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Spatio-temporal nonconvex
penalty adaptive chirp mode
decomposition for signal
decomposition of cross-
frequency coupled sources in
seafloor dynamic engineering

Qing Li*

Department of Mechanical Engineering, Anhui Agricultural University, Hefei, China
Electromagnetic field noise and clutter generated from the motion of ocean

waves are the main obstacles in the research of magnetotelluric dynamic

analysis, and it is difficult to extract the crossed instantaneous frequencies (IFs)

of underwater electromagnetic detected (UEMD) data due to the limited

resolution of the current time-frequency techniques. To alleviate this

bottleneck issue, a new spatio-temporal nonconvex penalty adaptive chirp

mode decomposition (STNP-ACMD) is originally proposed for separating each

mono-component individually from a complicated multi-component with

severely crossed IFs or overlapped components, in this paper. Specifically,

the idea of a nonconvex penalty greedy strategy is incorporated into the vanilla

ACMD method by using a recursive mode extraction scheme, and the

fractional-order characteristic of the observation signal is also considered.

Meanwhile, the spatio-temporal matrices were constructed elaborately and

then applied to capture coupling characteristics and spatio-temporal

relationships among all estimated mono-components. Eventually, a high-

resolution adaptive time-frequency spectrum is obtained according to the

IFs and instantaneous amplitudes (IAs) of each estimated mono-component.

The effectiveness and practicability of the proposed algorithm were verified via

simulated scenarios and velocity dynamic data of the seafloor from the South

China Sea, compared with four state-of-the-art benchmarks.

KEYWORDS

spatio-temporal matrices, nonconvex penalty, adaptive chirp mode decomposition,
crossed instantaneous frequency, seafloor dynamic
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1 Introduction

Underwater electromagnetic detected (UEMD) data with

low frequency have a wide application prospect in deep-sea

exploration and deep-sea magnetic field measurements such as

oil and mineral exploration, underwater pipe-cable overhaul,

fishery, navigation, positioning, ship testing, and anti-submarine

demining, due to many merits including high accuracy, stability,

and relatively small restrictions by hydrologic weather, and so

on. However, the UEMD data with low frequency is susceptible

to the electromagnetic noise induced by the ocean current, and

the issue of frequency range overlap between UEMD data with

low frequency and induced electromagnetic noise is becoming

the main obstacle to improving the signal-to-noise ratio (SNR)

of UEMD data since the signal recorded via the receiver is

usually affected by different types of noise, such as

electromagnetic field noise, clutter, and marine animals (Park

et al., 2019; Nyqvist et al., 2020; Schwalenberg et al., 2020).

The UEMD data, such as radar-echo wave and ocean current

sonar, usually exhibit non-stationary, time-varying, and multi-

component characteristics, and those data (sound and signals)

always contain useful information for engineering applications.

Extracting or isolating the constituent modes from their

complicated multi-dimensional or multi-component nature is

a pivotal task for understanding the dynamic responses in

seafloor engineering. Therefore, how to achieve accurate signal

decomposit ion and represent the internal physical

characteristics of a system has been a hot research topic.
1.1 Literature review

Over the past few years,multiplemethods and studies have been

adopted to alleviate this issue. For example, in 2013,MacLennan et al.

proposed a flexible and practical denoising technique named

equivalent source method (ESM) to remove the additional noise

from multicomponent controlled-source electromagnetic method

(CSEM) data (MacLennan and Li, 2013). In 2020, Chen et al. utilized

the current meter technique (CMT) for the reduction of seawater

motion-induced electromagnetic noise frommarinemagnetotelluric

data (Chen et al., 2020). In 2020, the compressive sensing (CS)

methodwith orthogonalmatching pursuit (OMP)was presented for

reducing noise impacts frommarine CSEM data, and the windowed

Fourier transform, wavelet transform, and CSmethod with different

training dictionaries were used as benchmarks for comparison

(Zhang et al., 2020).

Actually, those non-stationary and complicated time-varying

signals usually contain multiple components and are also polluted

by additional noise, some of which may overlap (or severely cross)

in both time and frequency domains. To tackle this issue, many

advanced signal processing methods, algorithms, and techniques

have been developed in the past decades. Roughly, those methods

can be classified into three main categories: (i) time domain
Frontiers in Marine Science 02
methods, (ii) frequency domain methods, and (iii) time-

frequency domain methods, in terms of the processing domain in

which the signal decomposition is performed.

In the first class of signal decomposition that is performed in

the time domain, the typical representative is pioneered by the

empirical mode decomposition (EMD) method (Huang et al.,

1998; Tian et al., 2022). The EMD is a fully data-driven and

recursive sifting scheme in which a non-stationary multi-

component can be decomposed into a set of quasi-orthogonal

mono-components called intrinsic mode functions (IMFs)

without considering any prior knowledge or statistical

information (e.g., temporal or spectral characteristics) of the

raw observation (i.e., multi-component data). However, the

connatural issues of mode-mixing, ending effect, sensitivity to

noise, and lack of mathematical foundations which lead to

unexpected and poor results. To alleviate those drawbacks, a

series of improved algorithms such as the ensemble EMD

(EEMD) (Wu and Huang, 2009), the complete EEMD

(CEEMD) (Torres et al., 2011), and the CEEMD with adaptive

noise (CEEMDAN) (Lin et al., 2022), time-varying filter-based

EMD (TVF-EMD) (Jiang et al., 2020), have been reported.

However, these methods are rather restrictive and only

overcome parts of the issues mentioned above, and meanwhile,

unfortunately, some new obstacles are encountered. For

example, the mode-mixing problem can be addressed by the

CEEMDAN method, but white noise cannot be eliminated; the

problems of mode-mixing and ending effect in the EEMD, and

they still cannot achieve the desired performance.

In the second class of signal decomposition that is performed in

the frequency domain, the representative models are pioneered by

empirical wavelet transform (EWT) (Gilles, 2013) and variational

modedecomposition (VMD)methods (Dragomiretskiy andZosso,

2014). The basic idea of the EWTmethod is that the wavelet filter

bank(WFB)and spectrumsupport areused for reconstructingeach

mode, but the spectrum information should be known prior to the

support detection algorithm. Moreover, modes with close

frequency-band cannot be separated and identified via the EWT

method. TheVMDmethod is regarded as an adaptiveWiener filter

bank in the frequency domain, and all subcomponents are assumed

tobenarrowbandsignals that cluster around their respective central

frequencies. However, the main shortcoming of the VMD is that

parameter a and the number of modes K should be determined

before the algorithm executes, and the issues of mode-mixing and

bandwidth of the estimated modes will be disturbed if model

parameters are not selected properly (e.g., overestimating or

underestimating). More importantly, the EWT and VMD

methods rely on a restrictive assumption that the quasi-

orthogonal narrowband subcomponent should be stationary and

that chirp modes whose frequency ranges overlap cannot

be decomposed.

In this regard, methods for separating modes with

overlapped spectrums have been explored and presented in the

past few years. In 2017, Chen et al. proposed a variational
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nonlinear chirp mode decomposition (VNCMD) algorithm for

analyzing wide-band nonlinear chirp signals (NCSs). This

method relies on a new assumption that the wide-band NCS

could be transformed into a narrow-band signal via signal

demodulation analysis, and then three simulated data and two

real signals of killer whale whistles are introduced for discussion.

However, the fatal flaw of the VNCMD is that, like the VMD

method, the number of estimated modes still needs to be pre-

determined before the algorithm executes (Chen et al., 2017). In

2019, Chen et al. developed a non-parametric decomposition

technique named adaptive chirp mode pursuit (ACMP) for

processing multimodal non-stationary wideband chirp signals

whose frequency ranges overlap, so as to obtain an optimal

initialization of modes frequencies. Eventually, simulated data

and systematic application (i.e., rotor fault diagnosis) are

presented for performance investigation of the ACMP.

However, this method cannot address non-stationary,

multimodal signals with crossing IFs, yielding problems of end

effect and severe oscillation (Chen et al., 2019). Furthermore, to

address the issues of the mode number raised by the VNCMD

algorithm and, meanwhile, to extract the fast-fluctuating IFs

from non-stationary multimodal signals, the adaptive chirp

mode decomposition (ACMD) has been developed, in which a

greedy algorithm and a recursive mode extraction scheme are

designed elaborately, which is motivated by the VMD method.

The adaptive TF spectrum (ATFS) technique is employed for

obtaining the IAs and IFs (Chen et al., 2019). In 2020, to tackle

the problem of oscillation detection and fault diagnosis, a fast

ACMD (FACMD) algorithm was established to process complex

multiple oscillations, where the running time of the proposed

FACMD algorithm is reduced greatly by setting a reasonable

stop threshold compared with the vanilla ACMD (Chen et al.,

2020). Currently, in 2022, a two-level ACMD (TL-ACMD) is

reported by incorporating the tangent energy and calculating

energy eigenvalues of each mono-mode for decomposing the

acoustic data of the impeller defects in a centrifugal pump

(Vashishtha et al., 2022). Although the decomposition

methods listed above have some promising advantages in the

simulated domain and industrial areas, the common

shortcoming of those decomposition methods is their poor

capacity for separating each mono-component individually

from a complicated multi-component with severely crossed IFs

characteristics or overlapped components.

In the third class of signal decomposition that is performed in

the time-frequency domain, the time-frequency representation

(TFR) has been developed using the reassignment technique of

energy distributions, so as to separate modes with the overlapped

spectrum, as well as modes with close frequency-band and the IFs

are disjoint. Among various TFR techniques, as a post-processing

procedure, the synchrosqueezing transform (SST) has extensive

concern since the narrowband subcomponents (or IMFs) are

estimated from the enhanced TFR after the synchrosqueezing

operation (Daubechies et al., 2011; Li et al., 2022). In 2015,
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Clausel et al. proposed a new bi-dimensional version algorithm

called monogenic synchrosqueezed wavelet transform (MSSWT)

for decomposing the demodulated AM–FM images, which is a

bivariate extension of the SST, and the concept of intrinsic

monogenic mode (IMM) was introduced (Clausel et al., 2015). In

2021, to overcome the issue of mode mixing in decomposing the

multicomponent signals, the down-sampled STFT and

synchrosqueezing-based transform demodulation were

introduced (Meignen et al., 2021). In 2022, Si et al. designed a

novel method called multivariate synchrosqueezing transform

(MSST) for extracting the high multiple frequency components

from deep hole drilling vibration data, which is an extension of the

SST to a multivariate version (Si et al., 2022). In 2022, to highlight

the time-frequency (TF) resolution of mono-mode signals that are

extracted from multicomponent data with an impulse-like

waveform, a time-reassigned SST (TSST) has been reported

under the framework of STFT, and several numerical

experiments were conducted to reveal the performance of the

TSST method (Dong et al., 2022). Currently, Li et al. constructed

a novel synchrosqueezing polynomial Chirplet transform (SPCT)

for mono-mode extraction from multicomponent data in which a

multi-kernel operator was designed for rearranging and

concentrating the energy of IF in mono-mode. The field seismic

data was used for performance analysis of the SPCT algorithm

compared with other state-of-the-art TFA techniques such as

synchro-extracting transform (SET) and SST (Li et al., 2022). The

SST approach implements an energy relocation framework along

the frequency direction, which sharpens the time-frequency ridges

of modes by focusing their energies on the center of gravity in

energy distribution, and thus the estimatedmode has higher energy

aggregation (Auger et al., 2013). However, it is worth mentioning

that signal reconstruction and computationally intensive

reassignment techniques cannot be maintained and addressed,

which is limited in real applications (Auger et al., 2013).

Additionally, how to accurately measure and evaluate the time-

frequency energy concentration of a certain component is still a

changeling issue that needs to be explored more.
1.2 Motivations and contributions

The aforementioned decomposition methods mainly focus

on TF pattern generation of multi-component/signals with a

clear range of frequency-band distribution. However, in practical

applications, data collected from sensors or receivers is always

accompanied by some severely crossed modes in the whole time-

span. The ACMD is not suitable for processing high-frequency

signals with aliasing and crossover features, yielding the wrong

IFs for some intersecting components. Motivated by the ACMD

method, a challenge exists in how to apply the greedy strategy to

the identification of modes with severely crossed frequencies and

separating each overlapped component clearly and accurately,

which is the key motivation of this work.
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Another crucial issue that needs to be highlighted is that, in

most of the scenarios, the aforementioned techniques, such as

the VNCMD method, the ACMD method, and the VMD

method, mainly focus on channel-wise processing for isolating

or extracting the single component from complicated multi-

channel data. These techniques, which are employed for the

decomposition of complicated time-varying multi-component

signals, typically do not fully cater to the coupled nature and

spatial–temporal characteristics of each mode during signal

estimation. Most of the existing algorithms operate with

mode-wise processing, which is not optimal for such modes

with spatial–temporal relationships. They may fail to capture the

coupled nature of all the components simultaneously, and yield

poor decomposability when dealing with multi-dimensional or

multi-component data, and also may fail to distinguish the

frequency distribution of the components. In addition, in the

traditional VNCMD method, the number of estimated

components cannot be adaptively determined; i.e., the number

of modes should be assumed to be known in advance, which is

not feasible in practical applications. Meanwhile, in essence, the

mode-wise processing is still conducted in the classic ACMD

method, which restricts the application of the ACMD method.

By elaborating on the multi-dimensional decomposition

techniques, it is therefore natural to investigate the spatio-

temporal relationships and coupling nature among

estimated components.

In this paper, to address the above drawbacks, a new

adaptive signal decomposition algorithm is proposed, and

simulation and experimental cases are investigated to verify

the availability of the proposed algorithm. The main

contributions of this paper can be summarized as follows:
Fron
(1) The spatio-temporal nonconvex penalty adaptive chirp

mode decomposition (STNP-ACMD) algorithm is

proposed for the decomposition of the FM signals

whose components with crossing IFs and overlapped

components, and the split Bregman algorithm is

introduced for solving the constrained optimization

problem. The overlapped components or crossed IFs

can be separated adaptively by using the recursive mode

extraction scheme. The proposed STNP-ACMD

algorithm belongs to the second class of signal

decomposition algorithms described above. To the best

of our knowledge, it is the first time the spatio-temporal

nonconvex penalty has been applied to the ACMD

framework in this regard, which also retains the

reconstruction benefit of the ACMD.

(2) The key contribution is that the spatio-temporal

relationship and the coupled nature of the available

information (e.g., crossing IFs) among estimated
tiers in Marine Science 04
components are exploited by designing and elaborating the

temporal matrix and the spatial matrix. In addition, the

characteristic of the fractional order of the observation

signal is considered, which is rarely reported in the existing

literature.

(3) Both simulation and experimental case verification showed

the effectiveness of the proposed algorithm for the

decomposing signal with crossing IFs and overlapping

components. The estimated accuracy of the proposed

algorithm has improved greatly compared with four state-

of-the-art benchmarks, including the ACMD, the VNCMD,

the EEMD, and the VMD methods.

The integrated framework of the rest of the paper is structured

as follows: In Section 2, the theoretical preliminaries of variational

nonlinear chirp mode decomposition (VNCMD) and adaptive

chirp mode decomposition (ACMD) algorithms are reviewed

first, and then the proposed spatio-temporal nonconvex penalty

adaptive chirp mode decomposition (STNP-ACMD) algorithm

and its solution are presented. The numerical simulation is given

and discussed in Section 3. In Section 4, the experimental case and

its analysis are discussed to verify the performance of the proposed

STNP-ACMD algorithm. Conclusions and possible explorations

are drawn in Section 5.
2 The STNP-ACMD algorithm

In this section, we first review the classic VNCMD and

ACMD algorithms (Chen et al., 2019; Chen et al., 2019), and

then the proposed STNP-ACMD algorithm and its solution will

be presented later. Meanwhile, the solution strategy of the

fractional order of the STNP-ACMD algorithm based on the

rescaled range (R/S) method is given.
2.1 Review of the VNCMD and ACMD
algorithms

Generally, the fast-aliasing frequency modulation (FM)

signal (or called Chirp signal) has the characteristic of time-

varying amplitude and frequency contaminated by

environmental noise, which can be expressed as,

s(t) =o
K

i=1
si(t) + r(t)

=o
K

i=1
Ai(t) cos 2p

Z t

0
fi(t)dt + qi

� �
+ r(t) (1)
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where si(t) represents each Chirp component, K is the number of

chirp components. Ai(t)>0 , fi(t)>0 and qi represent the

instantaneous amplitude (IA), instantaneous frequency (IF),

and initial phase (IP) of the i-th Chirp component si(t),

respectively. Also, r(t) denotes the zero-mean Gaussian white

noise (GWN). According to the demodulation technique,

Equation (1) can be rewritten as,

s(t) =o
K

i=1
ai(t) cos 2p

Z t

0
fi (t)
∧

dt
� �

+ bi(t) sin 2p
Z t

0
fi (t)
∧

dt
� �

+ r(t) (2)

where fi (t)
∧

stands for frequency function of the cos (2pZ t

0
fi (t)
∧

dt) and sin (2p
Z t

0
fi (t)
∧

dt), the amplitudes ai(t) and

bi(t) are defined as ai(t) = Ai(t) cos (2p
Z t

0
(fi(t) − fi (t)

∧
)dt + qi)

and bi(t) = −Ai(t)sin(2p
Z t

0
(fi(t) − fi (t)

∧
)dt + qi).

To estimate the components si(t), i=1,2,···,K from

observation, the hypothesis of the variational nonlinear chirp

mode decomposition (VNCMD) is developed for minimizing

the bandwidths of each mono-component, and the objective cost

function for the constrained optimization problem is given as

(Chen et al., 2019),

min
ai(t),bi(t), fi (t)

∧ o
K

i=1
jj a00i (t) jj22 + jj b00i (t) jj22

( )

s:t: s(t) =o
K

i=1
ai(t)cos 2p

Z t

0
fi (t)
∧

dt
� �

+

bi(t)sin 2p
Z t

0
fi (t)
∧

dt
� �

+ r(t)

(3)

where K is the number of the estimated signals, which should be

pre-determined before the algorithm executes.

Furthermore, the idea of a greedy algorithm is adopted by

the pure adaptive chirp mode decomposition (ACMD), and the

component signals can be estimated adaptively, and the cost

function for constrained optimization problem is given as (Chen

et al., 2019),

min

ai(t),bi(t), fi (t)
∧

jj a}i (t) jj22 + jj b}i (t) jj22
n o

with si(t) = ai(t)cos 2p
Z t

0
fi (t)
∧

dt
� �

+

bi(t)sin 2p
Z t

0
fi (t)
∧

dt
� �

+ r(t)

(4)
where a ║ s(t) − si(t)║
2
2 is residual energy of residual signal after

extracting the estimated signal, and a >0 is a weighting coefficient.

Formoredetails, the iterativeproceduresof the specificalgorithmcan

be found in (Chen et al., 2019; Chen et al., 2019).
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2.2 The proposed STNP-ACMD algorithm
and its solution

In this section, the proposed STNP-ACMD algorithm is

presented for aliasing FM signals decomposition, and the

specific procedures for solving the algorithm for the STNP-

ACMD optimization problem are presented later.

Considering the intrinsic characteristics of fractional-order

and spatio-temporal coupling of the estimated components, for

the i-th component signal, the new cost function for the

constrained optimization problem is expressed as,

min
ai(t),bi(t), fi (t)

∧
jj a00i (t) jj22 + jj b00i (t) jj22 +a jj s(t)

− si(t) jj22 +l1 jjDta
00
i (t) jjpp + l2 jjDsb

00
i (t) jjpp

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

with si(t) = ai(t) cos ai(t) cos 2p
Z t

0
fi (t)dt
∧� �

+

bi(t)sin 2p
Z t

0
fi (t)
∧

dt
� �

+ r(t)

(5)

where p is a fractional-order, Dt and Ds are the temporal matrix

and spatial matrix, respectively. The size of matrices Dt and Ds is

mn × mn, where m and n are the number of channels and the

sampling data point of each channel, respectively.

Both temporal matrix Dt and spatial matrix Ds can be

created using the reverse banded sparse-diagonal (RBSD)

method. The procedures for developing the temporal and

spatial matrices are as follows,

Step 1: Extract the nonzero diagonal of simulated matrix A,
i.e., At and As, to create D1 and D2 using the RBSD method. The

random temporal matrix At is simulated by MATLAB with At =

[−ones(n,1) ones(n,1)], and n is the number of sampling point in

one channel. The random spatial matrix As is simulated by

MATLAB with As = [−ones(m,1) ones(m,1)], and m is the

number of the estimated component. Then, D1 is obtained

with (At, [0 1], n, n), and D2 is obtained by (As, [0 1], m, m).

Step 2. Remove the last nonzero point from matrices D1 and

D2, then two new matrices DT
1 and DT

2 are obtained;

Step 3. Constituent an identity sparse matrix It with sizem ×

m, where m is the number of channels. Constituent an identity

sparse matrix Is with size n × n, where n is the number of

sampling points in one channel;

Step 4. The temporal matrix Dt and spatial matrix Ds can be

calculated via the Kronecker product in terms of identity sparse

matrices, i.e.,Dt = Kronecker-product<DT
1, It >;Ds = Kronecker-

product< It, D
T
2>. That is, matrices Dt and Ds are defined as

Dt=Diag[−1 1, −1 1, ···,0 0, 0 1, n, n]Tn×n⊗Diag[1, 1, ···, 1]Tm×m ,

Ds=Diag[1, 1, ···, 1]
T
n×n⊗Diag[−1 1, −1 1, ···, 0 0, 0 1,m,m]Tm×m ,

where symbol⊗ is the Kronecker product.
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Following those procedures of developing both temporal

matrix Dt and spatial matrix Ds, the coupled nature of the

available information within the estimated components can be

effectively exploited. Here, Equation (5) can be rewritten in

constrained matrix notation as follows,

xi =
ai(t)

bi(t)

" #
= min

u,v,w,z, fi (t)
∧

jjQxi jj22 +a jj s − Gixi jj22 +l1 jjDtxi jjpp +l2 jjDsxi jjpp
� �
s : t :  u¼Qxi;  v = s − Gixi,  w = Dtxi,  z = Dsxi

(6)

where the Q = diag(W, W), W is a second-order derivative

operator, xi = ½aTi , bTi �T , and Gi = [Ci, Si] with Ci=diag[cos(ji
(t0)),cos(ji(t1)),···,cos(ji(tN−1))] , Si=diag[sin(ji(t0)),sin(ji(t1)),···,
sin(ji(tN−1))] and ji(t) = 2p

Z t

0
f (x)∧dt .

The fractional-order p can be calculated using the rescaled

range (R/S) method in the long-range dependence (LRD)

domain. The expression of the R/S method is given by (Hurst,

1951; Mason, 2016),

R(n)
S(n)

=
1

S(n)
maxo

n

i=1
½X(ti)�

1
no

n

i=1
X(ti)� −mino

n

j=1
½X(tj)�

1
no

n

j=1
X(tj)�

( )

(7)

where R(n) is the data renormalization range, and S(n) is standard

deviation, i.e., S(n) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(X(ti) −

1
no

n

i=1
X(ti))

2

s
,X(ti) is the training data at time

ti, i = 1:k (k denotes the number of data channels). For multiple

channel data, theHurst indexH is obtained by the slope value of log

(R(n)/S(n)) vs log(S(n)) in a logarithmic plot.Hence, the fractional-

order p is calculated via the Hurst indexH,

p = H − 0:5 =
1
ko

k

i=1
H(i) − 0:5 (8)

According to the procedures of the split Bregman iteration

(SBI) algorithm (Goldstein and Osher, 2009; Corsaro et al.,

2021), Equation (6) can be expressed as,

min
u,v,w,z

║ u║2
2 +a ║ v║2

2 +l1 ║w║p
p +l2 ║ z║p

p +m1 ║ u − Qxi − bk1 ║
2
2 +

m2 ║ v − s + Gixi − bk2 ║
2
2 +m3 ║w − Dtxi − bk3 ║

2
2 +m4 ║ z − Dsxi − bk4 ║

2
2

8<
:

9=
;

(9)

where b1, b2, b3, and b4 are Bregman variables which can be

updated as follow,

bk+11 = bk1 − u +Qxi,   b
k+1
2 = bk2 − v + s − Gixi

bk+13 = bk3 − w + Dtxi,  b
k+1
4 = bk4 − z + Dsxi

(10)

The above optimization problem can be split into the

following five sub-problem,

P1 :    arg min
x
m1 ║ u − Qxi − bk1 ║

2
2 +m2 ║ v − s + Gixi − bk2 ║

2
2 +

m3 ║w − Dtxi − bk3 ║
2
2 +m4 ║ z − Dsxi − bk4 ║

2
2

(11a)
Frontiers in Marine Science 06
P2 : argmin
u

║ u║2
2 +m1 ║ u −Qxi − bk1 ║

2
2 (11b)

P3 : argmin
v
a ║ v║2

2 +m2 ║ v − s + Gixi − bk2 ║
2
2 (11c)

P4 : argmin
w

l1 ║w║p
p +m3 ║w − Dtxi − bk3 ║

2
2 (11d)

P5 : argmin
z
l2 ║ z║p

p +m4 ║ z − Dsxi − bk4 ║
2
2 (11e)

The general soft-threshold (GST) algorithm (Majumdar and

Ward, 2012) is reported for the Lp-norm minimization problem

argmin
x

║ y − x║2
2 +l║ x║p

p, and the expression of the GST is

expressed as x=SoftTh(y,l,p)=sign(y)×max{0,|y|−lp/2|y|p−1} .

Therefore, in this case, sub-problem 1 can be obtained as follows,

xi =
m1Q(u − bk1) − m2Gi(v − s − bk2) + m3Dt(w − bk3) + m4Ds(z − bk4)

m1QTQ + m2G
T
i Gi + m3D

T
t Dt + m4D

T
s Ds

(12)

The specific derivation process for sub-problem 1 can be

referred to in Appendix I.

Next, sub-problems (11b), (11c), (11d) and (11e) can be

solved with the GST algorithm (Majumdar andWard, 2012). We

have,

uk+1 = SoftTh(Qx(k+1) + bk1, 1=m1, 2) (13a)

vk+1 = SoftTh(s − Gx(k+1) + bk2,a=m2, 2) (13b)

wk+1 = SoftTh(Dtx
(k+1) + bk3, l1=m3, p) (13c)
TABLE 1 The proposed STNP-ACMD algorithm.

Algorithm 1. The proposed STNP-ACMD algorithm

Initiation: input signal s, parameters a, l1, l2, m1,m2,m3,m4, input the initial IF
f 0i (t)∧ and construct the matrix

G0
i , MaxIter N.

For k = 1 to MaxIter N,

x(k+1) = x(k) from Equation (12);

uk+1 = SoftTh(Qx(k+1) + bk1, 1=m1, 2);

vk+1 = SoftTh(s − Gx(k+1) + bk2,a=m2, 2);

wk+1 = SoftTh(Dtx
(k+1) + bk3, l1=m3, p);

zk+1 = SoftTh(Dsx
(k+1) + bk4, l2=m4, p);

bk+11 = bk1 − u +Qx(k+1);

bk+12 = bk2 − v + s − Gix
(k+1);

bk+13 = bk3 − w +Dtx
(k+1);

bk+14 = bk4 − z + Dsx
(k+1);

End

Update the signal component si = ½Ci , Si�x(k+1)i .
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zk+1 = SoftTh(Dsx
(k+1) + bk4, l2=m4, p) (13d)

Then, the demodulated signals can be estimated as,

si = Gixi = ½Ci, Si�xi (14)

Subsequently, the detailed algorithm process of the proposed

STNP-ACMD is summarized in Table 1.

According to the formulation of the frequency increment of

the demodulated signals (Hou and Shi, 2013) calculated in

Equation (14), we have,

si = Gixi = ½Ci, Si�xi (15)

It should be noted that Algorithm 1 is only used for

estimating the first signal component. To estimate other

components gradually, like traditional signal decomposition

methods such as empirical mode decomposition (EMD) and

variational mode decomposition (VMD), the first component

denoted by s1 (t)
∧ is removed from the original observation

signal, that is,

R1(t) = s(t) − s1 (t)
∧

(16)

where R1(t) denotes the residual signal after removing the first

estimated signal from the original observation. Then, the R1(t) is

treated as a new original signal, same procedures in Algorithm 1

will be repeated for extracting the second estimated signal s2 (t)
∧

, by parity of reasoning, until the residual signal meets the pre-

determined threshold, such as r = Dsj(t) = ║ sji(t) − sj−1i (t)║2
2 =

║ s(t)║2
2, 0 < i, j ≤ K . Hence, the original observation signal s(t)

can be expressed as,

s(t) =o
K

i=1

s1 (t)
∧ + RK(t) (17)

where RK (t) is the residual component or additional noise. As a

result, the instantaneous frequency (IF) is determined by

differentiation f (t) = 1
2p

dy (t)
dt , and the increment of the IF is

calculated as,

D fi(t)
∧ = −

1
2p

d
dt

arctan
bn+1i (t)
an+1i (t)

� �� �

= −
1
2p

an+1i (bn+1i ) 0 −bn+1i (an+1i ) 0

(an+1i )2 + (bn+1i )2
(18)

Motivated by the approach in Ref (Mcneill, 2016)., the final

IF can be updated as,

f n+1i (t) = f ni (t) + (Q(2)=z + I)−1Df ni (t)
∧

(19)

where Q(N)=(W(N))TW(N), I is an identity matrix, W is a second-

order derivative operator, z is small positive value.
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3 Numerical simulation

A numerical simulation case is conducted to investigate the

effectiveness of the proposed approach in terms of the accuracy

and robustness versus the traditional ACMD (Chen et al., 2019),

the VNCMD method (Chen et al., 2017), the EEMD method

(Wu and Huang, 2009), and the VMD method (Dragomiretskiy

and Zosso, 2014). A simulated signal that is corrupted by

ambient noise is constructed as follows,

x(t) = x1(t) + x2(t) + x3(t) + x4(t) + x5(t) + x6(t)

x1(t) = Q1(1 + AM1) exp ( − 0:05t) cos 2p(2 + 200t − 50t2 − 2t3 − 5t4)
	 


x2(t) = 0:2Q2(1 + AM2) exp ( − 0:08t) cos 2p(4 + 80t + 20t2 − 1:6t3 + 0:15t4)
	 


x3(t) = 0:8 exp ( − 0:08t) cos 2p(5 + 140t + 20t2 − 2t3 + 0:2t4)
	 


x4(t) = 0:5 exp ( − 0:2t) cos 2p(3 + 20t + 40t2 − 1:5t3 + 0:4t4)
	 


x5(t) = heavy tailed noise

x6(t) = sigma� randn(1,N)

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(20)

where the varying speed profiles areQ1=0.1(1+2t)
2+1,Q2=0.12(1

+2 t ) 2+2 , the ampl i tude profi l e s a r e AM1 = 0:3 sin (Z t

0
2p(1 + 2t)dt), AM2 = 0:3 sin (2

Z t

0
2p(1 + 2t)dt), N = 512 is

the number of sampling points, the sampling frequency fs = 512

Hz, and the sampling time is 1 s.

The simulated synthetic signal consists of five parts, both x1
(t) and x2(t) are amplitude modulation frequency modulation

(AM–FM) signals, x3(t) is a frequency modulation (FM) signal,

x4(t) is an additive Gaussian white noise (GWN) with standard

deviation sigma = 1, and x5(t) is a heavy tailed noise (HTN).

Both GWN and HTN noises are independent with each other.

Of particular interest to us is the mode or signal with small

amplitude and heavy tail distribution, which is difficult to

identify. Therefore, the addition of HTN noise is to create

difficulty in signal estimation, artificially. The HTN is

expressed with a symmetric alpha-stable (SaS) distribution

with parameter a≠1 and 1< a<2, the expression of SaS
distribution is defined as (Kuruoglu et al., 1998; Liu et al., 2022),

x5(t) = Sa ,r

� sin (a(v + Ba ,r))

( cos v)1=a
(
cos (v − a(v + Ba ,r))

W
)(1−a)=a

� �
(21)

whereW is the exponential random variable, i.e.,W~exprnd(N) ,

random variable v∈(−p/2,p/2) , Ba ,r = arctan (r tanpa
2 )

a , Sa ,r = ½1 +
r2 tan2 pa

2 �1=(2a). If the a = 1, the THN can be given as,

x5(t) =
2
p

(
p
2
+ rv) tan v − r log (

W cos v
p
2 + rv

)

� �
(22)

The simulated signal is depicted in Figure 1A, where the

AM–FM signals x1(t) and x2(t), the FM signal x3(t), the HTN
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component with parameters a = 1.4, r = 1.2 and raw synthetic

signal are shown in Figure 1A from top to the bottom,

respectively. It can be seen that the AM–FM and FM signals

are submerged in the additional noises. The short time Fourier
Frontiers in Marine Science 08
transform (STFT) of the simulated synthetic signal is shown in

Figure 1B, it can be seen that the modulation frequencies are

fuzzy and disorder and the frequency variation trends could not

be detected at all in the STFT diagram.
A

B

FIGURE 1

The simulated signal and its STFT diagram. (A) The simulated signal: from top to bottom are signal x1(t), x2(t), x3(t), x4(t), heavy tailed noise x5(t)
and synthetic signal x(t); (B) the STFT diagram of the simulated synthetic signal.
FIGURE 2

The fitted regression lines of the Hurst exponent.
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The proposed STNP-ACMD algorithm is utilized to

decompose the simulated synthetic signal. Herein, the model

parameters are set as follows: a = 10−8, z = 10−9, l1 = l2 =

0.01a, m1 = m2 = m3 = m4 = 0.01, and the threshold of signal

energy is set to be 0.1. The fractional order of the simulated

synthetic signal is 0.0508 using the R/S method (Hurst, 1951;

Mason, 2016). The fitted regression lines of the Hurst exponent

are shown in Figure 2. Note that the Hurst index of the

simulated synthetic signal is a random variable and

fluctuated around a value of 0.5 due to the interference from

the GWN and HTN noises. By iterating, the signal energies of

the first five components are 1.0854, 0.2945, 0.1054, 0.1340,

and 0.0459. Thus, four estimated signal components are shown

in Figure 3, since the signal energy of the last component is

0.0459<0.1. It can be observed that four estimated signal

components match the theoretical signals very well. For the

most part, the instantaneous frequencies of the estimated

components are basically consistent with the original (or

true) ones, which shows the availability of the proposed

approach with respect to noise perturbation.

For comparison, the ACMD method (Chen et al., 2019), the

VNCMD method (Chen et al., 2017), the EEMD method (Wu

and Huang, 2009), and the VMD method (Dragomiretskiy and

Zosso, 2014) are employed for decomposing the simulated

signal. The estimated components generated via the ACMD

and the VNCMD algorithms are displayed in Figures 4A, 5A,

and the IFs of the estimated components generated via the

ACMD and the VNCMD methods are shown in Figures 4B, 5B.

Herein, the number of sub-components is considered and set to
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be four in the ACMD and VNCMD methods. It can be seen

from Figure 4A that the ACMD and the VNCMD methods can

slightly extract the components as the proposed does. However,

the IFs of the estimated components are mussy and intricate, In

the meantime, many wrong IFs are estimated from the ACMD

and the VNCMD methods, as shown in Figures 4B, 5B. The

main reason behind this shortcoming is that the spatio-temporal

coupled information and physical cross-knowledge are not

considered by the ACMD and the VNCMD methods, which is

also the main limitation of the ACMD and the VNCMD

methods in practical applications. It can be concluded that the

cross-knowledge or coupled information of the IFs of four pre-

estimated components can be demodulated or isolated by the

proposed approach, but the ACMD and the VNCMD

methods failed.

Additionally, the estimated components generated via the

EEMD and the VMDmethods are displayed in Figures 6A, C, and

the instantaneous frequencies of the estimated components

generated via the EEMD and the VMD methods are shown in

Figures 6B, D, respectively. As shown in Figure 6, many spurious

IMF components without physical meaning are separated, and the

Hilbert Huang Transform (HHT) cannot reveal the actual IF

patterns of the estimated components, as shown in Figures 6B, D,

which means the EEMD and the VMD methods still suffer from

severe issues with the HHT, i.e., models aliasing. The comparison

results reveal that the hidden components containing crossover

frequencies can be separated and estimated one by one using the

proposed STNP-ACMD algorithm. The crossover IFs are much

closer approximations to the real ones.
A B

FIGURE 3

The estimated signal components and estimated time frequency plot using the proposed approach. (A) The estimated components (blue: true;
red, black, carmine, and cyan: estimated ones); (B) The estimated time frequency plot (blue: true; red: estimated).
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4 Experimental case of real-world
applications
The simulated case in Section 3 indicates that the proposed

STNP-ACMD algorithm has promising advantages in analyzing

simulated signals with crossover instantaneous frequencies.

Therefore, in this section, the proposed STNP-ACMD

algorithm will be used to extract the signal components and

their crossover IFs from seafloor dynamic data and further

achieve the exploration of the tidal law and magnetotelluric

dynamic analysis in deep seafloor.
Frontiers in Marine Science 10
4.1 Introduction of experimental datasets

The experimental datasets of seafloor dynamic data are

provided by the Institute of Acoustics, Chinese Academy of

Sciences (Chang et al., 2019). The diagram of the deep seafloor

observation network system in the South China Sea and the

observation position of the submarine dynamic platform

(represented by the red flag, with 111.0675°E and 17.5811°N) are

shown in Figures 7A, B. In this experiment, the acoustic Doppler

current profilers (ADCP) of type Teledyne were used for collecting

the observation elements including seafloor temperature, seafloor

water salinity, seafloor water flow rate #1, seafloor water flow rate
A B

FIGURE 5

The estimated signal components and estimated time frequency plot using the VNCMD method. (A) The estimated components (blue: true; red,
black, carmine and cyan: estimated ones); (B) the estimated time frequency plot (blue: true; red: estimated).
A B

FIGURE 4

The estimated signal components and estimated time frequency plot using the ACMD method. (A) The estimated components (blue: true; red,
black, carmine and cyan: estimated ones); (B) the estimated time frequency plot (blue: true; red: estimated).
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A

B

D

C

FIGURE 6

The estimated signal components and their estimated time-frequency plots using the EEMD and the VMD methods. (A) The estimated
components using the EEMD method; (B) the estimated time–frequency plot of the estimated components using the EEMD method; (C) the
estimated components using the VMD method; and (D) the estimated time-frequency plot of the estimated components using the
VMD method.
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#2, seafloor water flow rate #3, seafloor water flow rate #4, roll data,

bow data, and tilt data. Those datasets were processed with the

following operations: autocompletion of default value, verification

of data threshold interval, etc.
Frontiers in Marine Science 12
4.2 Results analysis

In this work, the seafloor water flow rates #1 with 2,048

points are employed. The operating frequency of ADCP was 150
A B

FIGURE 7

The deep seafloor observation network system and observation position (Chang et al., 2019). (A) The diagram of the deep seafloor observation
network system in the South China Sea; (B) the observation position of submarine dynamic platform (represented by red flag).
A

B

FIGURE 8

Ocean water velocity and its time frequency diagram. (A) Ocean water velocity of deep seabed collected by acoustic Doppler current-meter
sensor; (B) the time frequency diagram of ocean water velocity.
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kHz. The number of observation layers was 30, each layer was 4

m, and sampling was conducted at an interval of 10 min (Chang

et al., 2019). The raw signal waveform and its time frequency

diagram of seafloor water flow rates #1 with 2,048 points are
Frontiers in Marine Science 13
shown in Figure 8. It can be seen from Figure 8A that high

frequency vibration components are accompanied by a slowly

decreasing low frequency trend component, and the frequency

information of 2,048 points is mainly concentrated in the low-
FIGURE 9

The fitted regression lines of the Hurst exponent.
TABLE 2 The signal energy of each estimated component.

Signal components Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6 Residual Signal

Energy 15.2202 0.2643 0.0688 0.0375 0.0334 0.0324 0.0270
A B

D

E F

C

FIGURE 10

The decomposed signal components using the proposed approach. (A) Component 1; (B) component 2; (C) component 3; (D) component 4;
(E) component 5; and (F) component 6.
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frequency band. No obvious instantaneous frequency trends can

be found to track the variation of the velocity in the deep

seafloor, as shown in Figure 8B.

The proposed STNP-ACMD algorithm is applied to

estimate the sub-components and their IFs, where the

threshold of signal energy is set to be 0.03. Due to the

d i s turbance of fluctua t ing t rends , de t rended and
Frontiers in Marine Science 14
normalization operations were performed on the raw seafloor

water flow rates #1 with 2,048 points, and then the fractional

order of the simulated synthetic signal is 0.3182 using the R/S

method (Hurst, 1951; Mason, 2016). The fitted regression lines

of the Hurst exponent are shown in Figure 9, and the signal

energies of the first six components and the residual are

summarized in Table 2. Therefore, the first six estimated
FIGURE 11

The TF diagram of the estimated components using the proposed approach.
A B

D

E F

C

FIGURE 12

The estimated components using the ACMD method. (A) Component 1; (B) component 2; (C) component 3; (D) component 4; (E) component
5; and (F) component 6.
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components are selected and presented in Figure 10. It can be

found that the waveform pattern and fluctuating trend of signal

1 are the same as the raw seafloor water flow rates (see

Figure 8A). Meanwhile, as demonstrated in Table 2, five

high-frequency components, i.e., from signals 2 to 6, with

lower energy are also extracted and thus contain more

valuable information with respect to interference from other

factors such as fauna and plankton. The TF diagram of the

estimated components using the proposed approach is shown

in Figure 11. It shows that the crossover instantaneous

frequencies between signals 1 and 2 can be extracted clearly.

Those features above indicate that the patterns of low-

frequency trend and high-frequency fluctuation of the raw

seafloor water flow rate can be captured and accurately

estimated using the proposed approach.

To investigate the superiority of the proposed approach,

four benchmarks, including the ACMD method (Chen et al.,

2019), the VNCMD method (Chen et al., 2017), the EEMD

method (Wu and Huang, 2009), and the VMD method

(Dragomiretskiy and Zosso, 2014), are introduced for
Frontiers in Marine Science 15
comparisons. The estimated components generated via the

ACMD and the VNCMD methods are displayed in

Figures 12, 14A, and the IFs of the estimated components

generated via the ACMD and the VNCMD methods are shown

in Figures 13, 14B. Herein, the number of the decomposed

components is determined to be 6 in the ACMD and the

VNCMD methods, according to the proposed approach. As

shown in Figure 12, it shows that the waveform of signal 1,

estimated using the ACMD method, is slightly coincident with

that of raw seafloor water flow rate, but the other five

components still belong to low-frequency components (see

Figures 12B–F), and all of the IFs are aliased together,

simultaneously. As shown in Figure 14, the whole estimated

components that are generated from the VNCMD method are

similar to the waveform of the original signal, and the

frequency characteristics of the other components cannot be

revealed at all. In addition, the same to the results of the ACMD

method, all of the instantaneous frequencies are aliased

together, simultaneously. That is to say, the high-frequency

information of the raw signal is not captured using the ACMD
A

B

FIGURE 13

The TF diagram and IF plot of the estimated components using the ACMD method. (A) The TF diagram of the estimated components; and
(B) the IF plot of the estimated components.
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and the VNCMD methods, which is contrary to the

characteristics of the raw signal.

In addition, the estimated components and their IFs

generated via the EEMD and VMD methods are shown in

Figure 15. It shows that the sub-components can be extracted

and decomposed through the EEMD and VMD methods from

the high frequency to the low frequency. Obviously, the

waveform trend of the low frequency cannot also be captured

by the EEMD and VMD methods because the wideband modes

are still overlapping in the frequency domain. Meanwhile, the

modes exhibit poor energy concentration in time–frequency

representations and also present a poor correlation with the

raw signal of seafloor water flow rates. Therefore, it can be

concluded that the EEMD and VMD methods cannot reveal
Frontiers in Marine Science 16
the time-frequency pattern of the signal with crossing regions,

and the proposed method can achieve more reliable estimated

results and clear fluctuating patterns of the IFs in real-

world applications.
5 Conclusions

In this paper, a novel spatio-temporal nonconvex penalty

adaptive chirp mode decomposition (STNP-ACMD) algorithm

is proposed for recompositing the complicated multi-

component whose mono-modes have crossed IFs or

overlapped frequency information. The spatio-temporal
A

B

FIGURE 14

The estimated signal components and their estimated time-frequency plots using the VNCMD method. (A) The estimated components using
the VNCMD method; and (B) the estimated time-frequency plot of the estimated components using the VNCMD method.
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relationship among estimated components is considered via

incorporating a nonconvex penalty term into the cost function

in terms of a temporal matrix and a spatial matrix. The

rationale for exploiting the coupled nature of the available

information within the estimated components is given in

detail. Meanwhile, the cost function can be effectively solved

by the split Bregman algorithm, and the characteristics of the

fractional-order of the multi-component are also considered.

The results of synthetic simulated cases and specific

experimental cases are introduced between the proposed

approach and the state-of-the-art benchmarks and indicate

that the proposed STNP-ACMD has higher decomposed

accuracy and superiority in component estimation and IFs in

terms of crossed IFs scenarios.
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However, it should be highlighted that due to the fact that

the real IF information is unknown, the estimated time–

frequency ridge cannot be verified in practical application of

seafloor dynamic engineering. The STNP-ACMD method

proposed in this work is a deliberate attempt and a promising

exploration. In addition, one of the disadvantages in the work

focuses on parameter setting. Arbitrary parameter settings are

taken in this work, which lacks robustness for time-varying

scenarios. Therefore, future investigation will be devoted to

enhancing the robustness of the proposed method, including

parameter optimization and noise detection, and the multi-

dimensional and complicated time-varying scenarios in

industrial areas and ocean engineering applications will also

be explored.
A

B

D

C

FIGURE 15

The estimated signal components and their estimated time–frequency plots using the EEMD and VMD methods. (A) The estimated components
using the EEMD method; (B) the estimated time–frequency plot of the estimated components using the EEMD method; (C) the estimated
components using the VMD method; and (D) the estimated time–frequency plot of the estimated components using the VMD method.
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Appendix

For sub-problem P1, the specific derivation process for

signal x is given as,

F(x) = argmin
x
m1 ║ u − Qxi − bk1 ║

2
2 +m2 ║ v − s + Gixi − bk2 ║

2
2 +

m3 ║w − Dtxi − bk3 ║
2
2 +m4 ║ z − Dsxi − bk4 ║

2
2

= m1 (u − bk1)
2 − 2Qxi(u − bk1) + QTQx2i

	 

+

m2 (v − s − bk2)
2 + 2Gixi(v − s − bk2) + GT

i Gix
2
i

	 

+

m3 (w − bk3)
2 − 2Dtxi(w − bk3) + DT

t Dtx
2
i

	 

+

m4 (z − bk4)
2 − 2Dsxi(z − bk4) + DT

s Dsx
2
i

	 

(A1)
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∂ F(x)
∂ x = −2m1Q(u − bk1) + 2m1QTQxi + 2m2Gi(v − s − bk2) + 2m2G

T
i Gixi

−2m3Dt(w − bk3) + 2m3D
T
t Dtxi − 2m4Ds(z − bk4) + 2m4D

T
s Dsxi

(A2)

Let’s ∂ F(x)
∂ x = 0, that is,

2m1QTQxi + 2m2G
T
i Gixi + 2m3D

T
t Dtxi + 2m4D

T
s Dsxi

= 2m1Q(u − bk1) − 2m2Gi(v − s − bk2) + 2m3Dt(w − bk3) + 2m4Ds(z − bk4)

(A3)

xi =
m1Q(u − bk1) − m2Gi(v − s − bk2) + m3Dt(w − bk3) + m4Ds(z − bk4)

m1QTQ + m2G
T
i Gi + m3D

T
t Dt + m4D

T
s Ds

(A4)
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