPUE is calculated according to Equation 1. Then, Chl_a, SST

and CPUE are matched based on the latitude and longitude

resolution (1°×1°) of the fishery data. The matched data are then

brought into the GLM, SVM and ANN models to compute the
FIGURE 2

Flow chart of this study.
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relationship between environmental data and CPUE, and the

effects of the three models are compared and verified. Finally, the

model with better performance is selected for CPUE prediction.

Chl_a, SST and CPUE are matched against the latitude and

longitude resolution (1° × 1°) of the Antarctic krill data. The

nominal CPUE and predicted CPUE were collated and their

correlations were calculated by calculating the residual sum of

squares (SSE), coefficient of determination (R2), degree of

freedom (df), root mean square error (RMSE), correlation

coefficient and p-value, respectively. The predicted CPUE and

nominal CPUE were then tested for correlation using ANN

model output and CPUE predictions. Section 2.3.1 introduces

the calculation process for CALIPSO inversion Chl_a; Section

2.3.2 introduces the calculation principle of GLM; Section 2.3.3

introduces the calculation principle and calculation method of

artificial neural network; finally, Section 2.3.4 introduces the

calculation principle and calculation method of SVM.

2.3.1 CALIPSO data processing for Chl_a
For CALIPSO data, the backscatter signals at 532 nm are

detected by photo multiplier tubes (PMTs) through Polarization

Beam Splitters (PBS). Generally, the measured signal strength is

greater than the actual backscattered signal due to the transient

response of the detector. Therefore, the measured signal is

corrected before being processed. The corrected signal can be

calculated as follows (Li et al., 2010):

b 0(z) = ½F�−1b(z) (2)

where b'(z) is the real backscattered signal, b(z) is the output of
the receiver and [F] is the matrix form of the transient function,

which can be described as:

F =

F(z2) F(z1) 0

F(z3) F(z2) F(z1)

· · ·         0        

· · ·         0        

· · · · · · · · ·

F(zn+1) F(zn) F(zn−1)

· · · · · ·

· · · F(z2)

2
66664

3
77775

(3)

In the receiver subsystems of CALIOP, the backscatter signal

is separated into parallel (‖) and perpendicular (⊥) signals by
PBS. However, due to nonideal characteristics, crosstalk (CT)

(Pitts et al., 2018) will occur, which means that a portion of the

parallel polarized signal is transmitted to the vertical channel.

The effect of crosstalk can be eliminated as

b∥,⊥ =
b∥,m

1 − CT
(4)

b⊥,c = b⊥,m − CT � b∥,c (5)

where b∥,c and b⊥,c are corrected parallel and perpendicular

signals, respectively.

After removing the effects of transient response and crosstalk

in the CALIOP receiver subsystem, bbp can be calculated from
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CALIOP data. The perpendicular signal is used to characterize

the specific because it is difficult to extract subsurface signals

from parallel channels due to interference from sea surface

reflections. First, taking into account the influence of the

atmosphere, the vertical-parallel ratio is used for collection

(Behrenfeld et al., 2013):

bW+ = dT
bS

1 − dT=dw
(6)

where bW+ is the subsurface column-integrated backscatter of

the perpendicular component, dw is the column-integrated

below-surface depolarization ratio, and bS s the lidar surface

backscatter as follows.

Then, the particulate backscatter coefficient at a 180°

scattering angle is calculated:

b(p) = 2Kdbw
1 + dp
dpt2

(7)

where Kd is the ocean downwelling diffuse attenuation

coefficient, t is the ocean surface transmittance and dp is the

particulate depolarization ratio. After that, the particulate

backscatter coefficient (bbp) can be calculated based on the

relationship between b(p) and bbp:

bbp ≈
b(p)
0:16

 
532
440

(8)

Finally, Chl-a can be estimated based on the relationship

between MODIS Chl_a and CALIPSO bbp.

2.3.2 GLM
GLM is a multivariate regression model extension that

assumes that the expected value of the response variable is

linearly related to the explanatory variable (Hua et al., 2019).

The equation of the GLM is described as:

g(mi) =  XT
i b (9)

mi =  E(Yi) (10)

where g is the link function, Xi is the explanatory variable of the

ith response variable, Yi is the ith random variable, and b is the

vector of the parameters.

In this paper, CPUE is assumed to follow a lognormal

distribution, so the GLM is expressed as:

Ln(CPUEi,j,k,l + 1)

= k + a1yeari + a2monthi + a3loni + a4lati + a5SSTi

+ a6chl _ ai + a1interactions + ei,j,k,l (11)

where CPUE is defined as the fishing yield per hour; interactions

refer to the interaction term, which represents the interaction
frontiersin.org
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effect of time and space explanatory variables; a1~a6 are model

parameters; and e is the residual, which is assumed to have a

normal distribution. In the GLM, time (year, month), space

(longitude, latitude) and environment (SST, Chl_a) factors are

taken as explanatory variables. Year, month, latitude, and

longitude are discrete variables, and other variables are classified

as continuous variables. To avoid a CPUE of 0, a constant 1 was

added to CPUE before logarithmic transformation.

2.3.3 ANN
ANN have become a popular and useful software tool to

model complex environmental processes. Numerous authors

during the past several decades (Maier and Dandy, 2001;

Suryanarayana et al., 2008; Pastore et al., 2020; Contractor and

Roughan, 2021) have applied ANN techniques to characterize

oceanographic processes. ANN can be used to build simple

models, form different networks with different connections, and

have a high degree of nonlinearity (Li et al., 2015; Sadeghi et al.,

2019). They are capable of complex logical operations and

nonlinear relational implementation. The overall model is

given by the equation:

ŷ =  wo,0 +oo−1
j=+1f (oI

i=1xiwj,i + wj,0)wo,i (12)

where wj,i denotes the weight of the connection from node j to i,

o is the output node and f is the logistic function ( 1
1+e−x ).

Additional details regarding the use of ANN area discussed in

reference books such as Bishop (1995) and Picton (2000).

Fisheries applications have been documented in Lek and

Guegan (2000); Maier and Dandy (2000), and Ozesmi

et al. (2006).

In this paper, Artificial neural network toolbox functions in

MATLAB are used for building the network structure, training

and prediction. The structure of ANN toolbox constitutes an

input layer, one hidden layer with the layer size of thirty, and an

output layer. The network is a two-layer feedforward network,

where there is a sigmoid transfer function in the hidden layer

and a linear transfer function in the output layer. The layer size

value defines the number of hidden neurons. The input layer has

six nodes corresponding to the input variables of environmental

factors they are: year, month, latitude, longitude, CALIPSO

inversed Chl_a and SST. The output layer has one node

corresponding to the output variable which is the CPUE of

bigeye tuna. The environmental factor data were matched with

CPUE data in resolution 1°×1°. The input data was divided into

three parts: 70% of the data were used for training, 15% for

validation, and 15% for testing. To calculate neuron positions

the layer size was 30 and the training algorithm was Bayesian

regularization. The environmental factor data and CPUE data of

2008 was used for training and the model was applied to CPUE

estimation from 2008 to 2015. The specific steps are: (1) match

environmental factor data to CPUE based on a 1°×1° resolution;

(2) calculate logarithm of environmental factor data and set as
Frontiers in Marine Science 06
predictors, calculate logarithm of CPUE data is set as response

and imported in ANN toolbox; (3) set the ratio of training data

(70%), validation data (15%) and test data (15%); (4) set layer

size as 30; (5) set training algorithm as Bayesian regularization;

(6) train and export the model when the correlation coefficient

(R) of training data in training result is higher than 0.6; and (7)

environmental factor data from 2008-2015 were brought into the

model for CPUE prediction. The choice of training layers and

algorithms affects the training results, and the settings

mentioned in this paper perform best after repeated training.

Different training layers and algorithms should be set according

to the specific data.

2.3.4 SVM
The SVM are data parsimonious that is developed for

learning relationships in small data sets. It is an effective

method to avoid local optima and has unique advantages in

dealing with complex problems such as limited samples, high

dimensional and nonlinear data. During the past few decades

advances in SVM algorithms were developed to support the

classification and regression of linear and non-linear data. Some

authors have applied SVM technique to describe fisheries

processes such as stream flow forecasting (Asefa et al., 2006),

hydroacoustic classification of fish schools (Bosch et al., 2013)

and CPUE standardization (Yang et al., 2020). The SVM

performance highly relates to parameter selection and is

proved perform well in seasonal flow volume predictions and

CPUE standardization. SVM maps the independent variables to

a high-dimensional feature space by nonlinear mapping, and

finds an optimal classification surface in the high-dimensional

feature space so that the error of all training samples from this

optimal classification surface is minimized (Huang et al., 2004).

In SVM regression (Smola and Schölkopf, 2004), the input x is

first mapped onto an m-dimensional feature space using some

fixed (non-linear) mapping depends of a kernel function (K).

Then, the best linear separating hyper-plane in the feature space

can be found (Li et al., 2015):

f (x,w) =om
i=1wi ∅i (x) + w0 (13)

In this paper, the environmental factor data and CPUE data

of 2008 were used for training and the model was applied to

CPUE estimation from 2008 to 2015. The support vector

machine regression model (fitrsvm) function in MATLAB was

used to classify data that were not linearly separable. Followed

the usage recommendations outlined by the official guide to

MATLAB (2021), each predictor variable centralizes and scales

by centering and dividing columns by the corresponding

weighted column mean and standard deviation, and secondary

sampling to select an appropriate scale factor. The ‘kfold’ for

cross-validation method is 10, so that the data are randomly

divided into 10 datasets, and for each dataset, the dataset used as

validation data is reserved, and the 10 compact trained models
frontiersin.org
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are stored in the tuple vector of the cross-validation model.

Gaussian function was selected as the kernel function for

computing elements of the Gram matrix, which is calculated by:

G(xj, xk) = exp − ‖ xj − xk ‖ 2 )
�

(14)

where G(xj, xk) is assumed an element (j,k) of the Gram matrix,

where xj and xk are p-dimensional vectors representing the

observations j and k in predictors X. In practice, the

optimization problem is solved in its simpler dual form

(Bottou and Lin, 2007), since this ensures that the implicit

mapping only occurs in the form of the kernel G(xj,xk) in the

optimization problem and the discriminant function

(Guttormsen et al., 2016). The specific steps are: (1) match

environmental factor data to CPUE based on a 1°×1° resolution;

(2) choose ‘fitrsvm’ function to fit a regression Support Vector

Machine (SVM); (3) environmental factor data was set as

predictors, CPUE data was set as response; (4) set parameters

(5) run the function and export the model; (6) environmental

factor data from 2008-2015 were brought into the model for

CPUE prediction. Additional details regarding the use of SVM

area discussed in Steinwart and Christmann (2008).
3 Results

3.1 Results of Chl_a inversion by using
CALIPSO data

CALIPSO effectively inverted the daytime and nighttime

Chl_a distribution and retrieved data effectively filled in the

missing parts of MODIS. Figure 3 shows the comparison of the

Chl_a distribution of MODIS and CALIPSO in the study area

and the distribution of CALIPSO-derived Chl_a during day and

nighttime. Figure 3A shows the Chl_a data of MODIS, and it can

be seen that there are significant missing data in the yellow

boxes, especially near the Gulf of Guinea (0°-15°E, 6°S-6°N),
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where more data are missing. Near the equator, Chl_a is

distributed like a tape (30°W-12°E, 6°S-5°N), and the Chl_a

value is higher in the coastal areas (60°W-45°W, 0°-12°N; 17°W-

15°W, 18°N-24°N; 7°E-15°E, 24°S-12°S). Figure 3B shows the

Chl_a data of CALIPSO obtained by inversion using ANN based

on the relationship between Chl_a of MODIS and bbp of

CALIPSO. The missing area data can be filled by the inversion

of CALIPSO data, and the trend of the Chl_a distribution is

roughly similar to that of MODIS. Compared with Figure 3A,

the distribution of Chl_a is similar along the northeast coast of

Brazil, and the distribution of Chl_a is wider offshore of Africa

(0°-15°E, 24°S-6°N) with a lower concentration than that in

Figure 3A. Figures 3B illustrate that the overall distribution of

Chl_a is generally consistent, with a clear band distribution.

Compared to the daytime (Figure 3B), Chl_a is higher at night

along the northeastern coast of Brazil (45°W-30°W, 6°S-0°N),

significantly lower along the coast of Mauritania (23°W-15°W,

24°S-6°N), and higher and more concentrated in the Gulf of

Guinea (0°-15°E, 0°-6°N). The results of the correlation analysis

show an RMSE of 0.6129 and R2 of 0.8253 for daytime and

nighttime Chl_a data.

Statistical analysis was performed on the Chl_a values of

MODIS and CALIPSO, and the results are shown in Figure 4.

Correlation analysis of the Chl_a from MODIS and CALIPSO

values had RMSE of 0.5783 and R2 of 0.5626 (see Figure 4A).

From the frequency distribution of the errors (see Figure 4B), the

distribution basically conforms to a normal distribution with

errors ranging from -0.1 to 0.1, where the probability of 0 to 0.1

is close to 50%.
3.2 CPUE inversion results for the
Atlantic bigeye tuna

Three models (GLM, ANN, SVM) were used to model

Atlantic bigeye tuna and predict CPUE. The results of the

regression analysis for three models compared to the nominal
A B C

FIGURE 3

Comparison of the distribution of Chl_a between MODIS and CALIPSO and the circadian distribution of Chl_a in CALIPSO, (A) is the Chl_a of
MODIS, the area in the yellow box is the missing data of the MODIS data, (B, C) is the Chl_a inversion by CALIPSO; (B) is the daytime
distribution, (C) is the nighttime distribution.
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CPUE are shown in Figure 5. The results indicate that ANN has

the highest R2 of 0.34 among the three models, followed by SVM

with 0.22, and GLM with the lowest of 0.08. Because ANN and

SVM are both non-linear modes, and ANN model performs

better than SVM, and SVM is rarely used in CPUE researches,

therefore, ANN model and GLM model are selected for further

comparison in the following.

3.2.1 Comparison of the results of the GLM
and ANN models

The trend in the distribution of CPUE predicted by ANN

and GLM is roughly consistent with the original nominal CPUE,

with relatively high predictions by GLM. Figure 6 shows the

distribution of nominal CPUE and the CPUE predicted by ANN

and GLM, including the cumulative CPUE values for all months

from 2008 to 2015. As shown in Figure 6A, the areas with high

catches are mainly located near the equator. Among them, there

are two obvious high-production areas in Guinea Basin (5°W-4°

W, 5°S-3°N) and the southern part of the Sierra Leone basin (13°

W-8°W, 4°S-2°N), and a small high-production area in southern
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Cape Verde (13°W-18°W, 9°S-13°S). As seen from Figure 6B,

compared to the GLM (Figure 6C), the ANN-predicted CPUE

distribution is closer to the nominal CPUE distribution but with

slightly lower values. For example, Figure 6B shows that there

are two high-yielding areas in the southern Guinea Basin and

Sierra Leone Basin, similar to Figure 6A. In Figure 6C, the GLM

predicts a larger area of high production areas, mainly

concentrated in 20°W to 3°E, 6°S to 4°N.

Monthly spatial distributions of nominal CPUE and CPUE

predicted by ANN and GLM are shown in Figures 7, 8, 9.

January to December correspond to (A) to (L), respectively, and

the data of each month are the average value from 2008 to 2015.

Spatially, the fishing area was mainly located south of 12°S and

west of 30°W, with some high densities occurring near the

equator, and the interannual variation in the spatial

distribution range was generally small. The spatial location of

higher abundance varied from month to month. The area of

highest abundance in January (Figure 7A) was located within 14°

W-3°E, 4°S-5°N. Then, the high abundance area shifted to the

southeast, and in March (Figure 7C), the high abundance area
A B

FIGURE 4

Statistical results of Chl_a values of MODIS and CALIPSO. (A, B) are the result of correlation analysis and frequency distribution of error, respectively.
A B C

FIGURE 5

Comparison of regression analysis results of three models, (A–C) are GLM, SVM, ANN models respectively.
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appeared at 5°W-5°E, 8°S-2°N. After that, there are no distinct

high abundance areas from April to July. Subsequently, in

August (Figure 7H), the abundance increased at 9°W-2°E, 10°

S-3°N, and a high-yield fishing area was formed that moved

northward with the increase in months. Finally, in December

(Figure 7L), the high abundance area was concentrated at the

equator and north of the equator.

From the comparison of model prediction results, the

distribution of CPUE predicted by ANN and GLM is

consistent with the measured changes and trends. The GLM

predicted values show a larger area of high production area, but

the CPUE value in some areas is lower than that of ANN. GLM

predicts that CPUE is lower than 0.5 t/h from January to June,

and CPUE will exceed 0.6 t/h in equatorial regions after July.

ANN predicts that CPUE is lower than 0.5 t/h only in March to

June, and CPUE will be higher than 0.6 t/h in some regions of

equatorial and southern equatorial regions in other months,

even up to 1 t/h in December near the Angola basin (2°E-6°E,

18°S-16°S.).
3.2.2 Statistical analysis results
The statistical graph of CPUE accumulation calculated for

different models and nominal CPUE based on different

explanatory variables is shown in Figure 10. Panels (A) to (F)

correspond to year, month, longitude, latitude, Chl_a, and SST,

respectively. The blue line is the nominal CPUE, the green line is

the CPUE predicted by ANN, and the yellow line is the CPUE

predicted by GLM.

Overall, the year has an effect on CPUE (Figure 10A), with a

clear phase of change. The CPUE was low from 2008 to 2009 and

increased significantly from 2010 to 2011. In 2012, the CPUE

began to decline and rose again in the next year. After reaching

its highest value in 2013, it decreased each year and finally

reached its lowest value in 2015. The effect of month on CPUE

shows a clear seasonal variation in CPUE (Figure 10B). CPUE

was stable from January to March and then started to decline
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until it reached the lowest value in June. After that, CPUE began

to increase and reached the highest value in October, followed by

another decline in the next two months. In terms of spatial

distribution (Figures 10C, D), the high values of CPUE were

mainly found in the range of 25°W-5°E, 10°S-5°N, and their

distribution characteristics were basically consistent with

Figure 5A. In terms of environmental factors, CPUE increased

as the Chl_a increased from 0.1 to 0.5 mg/m3 (Figure 10E), and

CPUE peaked when the Chl_a was 0.5 mg/m3 and then

decreased significantly with increasing Chl_a. When the SST

(Figure 10F) was between 18 and 22°C, CPUE increased slowly

with increasing SST. There was a large slope increase in CPUE

from 23-28°C, while CPUE decreased briefly when SST was 25-

26°C; finally, CPUE peaked when SST was 28°C and then

decreased rapidly.

The model comparison results show that the ANN-predicted

CPUE is closer to the nominal CPUE, and the GLM-predicted

CPUE is slightly higher. The trend of ANN-predicted CPUE

from 2008 to 2015 is similar to that of nominal CPUE, except for

2013, when it is much lower than the nominal CPUE. The CPUE

predicted by GLM is significantly lower or higher than the

nominal CPUE for all years except 2011 and 2013. The CPUE

in 2012 and 2014 was significantly higher than the nominal

CPUE. The monthly statistics indicate that there is no significant

seasonal variation in CPUE predicted by GLM. The predicted

value from January to March is slightly lower than the nominal

CPUE, and from April to August, it is significantly higher than

the nominal CPUE.

Table 1 shows the statistical analysis results of different

explanatory variables, nominal CPUE, ANN and GLM. It can

be seen that for various explanatory variables, the R2 of the ANN

result is higher, with the lowest R2 for year at 0.8783 and R2

above 0.95 for all others. In the results of the GLM, the R2 is

lower for year and month at 0.65 and 0.6879, respectively. When

the explanatory variables are longitude and Chl_a, the R2 of the

GLM is higher than that of the ANN, but only by

approximately 0.01.
A B C

FIGURE 6

Distribution of the cumulative amount of CPUE in all months from 2008 to 2015. (A–C) are the CPUEs of the original measurement, ANN and
GLM, respectively.
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3.3 CPUE inversion of Antarctic krill in
the main fishing areas of Antarctica

In polar regions, both MODIS and CALIPSO are associated

with outliers and missing data. CALIPSO has a higher spatial

coverage thanMODIS. Figure 11 shows the Chl_a distribution in

the polar region, where (A) to (D) are the MODIS data and (E)

to (H) are the CALIPSO inversions of Chl_a. The data for two

different months are shown here, March (A, C, E, G) and

September (B, D, F, H), which are chosen because, in general,

on March 22, the Antarctic goes from polar day to polar night,
Frontiers in Marine Science 10
while the Arctic goes from polar night to polar day, and in

September, the Antarctic goes into polar day, while the Arctic

goes into polar night. Thus, there are more Antarctic data and

less Arctic data in March, while the opposite is true in

September. The comparison reveals a much lower coverage of

MODIS data. At the South Pole (11A) in March, there are

significant gaps at the Weddell Sea (30°W to 60°W) and the

Amundsen Sea (90°W to 120°W), as well as partial gaps along

the coast of Queen Maud Land andWilkes Land (0° to 150°E). In

the Arctic (11C), MODIS data are almost completely missing in

Hudson Bay (80°W-90°W) and Davis Strait (55°W-65°W) near
A B

D E F

G IH

J K L

C

FIGURE 7

Climatology monthly spatial distribution of the original measured CPUE; (A–L) correspond to January to December, respectively.
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southern Baffin Island. In September in Antarctica (11B),

MODIS data are scarce and Chl_a is mainly distributed in 45°

W-120°W and 150°W-120°E, with more data in the Arctic and

higher Chl_a of about 3 m-3 in the northern Russian coastal

waters and near the Bering Strait in the eastern United States.

The CALIPSO inversion of Chl_a then effectively populates the

data in these regions and the Chl_a distribution is similar to that

of MODIS. As can be seen from the September data, Chl_a of

CALIPSO complements the region of 120°E-45°W in the

Antarctic. In the Arctic, Chl_a and distribution patterns are

similar to MODIS in all northern Russian seas except at the
Frontiers in Marine Science 11
Bering Strait in the eastern United States, where Chl_a is about 3

m-3 compared to MODIS.

Distribution of Chl_a and SST in the main fishing areas of

Antarctic krill are shown in Figure 12. The fishing areas are

divided into three areas according to FAO, namely, 48, 58 and

88. Chl_a is retrieved from CALIPSO data, including daytime

and nighttime data. The results illustrated that the Chl_a in FA

58 (60°E-80°E, 80°S-60°S) was high and not as high in FA 88,

which was dispersed. The SST increased with increasing

longitude, reached the highest near the main meridian, and

then decreased with increasing longitude. The SST decreases
A B

D E F

G IH

J K L

C

FIGURE 8

Climatology monthly spatial distribution of CPUE predicted by ANN, (A–L) correspond to January to December, respectively.
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with decreasing latitude, and in FA 58, SST is higher in the

latitude range of 45°S to 50°S, close to 10°C, and with the

decrease in latitude, SST is approximately -1°C-3°C in the area

below 60°S.

The predicted CPUE and nominal CPUE for the three

fishing areas were counted and compared according to

different time scales (Figure 13). FA 48 has the highest CPUE

(Figure 13A). In terms of annual variation, the CPUE of the FA

48 was highly variable. First, the nominal CPUE decreased from

90 tons/day (t/d) in 2008 to 60 t/d in 2009 and then increased to

100 t/d in 2010. After that, it remained at 80 t/d for three
Frontiers in Marine Science 12
consecutive years and then increased again. Compared with the

nominal CPUE, the predicted CPUE has a gentle change trend,

basically maintained at 80 t/d, and began to rise in 2013. FA 58

and 88 have much lower CPUE, maintaining a nominal CPUE of

5-6 t/d in FA 58 and approximately 1.5 t/d in FA 88. The

predicted CPUE for FA 58 and 88 differed from the nominal

CPUE, especially for FA 88, which was higher than the nominal

CPUE in all years except 2012. In terms of monthly variation,

the predicted CPUE and nominal CPUE were closer for the three

fishing areas (Figure 13B). Fishing area 58 showed slightly

greater variability, with February and September being almost
A B

D E F

G IH

J K L

C

FIGURE 9

Climatology monthly spatial distribution of CPUE predicted by GLM, (A–L) correspond to January to December, respectively.
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2 t/d higher and January and November being 2 t/d lower. In FA

88, the CPUE was 0 from April to October and 6.35, 3.43 and

5.93 t/d in January, February and December, respectively.

In terms of annual variation (Figure 13C), CPUE was higher

at SFA 48.1 and 48.2 than any of the other sub areas. Maximum
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CPUE were 161.59 t/d during 2010 in SFA 48.1 and 72.56 t/d

during 2014 in SFA 48.2. The CPUE in 48.3 was generally low at

approximately 30 t/d, while those in 2009 and 2010 are

particularly low at 5.04 and 4.42 t/d, respectively. In terms of

monthly variation (Figure 13D), SFA 48.1 and 48.2 show a
A B

D
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C

FIGURE 10

Statistical chart of the cumulative amount of CPUE calculated by different models and nominal CPUE according to different explanatory
variables. The corresponding explanatory variables in (A–F) are year, month, latitude, longitude, chlorophyll, and sea surface temperature. The
blue line is the nominal CPUE, the green line is the CPUE predicted by ANN, and the yellow line is the CPUE predicted by GLM.
TABLE 1 Statistical analysis results of nominal CPUE and CPUE predicted by ANN.

Model Parameter R2 df RMSE P value

ANN Year 0.8783 6 99.7392 5.91E-04

Month 0.9574 10 55.1343 3.53E-08

Lat 0.9722 42 33.3363 4.22E-35

Lon 0.9574 59 22.0972 3.94E-42

Chl_a 0.987 21 80.2227 2.81E-21

SST 0.9861 27 37.4127 1.26E-26

GLM Year 0.65 6 196.3715 0.0156

Month 0.6879 10 80.3263 8.49E-04

Lat 0.9577 43 55.5015 3.62E-31

Lon 0.9678 59 23.3594 1.04E-45

Chl_a 0.9952 21 59.2189 7.94E-26

SST 0.9858 27 47.9941 1.76E-26
front
iersin.org

https://doi.org/10.3389/fmars.2022.1009620
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhong et al. 10.3389/fmars.2022.1009620
similar pattern of variation, with higher CPUE values in March,

April and May, followed by a gradual decrease, but differing in

that in 48.1 rebounded in both October and December. In 48.3,

the high CPUE values occur from June to August, reaching a

maximum of 73.95 t/d in August.

The results of the correlation analysis between nominal

CPUE and predicted CPUE (Figure 14) illustrate that the data

have a high correlation with a R2 of 0.9171, but the analysis by

region reveals that only FA 48 has a high correlation of 0.7587,

since FA 58 and 88 have low R2 values of 0.0554 and 0.4492,

respectively. The results of the correlation analysis of the three

subareas showed that the correlation was high in all three areas,
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with the highest R2 of 0.7436 for 48.2, the next highest R2 of

0.7160 for 48.1, and the lowest R2 of 0.6103 for 48.3.
4 Discussions

The research focused on the effects of temporal, spatial, and

environmental factors impacting the CPUE of Atlantic bigeye

tuna and Antarctic krill. Since the main fishing area for Antarctic

krill is FA 48, studies on the relationship between the spatial and

temporal distribution of Antarctic krill and environmental

factors have focused on SFA 48.1, 48.2, and 48.3. Few studies
A B

D
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FIGURE 11

shows a comparison of the polar Chl_a distributions from MODIS and CALIPSO inversions. (A–D) are MODIS data, (A, B) are Antarctic; (C, D) are
Arctic; (A, C) are March 2008 data (B, D) are September 2008 data; (E–H) are MODIS data, (E, F) are Antarctic; (G, H) are Arctic; (E, G) are March
2008 data (F, H) are September 2008 data; (E, G) are March 2008 data; (F, H) are September 2008 data.
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FIGURE 12

Distribution of chlorophyll and sea surface temperature in the main fishing areas of the polar region. (A–D) is the chlorophyll distribution, and
(E–H) is the sea surface temperature distribution. (A, E) are the total fishing area, (B, F) are FA 48, (C, G) are FA 58, and (D, H) are FA 88.
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were conducted in FA 58 and 88. Therefore, the discussion

mainly focused on the FA 48, which can effectively understand

the spatial and temporal distribution characteristics of Antarctic

krill resources.
4.1 Impact of temporal factors on CPUE

This investigation evaluated temporal variability across

months, seasons, and years for the period from 2008 to 2015.

During this seven-year period, there was no obvious annual

variation pattern between CPUE and year for bigeye tuna.

Monthly variation in CPUE decreased slowly from January

(946 t/h) to March (912 t/h), plunged after March, and

reached the lowest point in June (369 t/h). CPUE surged after

June and remained stable after reaching the highest value

in October (1201 t/h). This result is consistent with past

fisheries research related to Atlantic bigeye tuna. In the study

of Atlantic bigeye tuna fishery, resources and environmental

characteristics, Fan (2003) found that the distribution of the

fishery has significant seasonal changes, and 80% of the

individuals of bigeye tuna caught in the middle and late

September of the year are larger than adult and medium-sized

individuals after treatment. This was because the tuna is in the

spawning stage, and the high catch in this stage is caused by

spawning clusters.

The analysis of annual and monthly variation in Antarctic

krill in different fishing areas from 2008-2015 revealed that the

annual variation of CPUE was small (less than 15 t/d in FA 48,

and less than 1t/d in FA 58, 88). FA 48 peaked in 2010 and then

slightly decreased and continued to increase after 2013. This

variation is consistent with the findings of Huang et al. (2015).

The CPUE values in FA 58 and 88 are smaller, which may be
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influenced by the amount of biological resources (Trathan et al.,

2003; Ashjian et al., 2008) and fishing techniques. The biological

resources of Antarctic krill are mainly concentrated in the South

Atlantic Ocean (FA 48) (Pauly et al., 2000; Nicol and Foster,

2003; Atkinson et al., 2004), and the size categories of fishing

vessels used in FA 48 are 4000 to<10,000 t, while the size of

fishing vessels used in FA 58 and 88 are 500 to<1000 t and 100

to<2000 t. In addition, only FA 48 and 58 are able to conduct

year-round operations, while FA 88 only conducts fishing

operations in January, February, March and December of each

year. The Antarctic krill fishery varies seasonally and the fishing

period changes accordingly. Among the three main subareas of

FA 48 (Figure 13D), SFA 48.1 and 48.2 had higher monthly

mean CPUE from January to April, while SFA 48.3 had higher

monthly mean CPUE from May to August. This is consistent

with the conclusions of international studies (Comiso and

Zwally, 1984; Comiso and Steffen, 2001; Hewitt et al., 2004).

In Atlantic waters (FA 48), the distribution of krill is relatively

dense, mainly in the South Shetland Islands from December to

April of the following year and moves offshore of South Georgia

Island from May to June.
4.2 Impact of spatial factors on CPUE

The spatial distribution of bigeye tuna is generally stable

among different months and years, mainly located in the

Atlantic Ocean 12°S~12°N sea area. The results of the CPUE

distribution of bigeye tuna can be found in Figure 10. The results

are generally in agreement with the statistical analysis of the

Atlantic tuna fishery by Li et al. (2013), in which Li found that

the monthly mean values of CPUE in the 15°S~15°N area of the

Atlantic Ocean during the breeding period were significantly
A

B D

C

FIGURE 13

shows a statistical chart of the forecast CPUE and nominal CPUE at different fishing areas at different temporal scales. (A, B) are the annual and monthly
averages of CPUE in FA 48, 58 and 88, respectively. (C, D) are the annual and monthly averages of CPUE in SFA 48.1, 48.2 and 48.3, respectively.
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higher than those in other sea areas during the same period. The

spatial and temporal distribution of tuna area shows a certain

pattern, forming a high-density aggregation area near the

equator from January to March; gradually dividing from the

concentrated piece of area into two pieces from April to

September, one moving north and the other moving south; the

fish aggregation area gradually moves toward the equator in

October and November and converges at the breeding grounds

in December, forming a cycle. The changes in the spatial

distribution of tuna are related to the age composition of the

tuna free school, swimming ability and the response to the

spatial and temporal changes in primary productivity (Schaefer

and Fuller, 2010; Fuller et al., 2015; Harper et al., 2019). In

addition, the current speed and direction has a direct impact on

tuna fishing production. Liu et al. (2003) found that the higher
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CPUE of Pacific bigeye tuna was mainly located in the medium

intensity current area at the edge of the strong current zone.

Current variability such as shear, and jets can affect the

movement and location of fish population.

The spatial distribution of Antarctic krill can be seen in the

variation in CPUE by three FA (Figure 13). Antarctic krill are

mainly distributed in the South Atlantic Ocean (FA 48), while

krill abundance is lower in the Southern Indian Ocean region

(FA 58) (Priddle et al., 1988; Krafft et al., 2010). The Antarctic

Peninsula, particularly the waters of the South Shetland Islands

within the 60°S-64°S, 55°W-61°W range (SFA 48.1) and the

South Orkney Islands within the 57°S-64°S, 50°W-63°W range

(SFA 48.2), are the areas of maximum density distribution of

Antarctic krill and the main areas of operation of the fishery

(Atkinson et al., 2001; Reiss et al., 2008; Zhu et al., 2011).
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FIGURE 14

Results of nominal CPUE and predicted CPUE correlation analysis. (A) is the result of aggregated data for all fishing areas, (B–D) are the results
for FA 48, 58, and 88, respectively; (E–G) are the results for SFA 48.1, 48.2 and 48.3.
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4.3 Impact of environmental factors
on CPUE

Analyses focused on the evaluation of CPUE as it related to

changes in SST and Chl_a (observed from satellite ocean color

remote sensing), which are closely associated environmental

factors. CPUE of bigeye tuna was linearly correlated with SST,

and CPUE was higher when the SST was high. From Figure 10, it

can be seen that CPUE is higher at SST of 23.5-29°C, which is

consistent with the conclusion that bigeye tuna are mostly

distributed in the SST region of 24-29°C (Shen et al., 2015).

Studying the relationship between CPUE and SST of Atlantic

bigeye tuna, Chen (2017) found that the temperature range of

Atlantic bigeye tuna fishery was 25.2-28.6°C, and the optimum

temperature was 27.8-28.4°C. The CPUE of the fishery

corresponded to different optimum SST in different periods,

the CPUE was higher in January to April. When SST was mostly

26-27°C in May to August, the range CPUE was low. SST starts

to rise from September to December, and CPUE also rises.

Regarding the relationship between Chl_a and CPUE, CPUE

was higher at Chl_a of 0.2-0.6 mg/m3, but its spatial distribution

was not significantly correlated. The main reason for this lack of

correlation may be that adult bigeye tuna are carnivorous fish

and do not feed on plankton related to Chl_a. Therefore, it is

difficult to judge the tuna fishery only from the Chl_a content

(Fan et al., 2003). Liu et al. (2003) studied the relationship

between monthly mean Chl_a content and Pacific bigeye tuna

catches obtained by SeaWiFS satellite remote sensing also

concluded that the correlation was low. However, some studies

have shown that the Chl_a has an effect on the reproductive

strategy of tuna (Block et al., 2005; Block et al., 2011). Across the

world, tunas in temperate regions migrate long distances to

spawn in areas where favors growth of the offspring (Muhling

et al., 2017). The Atlantic bluefin tuna (Thunnus thynnus) swims

from its vast feeding grounds to reproduce in areas of the Gulf of

Mexico, the Mediterranean Sea (Muhling et al., 2013;

Richardson et al., 2016), where primary productivity tends to

be low (Ottmann et al., 2021). Tuna larvae tended to be more

abundant in sites with higher water temperature, lower salinity,

and lower Chl_a.

As one of the important environmental factors affecting the

distribution of fishing grounds in oceanic or polar fisheries

(Zhou, 2005; Ji et al., 2015), seasonal changes in SST can lead

to spatial and temporal variability in the fishing grounds of

target species. Based on years of research, it appears that there is

a strong correlation between krill fishing grounds and SST

(Priddle et al., 1988; Santa Cruz et al., 2018).

In this study, the temperature range of SST in all the sea

areas of the FA 48 was -1.7-9.8°C, with an annual average value

of 1.3°C; among them, the temperature ranges in SFA 48.1, 48.2

and 48.3 were -1.7-6.1°C, -1.8-5.0°C and -1.7-9.8°C, with average

temperatures of 0.7, 0.5 and 2.7°C, respectively. This result is

consistent with the findings of (Zhang et al. 2020). The SST
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range of krill fishing areas from January to June was -1.8-1.9°C,

with the suitable SST in SFA 48.1, 48.2, and 48.3 being -1.8-1.9°

C, -1.8-0.8°C, and -1.8-0.8°C, respectively. The suitable SST in

SFA 48.1, 48.2 and 48.3 were -1.8-1.9°C, -1.8-0.8°C and 1.1-1.4°

C, respectively.

The distribution of Antarctic krill was positively correlated

with Chl_a (Meguro et al., 2004; Marrari et al., 2006; Marrari

et al., 2008). Usually, from January to March, when the Antarctic

Peninsula is in the warm season, the melting of ice floes is

accompanied by a phytoplankton bloom, and krill bait is

plentiful, so krill growth is metabolically vigorous and the krill

population is concentrated, and fishing operations are carried

out at this time with good catches.

This investigation found that Chl_a of the Antarctic in the

FA 48.1, 48.2, and 48.3 were 0.07-1.57, 0.07-0.99, and 0.12-0.85

mg/m3, respectively. Atkinson et al. (2008) suggested that the

Chl_a in the main habitat of Antarctic krill ranged from 0.5 to

1.0 mg/m3, and Zhang et al. (2020) concluded that the optimum

Chl_a in the Antarctic was 0.13 to 0.83 mg/m3. Zhu (2012)

concluded that high CPUE values for Antarctic krill in FA 48 of

the northern Antarctic Peninsula usually occur in waters with

Chl_a between 0 to 0.2 mg/m3.
4.4 Comparison of GLM, SVM and
ANN models

The traditional GLM approach has been widely applied to

standardize fishery CPUE data assuming a linear relationship

between the response and explanatory variables. However, in

practice, there is usually a nonlinear relationship between fish

density and environmental factors (Walsh and Kleiber, 2001;

Denis et al., 2002), and it is often impossible to make any

assumptions about the distribution of real data. Machine

learning methods, on the other hand, do not have any

distributional assumptions on the data. The GLM has

requirements for data structure, and the errors of both

simulation and prediction of the GLM are larger under the

conditions of nonlinearity and in the presence of outliers. The

actual fishery production data are complex, so using the GLM

for CPUE standardization of fishery data is not the optimal

method. The application of SVM methods to support fisheries

management has been studied infrequently. According to

SCOPUS there have been less than 50 studies in the past ten

years. Li et al., (2015) evaluated the performance of six candidate

methods using gillnet data for Japanese Spanish mackerel

collected by a fishery-dependent survey in the south of the

Yellow Sea from 2006 to 2012. The analyses provided evidence

that SVM can be applied as an alternative to standardize gillnet

CPUE data when the proportion of zero-catch is not too large.

The prediction accuracy of SVM has been discussed elsewhere

(Larranaga et al., 2006; Pang et al., 2006; Verikas et al., 2011) and

showed that the prediction performance of SVM varies greatly
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among studies. The selection of the optimal model needs to be

determined based on the types of available data.
4.5 Comparison of MODIS and CALIPSO
data at day and night

The advantage of CALIPSO over MODIS data is that

measurements can be made at high latitudes and during

nighttime (Li and Zhao, 2020). In this paper, MODIS Chl_a

data were used to train the inverse Chl_a on bbp of CALIPSO.

Figure 3 shows the comparison of MODIS Chl_a and CALIPSO

inversed Chl_a in the study area of Atlantic bigeye tuna. There

are obvious missing parts in the MODIS data, mainly due to

cloud contamination and orbital gaps (Yao et al., 2021) and

spatial resolution (Guan et al., 2017). Figure 11 shows the Chl_a

distribution of MODIS and CALIPSO in polar regions. It can be

clearly seen that MODIS has little data in polar regions, and

CALIPSO inversed Chl_a can fill the gaps in polar regions. For

example, Figure 11A has a large amount of missing data west of

the South Shetland Islands in Antarctica and 11C west of

Greenland Island in the Arctic, and CALIPSO effectively fills

the data in these areas by inversion.
5 Conclusions

In this study, a CPUE inversion method based on

spaceborne lidar data was proposed. The CALIPSO-retrieved

Chl_a was trained using MODIS data and applied to the

standardized study of CPUE in Atlantic bigeye tuna. The

GLM, SVM and ANN models were selected for modeling, and

the results showed that the ANN model gave better predictions,

with an R2 of 0.3367 for predicted CPUE versus nominal CPUE,

while the R2 of the GLM and SVM were 0.0802 and 0.2209,

respectively. The CPUE distribution of bigeye tuna was mainly

located in the Atlantic 12°S-12°N sea area, and the spatial

distribution was generally stable. The monthly variation of

CPUE was obvious, which was higher in spring and winter

and lowest in summer. CPUE was higher at Chl_a of 0.2-0.6 mg/

m3, but its spatial distribution was not significantly correlated.

The advantages of lidar are its ability of working at night and

in polar regions. CALIPSO data was trained using MODIS data

and Chl_a was inversed by daytime and nighttime CALIPSO

data, and ANN model was used for Antarctic krill CPUE

inversion. The result illustrated that the area with high CPUE

for Antarctic krill was FA 48 with an average annual CPUE of

approximately 80 t/d and FA 58 and 88 with approximately 5 t/d

and 2 t/d, respectively. Statistical analysis found that the

correlation between predicted and nominal CPUE was higher

in FA 48 among the three Antarctic fishing areas, with an R2 of

0.7587. ANN was proved can be used to support polar biological

resources and CPUE inversion. In addition to the methods used
Frontiers in Marine Science 18
in this paper, there are other methods such as Regression Trees,

and Random Forest, future work will apply other methods to

verify the advantages and disadvantages of various methods in

CPUE standardization studies.
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