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As a leading mode of sea surface temperature (SST) variability over the North

Atlantic in both observations and model simulations, the Atlantic Multidecadal

Oscillation (AMO) can have a substantial influence on regional and global

climate. By using Low-Frequency Component Analysis, we explore the

uncertainties of the resulting AMO indices and the corresponding spatial

patterns derived from three observational SST datasets. We found that the

known coherent spatial pattern of the AMO at the basin scale over the North

Atlantic appears in two out of the three datasets. Further analysis indicates that

both the warming trend and the different techniques used to construct these

observed gridded SSTs contribute to the AMO’s spatial coherence over the

North Atlantic, especially during periods of sparse data sampling. The SST in the

Extended Reconstructed SST dataset version 5 (ERSSTv5), changes from being

systematically below the other datasets during the dense sampling periods on

either side of the Second World War (WWII), to systematically above the other

datasets during WWII, thereby introducing an artificial 10–20-year variability

that affects the AMO’s spatial coherence. This coherence in the AMO’s spatial

pattern is also affected by bias adjustment in ERSSTv5 at relative cool (i.e., non-

summer) seasons, and by the heterogeneous North Atlantic warming pattern.

The different AMO patterns can induce the different effects of wind, surface

heat fluxes, and then drive ocean circulation and its heat transport

convergence, especially for some seasons. For AMO indices, both the

different detrending methods and different observational data result in

uncertainty for the period 1935–1950. Such SST uncertainty is important to

detect the relative role of the atmosphere and ocean in shaping the AMO.
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Introduction

The Atlantic Multidecadal Oscillation (AMO) is a leading

mode of multi-decadal variability that produces a basin-wide

warming/cooling in the North Atlantic (Schlesinger and

Ramankutty, 1994) with high spatial coherence (hereafter

referred to as the “coherent AMO pattern”) . Both

observational and modeling studies show that the influence of

the AMO on climate is not limited to the Atlantic area, but

operates on a global scale, such as its role in Atlantic hurricanes

(Goldenberg et al., 2001; Zhang and Delworth, 2006; Enfield and

Cid-Serrano, 2009), temperature and rainfall over land (Sutton

and Hodson, 2005; Knight et al., 2006; Tao et al., 2021), and the

rate of global warming (DelSole et al., 2011; Chen and

Tung, 2017).

Although the coherent AMO pattern has been regarded as a

key physical feature of the AMO (Zhang et al., 2019) and widely

used to distinguish its driving mechanism (Sun et al., 2018), it is

still spatially heterogeneous, with higher anomalies in the

subpolar and tropical North Atlantic and lower anomalies in

the subtropical region, referred to as a “horseshoe-like” pattern.

Previous studies have indicated that this horseshoe-like SST

pattern is mainly associated with the North Atlantic Oscillation

in slab ocean models (Clement et al., 2015; Sun et al., 2015), and

that dynamic processes related to the Atlantic Meridional

Overturning Circulation (AMOC) play a critical role in the

coherent AMO pattern in coupled models via altering oceanic

meridional heat transport (Knight et al., 2005; Zhang, 2008; Sun

et al., 2020a). This AMOC-related meridional heat transport

contributes mainly to the coherent AMO pattern in the

extratropics (Sun et al., 2020b). The connection between the

tropical part of the AMO and its subtropical and subpolar parts

may primarily occur via rapid atmospheric processes such as

those related to aerosols and cloud (Booth et al., 2012; Brown

et al., 2016; Zhang et al., 2019). Nevertheless, the subtropical part

of the AMO contains large observational uncertainty, as

reported by IPCC AR6 (Eyring et al., 2021). Therefore, it is

necessary to examine how coherent the observed AMO pattern

is, and to detect where the uncertainties of the AMO pattern

arise in observational datasets.

Multiple lines of evidence show a typical periodicity of 50–80

years for the observed AMO (Schlesinger and Ramankutty, 1994;

Gray et al., 2004). This long periodicity and the coexistence of

both AMO and global warming signals in observed SST data

poses s ignificant chal lenges to studying the AMO

observationally. To avoid possible spurious results and

disentangle the effects of global warming and the AMO on

regional and global climate, an observational record of at least 80

years is required (Tung and Zhou, 2013; Frankignoul et al., 2017;

Wills et al., 2019). Although climate models can provide

sufficiently long records to resolve multiple AMO cycles,

simulations of the AMO suffer from both shorter periodicities

(typically 10–30 years) and much weaker amplitudes than
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observation (Ruiz-Barradas et al., 2013; Zhang and Wang,

2013). This incapability of most models to reproduce the

dominant observed AMO periodicity (50–80 years) hinders

the extent to which the AMO can be studied (Lin et al., 2019).

Therefore, sufficiently long historical observations and/or

reconstructions (>80 years) of SST data still provide the best

opportunities to study the observed AMO.

Several century-long global gridded SST datasets are widely

used to study the AMO, such as the Extended Reconstructed SST

dataset version 5 (ERSSTv5, Huang et al., 2017), the Hadley

Centre Sea Ice and Sea Surface Temperature dataset

(HadISSTv1.1, Rayner et al., 2003), and the Centennial In Situ

Observation-Based Estimates of the Variability of SST and

Marine Meteorological Variables version 2 (COBE-SST2,

Hirahara et al., 2014). Although common AMO features are

recognized based on these datasets, such as the strongest signal

being located over the subpolar North Atlantic and the relatively

weaker signal over the tropics, they are not completely identical

across different observational datasets (Frankignoul et al., 2017;

Eyring et al., 2021). Although studies have suggested that SST

differences can be induced by the different bias-adjustment

schemes in different SST datasets because they may lead to

different SST decadal variation (Huang et al., 2015; Kent et al.,

2017), almost no attention has been paid to the connections

between these SST differences and the resulting AMO using

different observational datasets.

The aim of this study is to discover the uncertainties of the

resulting AMO time series and its spatial patterns derived from

different datasets and to explore the possible causes of these

uncertainties. To achieve this, the AMO signal is extracted from

three different observational SST datasets (ERSSTv5,

HadISSTv1.1 and COBE-SST2) for the period 1900–2019 by

using an objective method that does not presume in advance the

existence of SST trends due to global warming—namely, Low-

Frequency Component Analysis (LFCA, Wills et al., 2019). The

LFCA can extract the spatially uneven trend. We also explore the

differences between different versions of the same dataset to see

if the same AMO biases are inherited from one generation of the

dataset to the next. The first part shows the discrepancy of AMO

from various datasets, the second and third part are the temporal

period and regions in which data impacted the AMO. The fourth

and fifth part investigate the technique and seasonal correction

that contribute to the discrepancy of AMO. Finally, the role of

data uncertainty and detrending method in AMO are examined.
Results

The AMO from various datasets

Figures 1A, C and E show the AMO patterns extracted from

the North Atlantic (0°–65°N) SST in three monthly

observational datasets [ERSSTv5 (ERv5), HadISSTv1.1 (HadI1)
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and COBE-SST2 (COBE2)], for 1900–2019, using LFCA. A

horseshoe-like AMO pattern appears in all datasets, with the

maximum anomaly in the subpolar North Atlantic and a weaker

one in the tropics, which is a spatial structure in agreement with

previous studies (Zhang et al., 2019) and the CMIP6 multi-

model ensemble mean (Eyring et al., 2021). However, the spatial

coherence of the AMO pattern in the Atlantic is quite different in

these three datasets. To quantify the spatial coherence, we define

a coherence index (CI), which represents the percentage of grid

points with anomalies that have the same positive sign, for which

we empirically determined that if the CI is greater than 89%, the

AMO pattern is spatially coherent; otherwise, it is not (see

DATA AND METHOD). The CI is over 93% for HadI1 and

COBE2, but only 69.2% for ERv5. Thus, the AMO spatial pattern

is coherent if it is derived from HadI1 or COBE2, but not if it is
Frontiers in Marine Science 03
derived from ERv5. There are negative anomalies in a significant

portion of the subtropical and equatorial North Atlantic for

ERv5, which do not appear in the traditionally defined AMO

pattern (Trenberth and Shea, 2006) or in the HadI1 and COBE2

datasets. The pattern correlation coefficient (PCC) between the

AMO derived from ERv5 and that derived from HadI1/COBE2

is only 0.53/0.73 (Table 1), which is much lower than the AMO

PCC between HadI1 and COBE2 (0.86). By considering both the

CI and pattern correlations, we conclude that the AMO spatial

pattern derived from ERv5 is significantly different from that

derived from either of the other two datasets.

To further identify this low CI in AMO pattern (hereafter

referred to as incoherent AMO pattern) in ERv5, we swap the

SST data between 1982 and 2019 in each dataset with those from

version 2 of the Optimum Interpolation Sea Surface
A B

D

E F

C

FIGURE 1

Spatial pattern of the AMO extracted by LFCA from different SST datasets over the period 1900–2019: (A, C, E) ERv5, HadI1, and COBE2,
respectively. (B) ERv5 in 1900–1981 and OISSTv2 in 1982–2019. (D) HadI1 in 1900–1981 and OISSTv2 in 1982–2019. (F) Leading mode of LFCA
after removing the first leading EOF mode and the principal component (i.e., the inhomogeneous warming trend) over the North Atlantic. The
second/third leading low-frequency pattern and component of monthly SSTA in ERv5(COBE2)/HadI1 is the AMO pattern and index, respectively.
The AMO CI from each dataset is denoted in the top-right corner of the figure. Dots indicate the value passes the 95% significance level. Unit: °C.
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Temperature dataset (OISSTv2, Reynolds et al., 2007) and keep

the SST data unchanged for the period 1900–1981, similar to the

study of Si et al. (2020). Note that we also tested to use different

years around 1981 to split the datasets and our results are

insensitive to the exact splitting year (not shown). After

applying LFCA to the merged SSTs, the resulting AMO

patterns for “merged-HadI1” (Figure 1D) and “merged-

COBE2” (figure not shown) are almost unchanged with a

slightly higher spatial coherence (CI = 99.7% vs. 93.5%). In

contrast, the AMO pattern derived from “merged-ERv5” shows

an even lower spatial coherence (50.4% vs. 69.2%; Figure 1B).

This result confirms that the low spatial coherence of the AMO

pattern in ERv5 is not due to the use of LFCA, and the cause for

this low coherence is related to the ERv5 data in the period

1900–1981, especially the data in the subtropical to equatorial

North Atlantic.

Next, we explore the similarity in the AMO’s temporal

evolution. The second low-frequency components/patterns in

the ERv5 and COBE2 datasets are AMO indexes/patterns and

their first leading components/patterns are the North Atlantic

warming trend time series/patterns (Figures 1, 2A, D). Whereas

in HadI1, the first two leading LFCA time series/patterns are the

North Atlantic warming trend time series/patterns and the third

mode is the AMO indexes/pattern (Figures 1, 2A, D), similar to

the result in Wills et al. (2019). Generally, the AMO index

(Figure 2A) varies similarly, with temporal correlation

coefficients (TCCs) greater than 0.6 (Table 1) across the

different datasets with three dominant phase transitions

around the years 1920, 1970 and 2000 during 1900–2019.

However, the AMO phase transitions in ERv5 precede those in

the other two datasets by 10–15 years (Figure 2B), particularly

during the period 1930–1970. This is reflected by the lower

TCCs between the AMO indices derived from ERv5 and from

HadI1/COBE2 than between the AMO indices derived from

HadI1 and COBE2 (0.6 vs. 0.73 for the period 1900–2019, or

~0.72 vs. 0.93 for the period 1925–2019; Table 1). It is worth

highlighting that the peaks of the AMO index during 1930–1950

are higher in ERv5 than in HadI1 and COBE2, which is in

agreement with the result reported in chapter 3 of IPCC AR6

(Eyring et al., 2021). Therefore, we conclude that it is not only

the spatial pattern of the AMO derived from ERv5 that differs

from its counterparts in the other two datasets, but also the
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AMO index. These differences arise mainly from the subtropical

to tropical Atlantic SSTs, and from the SST data before 1981 as

explored in the next two subsections.
The critical period leading to the
uncertainty in reproducing the coherent
pattern of AMO

To identify the periods in which the AMO index derived from

ERv5 differs from those derived from HadI1 and COBE2, the

running TCCs with a 31-year window between the different AMO

indices are calculated (Figure 2C). The temporal evolutions of the

AMO indices derived from HadI1 and COBE2 are highly correlated,

with the 31-year running TCCs being consistently higher than 0.7

and statistically significant at the 99% level. However, the 31-year

running TCCs between the ERv5-based AMO index and the AMO

indices based on HadI1 and COBE2 are similar to the TCCs between

the HadI1-based AMO and COBE2-based AMO before 1930 and

after 1985, but lower than those during 1930–1985, and even become

negative during 1935–1955 and 1980–1985. Therefore, the ERv5-

based AMO index during these two periods (1935–1955 and 1980–

1985) is statistically different from the indices derived from HadI1

and COBE2.

To investigate whether the incoherent AMO pattern is

associated with the AMO index during the periods 1935–1955

or 1980–1985, the SST anomaly (SSTA) is regressed onto the

AMO index during 1925–1970 and 1970–2019 in ERv5,

respectively (Figure S1). The AMO pattern is spatially

coherent with a CI of 99% for the later period, but incoherent

with a CI of 69% for the earlier period. This indicates that the

incoherent AMO pattern in ERv5 possibly originates mainly

from the SSTA during 1925–1970, and not from that during

1970–2019. By combining with the 31-year running TCCs, this

can further infer that the incoherent AMO pattern in ERv5

during 1925–1970 is caused by the SSTA during 1935–1955.

To verify whether the SST differences around 1934–1950

among these datasets are the cause of the incoherent ERv5-based

AMO pattern, we substitute the ERv5 SST with the HadI1/

COBE2 SST during 1934–1950 and then apply LFCA to the

merged SST data. The resultant AMO patterns are coherent with

CI values greater than 89% (Figures 3A, B). However, if we only
TABLE 1 The PCCs and TCCs of AMO indices and spatial patterns over the North Atlantic. A 10-year low-pass filter is applied to obtain AMO
indices derived from four SST datasets.

PCC (TCC1900-2019/TCC1925-2019) ERv5 HadI1 COBE2 COBE

ERv5 1 0.53 (0.60/0.73) 0.73 (0.60/0.72) 0.69 (0.72/0.78)

HadI1 / 1 0.86 (0.73/0.93) 0.86 (0.73/0.83)

COBE2 / / 1 0.93 (0.94/0.83)

COBE / / / 1
The numbers outside (inside) the parentheses are the PCC (TCC) of the AMO spatial pattern (index) over the North Atlantic.
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substitute the SSTs during 1940–1950, the resultant AMO spatial

patterns are incoherent with CIs lower than 56% (Figures 3C, D).

To better determine the time boundary, the start points of the

SST substitution periods are varied from 1929 to 1940 but with
Frontiers in Marine Science 05
the same end point (1950). As shown in Figures 3E, F, the CI

values are greater than 89% for the start points before 1934, but

decrease rapidly after 1934—for instance, the CIs are less than

70% when the start points are 1938–1940. This suggests that the
A

B

D

C

FIGURE 2

(A) AMO index extracted by LFCA from ERv5, COBE2 and HadI1, in which the dashed line is the AMO index extracted by LFCA after removing
the first EOF mode and principal component of NASST in ERv5. (B) Lead–lag correlation coefficients between the AMO index in ERv5 and those
in HadI1 (blue) and COBE2 (red) in 1900–2019, in which the dots represent the positions with the maximal correlation coefficients. (C) 31-year
running correlation of AMO indices among different datasets, in which the thick (thin) lines denote values passing (failing) the 99% significance
level. (D) The warming trend time series in the North Atlantic (the first low-frequency component of LFCA) from ERv5, COBE2 and HadI1, in
which the dashed line is the first principal component from EOF in ERv5. The explained variances (%) and TCCs are shown.
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incoherent AMO pattern in ERv5 is mainly caused by the SST

data during 1934–1950.
The critical region generating the
uncertainty in reproducing the coherent
pattern of AMO

The period 1934–1950 includes the Second World War

(1939–1945; hereafter referred to as WWII), during which the

use of trade ships decreased sharply, resulting in a significant

reduction in ship-based SST sampling. For example, all

objectively analyzed SST datasets were based on version 3 of

the International Comprehensive Ocean–Atmosphere Data Set

or its earlier version (ICOADS, Freeman et al., 2017) before

1950, which mostly comprised ship-based observations. As

shown in Figure 4A, these ship-based SST observations (data
Frontiers in Marine Science 06
see DATA AND METHOD) were carried out along the trade

routes between Europe and the Americas, with more than 20

SST samples per month along the busy routes, but only a few

along the less busy routes before WWII. Then, the number of

SST samples dramatically reduced during WWII (1940–1945),

by over 50% in most regions (about 74% of the North Atlantic

basin), and there was almost no SST sampling at all over the

region of 0°–30°N and 0°–60°W (bounded by green lines in

Figure 4B). Thereafter, the SST sampling size gradually

recovered to, and even surpassed, the pre-WWII level (figure

not shown), due to increased trade once again between Europe

and the Americas. Therefore, we speculate that the more

significant undersampling of SSTs during WWII has exerted a

major influence on objectively analyzed SST datasets, and the

methodologies used to derive these data have further transferred

these influences into the AMO patterns and indices derived from

the data.
A B

D

E F

C

FIGURE 3

AMO patterns obtained from merged datasets based on LFCA. The merged datasets are obtained by replacing the SST data during 19xx–1950 in
ERv5 with those in HadI1 (COBE2), where 19xx ranges from 1930 to 1940 in yearly increments and remains unchanged in other periods. (A, B)
AMO patterns when 19xx is 1934 for HadI1 and COBE2, respectively. (C, D) As in (A, B), respectively, but when 19xx is 1940. (E, F) Change in the
AMO CI as 19xx ranges from 1929 to 1940 when replacing HadI1 and COBE2, respectively. The x-axis denotes the period of replacement from
1929 to 1940. The dots in (E, F) are the positions where the CI value reaches the 89% level. Unit: °C.
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To further verify the effect of SSTs along the primary trade

shipping routes on the resulting AMO pattern during WWII, we

simply replace the ERv5 SSTs along these routes during 1934–

1950 with those in the HadI1/COBE2 datasets, and then employ

LFCA to extract the AMO. The resulting AMO spatial patterns

are highly coherent, with CIs of 98.4%/96.8% after replacement

with HadI1/COBE2 SSTs (Figures 4C, D). This confirms that the

ERv5 SSTs along the primary trade shipping routes during

1934–1950 led to the incoherent AMO pattern (Figure 1A).
Impact of SST differences on the
incoherent AMO pattern

To systematically examine the features of the SSTs along the

primary shipping routes, we calculate the nonoverlapping

piecewise area mean SST difference between ERv5 and HadI1

over the region where the sampling size decreased sharply

(>50%) during 1940–1945 (Figure 4B), and the piecewise

mean window is 6 years for the period 1922–1963, with a total

of seven six-year intervals (Figure 5A). For the periods with

plenty of SST samples (1922–1939 and 1946–1963), the area

mean SST in ERv5 is systematically lower than that in HadI1

(Figure 5A). In contrast, for the period with a significantly

reduced SST sampling size (1940–1945), the area mean SST in

ERv5 is slightly higher than that in HadI1 (Figure 5A). These

SST differences between ERv5 and HadI1 have also been found
Frontiers in Marine Science 07
in previous studies (Kent et al., 2017; Kennedy et al., 2019; Chan

and Huybers, 2021). In addition, the oscillation induced by these

SST differences, as shown in Figure 5A during 1934–1950, may

be artificial. Similar SST differences can also be found between

ERv5 and COBE2 data for the same period (not shown). This

suggests that the ERv5-based SSTs during the WWII period are

biased toward being warmer than the SSTs in HadI1 and

COBE2, and the resulting artificial SST oscillation may have

contributed to the incoherent AMO spatial pattern, and the low

coherence of the ERv5-based AMO index with the HadI1/

COBE2-based AMO index.

To examine how the sampling sizes associated with bias-

adjustment can affect the SST differences between ERv5 and

HadI1, the monthly SST difference is regressed onto

monthly sample sizes, and the probability density function

is constructed based on the monthly SST differences

between ERv5 and HadI1 in the periods during, before

and after WWII (Figures 5B, C). In general, the mean SST

differences have no obvious linear relationship with the

sampling size before and after WWII (hereafter referred to

as the dense sampling periods), such as regression coefficient

is 0.04°C/20 sizes (p-value > 0.05) for 1934–1939 and 1952–

1957. In contrast, the mean SST differences are negatively

correlated with the sampling size for the period of analysis

(Figures 5C), with a regression coefficient of −0.35°C/20

sampling sizes (p-value< 0.05). In fact, this negative

correlation also appears in other periods including WWII
A B

DC

FIGURE 4

(A) The SST sampling size (unit:/month) during 1934–1939 and (B) the percentage change in the sampling size during 1940–1945 relative to that
during 1934–1939. The green contour is the >1/month sampling size during 1940–1945. (C, D) The AMO patterns derived from merged SST
data based on LFCA. The merged SST data are constructed by replacing ERv5 SST data with (C) HadI1 or (D) COBE2 SST data over the total
region of sharply decreased sampling size [>50% in the colored region in (B)] during 1934–1950. The AMO CIs are shown in the top right. The
unit for (C, D) is °C.
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(Table 2). These results imply that SST differences are

strongly influenced by sampling size during the WWII.

Meanwhile, the SST in ERv5 is colder than that in HadI1

by 0.13°C and with smaller spread [standard deviation

(STD) = 0.10] during the dense sampling periods, but

warmer by 0.08°C and with larger spread (STD = 0.19)

during the WWII. Random resampling is used to test the

significance of the differences between the means or STDs

(Monte Carlo sampling test; see DATA AND METHOD),

and the results show that the differences in SST mean values
Frontiers in Marine Science 08
between the dense sampling periods (any 6 years within

1922–1939 and 1952–1963) and WWII (1940–1945) are

statistically significant at the 95% level. Moreover, the

differences between ERv5 and COBE2 are similar to those

of HadI1 (not shown). Given the warming over the North

Atlantic is weak during 1934-1960 (Figure 2D), it is

suggested that North Atlantic SST anomaly on decadal

time-scale mainly reflects AMO variability. Thus, the

mean SST differences (ERv5 minus HadI1 or COBE2)

between the dense sampling periods and WWII are
TABLE 2 The regression coefficient between the sample size and monthly SST difference (ERv5 minus HadI1) averaged over region where the
sampling size decreased sharply (>50%) during 1940–1945 for different periods.

Periods for analysis Regression coefficient p-values

1934-1957 -0.23 °/20 sizes p<0.05

1934-1951 -0.27 °/20 sizes p<0.05

1940-1951 -0.24 °/20 sizes p<0.05
fron
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FIGURE 5

Relationship between SST differences (ERv5 minus HadI1) and the period of sampling size over the region of dark blue in Figure 4B during
1922–1963. (A) Box plot of monthly SST differences, in which the attributes in a box from top to bottom are the maximum, 75th percentiles,
median, 25th percentiles, and minimum, respectively. (B) Sample size against averaged monthly SST differences over the same region as
(A). Fitted values and p-values are also denoted in the figure. (C) probability density function (PDF) of randomly resampling the SST differences
during the WWII period and non-WWII periods (i.e., pre- and post-war). The average and STD of the SST differences for different periods are
given. (D, E) Boxplots of the SST difference (ERv5 minus HadI1) for four seasons over (D) 0°–30°N and (E) 30°–65°N. (F) Meridional SST
difference between 0°–30°N and 30°–65°N for three SST datasets, measured by the averaged SST over 0°–30°N minus that over 30°–65°N for
individual datasets.
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significant, and capable of inducing a decadal oscillation

that influence the AMO.

As ERv5, although HadI1 and COBE2 also share the same

raw observational data source in ICOADS, the different bias

adjustment schemes applied in these datasets may affect the

resulting SST and its variability. The HadI1/COBE2 datasets

adopt a simplified physical model of buckets (Rayner et al., 2003;

Hirahara et al., 2014) based on the scheme of FP95 (Folland and

Parker, 1995) to correct the systematic cooling due to wind and

solar insolation at the sea surface (Folland et al., 1984; Folland

and Parker, 1995). In ERv5, meanwhile, the bias adjustment is

the approach of SR02 (Smith and Reynolds, 2002), which is

based on the statistical relationships between nighttime marine

air temperature and SST (Huang et al., 2017). The SR02 bias

adjustment has more obvious seasonal differences than that of

FP95 (Smith and Reynolds, 2002). In the following, by applying

LFCA to the seasonal mean ERv5 SST over the entire North

Atlantic, we examine whether this SR02-related seasonal

difference affects the AMO pattern. As shown in Figure 6, the

AMO pattern derived in June–July–August (JJA) is highly

spatially coherent, with a CI of 99% (Figure 6A), while the

AMO pattern derived in September–October–November (SON)

season is not coherent over the entire North Atlantic, with a low
Frontiers in Marine Science 09
CI value (51%; Figure 6B). Although the CIs are higher for the

AMO patterns derived in March–April–May (MAM) and

December–January–February (DJF) than SON, they are still

lower than the 89% threshold (Figure S2). However, the AMO

patterns extracted from the seasonal mean HadI1/COBE2-based

SST are coherent over the entire North Atlantic, with CIs higher

than 89% (not shown). This indicates that the seasonal SST

differences used in ERv5 do contribute to the incoherent AMO

patterns, except in JJA.

To investigate why seasonal SST differences contribute to the

incoherent AMO pattern in ERv5, we calculate the seasonal

mean SST difference (ERv5 minus HadI1) over the extratropical

North Atlantic (30°–65°N), tropical North Atlantic (0°–30°N),

and the seasonal mean meridional SST contrast for different

datasets (Figure 5). In general, the seasonal mean SST differences

between ERv5 and HadI1 present low–high–low oscillations

over the entire North Atlantic (0°–65°N) during 1934–1951

(not shown). These oscillations become more obvious in the

tropical North Atlantic, but less so in the extratropical North

Atlantic. Before 1940, the median SSTs in ERv5 are about 0.3°C

colder than those in HadI1 in all seasons in the tropical North

Atlantic, but 0.05°C–0.3°C warmer in the extratropical North

Atlantic, except in JJA. Thus, this warmer SST in the extratropics
A B
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FIGURE 6

The AMO pattern extracted from the seasonal mean ERv5 SST in (A) JJA and (B) SON during 1900–2019 by LFCA. (C–E) Regression patterns of
the ERv5 SSTA onto the difference (ERv5 minus HadI1) in the AMO index (defined by the averaged SSTA in the North Atlantic) with a 6-year
running mean for the (C) monthly, (D) JJA, and (E) SON data during 1934–1950. (F, G) The AMO pattern extracted from the adjusted (F) SON
and (G) monthly ERv5 data during 1900–2019 by LFCA. The adjusted SON ERv5 data in (F) are obtained by first removing the SON seasonal SST
difference (ERv5 minus HadI1) from the monthly ERv5 data during 1934–1950, and then computing the SON seasonal mean SST during 1900–
2019. The adjusted monthly ERv5 data in (G) are obtained by removing the MAM, SON and DJF seasonal SST differences from the monthly ERv5
data during 1934–1950. The AMO CI value is given in the top right. The dots indicate statistical significance at the 95% confidence level.
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and colder one in the tropics in ERv5 relative to HadI1 lead to

large meridional SST differences in all seasons except JJA before

1940. These meridional SST differences also exist after 1945, but

are smaller due to the smaller cooling difference in the tropics

and slightly larger cooling difference in the extra-tropics

(Figures 5D, E). In contrast, in JJA, these meridional SST

differences are very small because of similar behavior between

the tropical and extratropical North Atlantic (Figures 5D, E).

This leads to the smallest meridional SST contrast existing in JJA

during 1934–1950 in ERv5 (Figure 5F). This corresponds to the

smaller correction in boreal summer than other seasons in

the bias adjustment of SR02 (see Figures 6, 7 in Smith and

Reynolds, 2002). Therefore, although the low–high–low

oscillation of the SST difference between ERv5 and HadI1 is

artificial, the enlargement of the meridional SST contrast

between the tropical and extratropical North Atlantic is the

possible cause of the incoherent AMO pattern in MAM, SON

and DJF, and the monthly mean.

To examine whether spatial differences in the seasonal ERv5

SST affect the resulting AMO patterns, we regress the monthly or

seasonal mean ERv5 SST onto the difference between the ERv5-

based and HadI1-based AMO indices (defined by the area-
Frontiers in Marine Science 10
weighted averaged SST over the North Atlantic) with a six-

year running mean during 1934–1950 (Figures 6C–E). For the

monthly regression, the monthly SSTs are significantly related to

the differences in the AMO indices in most parts of the North

Atlantic (Figure 6C; stippling indicates a regression significant at

the 95% level). For SON, although the regions with significant

regression become smaller, the overall regression pattern is

similar to that for the monthly SST (Figure 6F). On the other

hand, the regions with statistically significant regression are

negligible in JJA (Figure 6D). This indicates that the ERv5 SST

in JJA (SON) is not related (related) significantly with the

difference in the AMO. By removing the spatial effect of the

SST difference (ERv5 minus HadI1) in SON from the monthly

ERv5 data during 1934–1950, the extracted AMO pattern in the

seasonal SON mean is almost coherent, and the CI increases

from 51% (Figure 6B) to 84.1% (Figure 6F). Furthermore, the

extracted monthly AMO pattern is also coherent after removing

the spatial SST effects (ERv5 minus HadI1) in MAM, SON and

DJF from the monthly ERv5 data (Figure 6G). Thus, the spatial

distribution of the seasonal mean SST affects the AMO pattern

greatly, with a coherent (incoherent) AMO pattern in

JJA (SON).
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FIGURE 7

The AMO pattern extracted by LFCA from ERv5 with three low-pass filter frequencies: (A) 12 years, (B) 16 years, and (C) 20 years in LFCA (40
EOFs are also applied). Dots indicate where values pass the 95% significance level, and the AMO CI is denoted in the top right. (D) AMO indices
with different low-pass filter frequencies, and their TCCs are given. (E) Similar to Figure 2C but the AMO is extracted using a 16-year low-pass
filter. The unit in (A–C) is °C.
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Impact of low-pass filtering on the
incoherent AMO pattern

The other difference in the bias-adjustment process is the

employment of a Lowess filter (Cleveland, 1981) to maintain the

signal continuity around the 1940s in ERv5, and this filter is

equivalent to a 16-year low-pass filter (Huang et al., 2015). As

described in previous studies (Wills et al., 2018; Wills et al.,

2019), LFCA uses a 10-year Lanczos low-pass filter to extract the

SST variability on decadal timescales, and the mismatch between

this and the Lowess filter can lead to spurious signals.

Frankignoul et al. (2017) also indicated this smoothing in bias

adjustment can influence the resulting AMO pattern. To

examine this mismatch, the AMO pattern and index are

extracted using LFCA by applying low-pass filters with

windows of 12, 16 and 20 years. As shown in Figures 7A–C,

the coherence of the AMO spatial pattern is progressively better

as the low-pass filter window increases, e.g., with a CI of 77.3%

for a 12-year low-pass filter, and 95.4%/98.2% for a 16/20-year

low-pass filter, over the North Atlantic (Figures 7A–C). Besides,

the original low–high–low oscillation between ERv5 and the

other SST datasets (Figure 5A) disappears once 16-year low-pass

filter is applied (not shown). Further analysis indicates that by

using a fixed number (35) of empirical orthogonal functions

(EOFs) in LFCA, the CIs of the AMO pattern in ERv5 increase

gradually as the low-pass filter window lengthens from 10 to 25

years, from a CI below 70% to over 90% (Figure S3). The

sensitivity of the resulting AMO pattern to the different filter

window lengths is significantly less for the HadI1 and COBE2

SSTs, since the CIs are always higher than 90% when using the

same number of EOFs as for the ERv5 SSTs. Therefore, we

conclude that to obtain a spatially coherent AMO pattern from

ERv5 data, a low-pass filter window equal to or longer than 16

years is needed, but this requirement is not needed for HadI1

and COBE2 data.

With this improved AMO pattern by applying a low-pass

filter of 16 years or longer to ERv5 data, the question naturally

arises as to whether this might lead to variation in the AMO

index derived from ERv5 that is more coherent with those

derived from HadI1 and COBE2 data. As shown in Figure 7D,

the resulting AMO indices with a 10- or 16-year low-pass filter

are nearly identical, with a correlation coefficient of 0.97. The

same is true for the AMO indices derived from HadI1/COBE2

(not shown). As expected, when the 31-year running TCC is

calculated between the AMO indices derived from ERv5 and

those from HadI1/COBE2 by using a 16-year low-pass filter,

these indices are still uncorrelated during 1940–1950

(Figure 7E). This indicates that, although different filters can

significantly improve the spatial coherence of the resulting AMO

patterns from ERv5, their influence on the temporal evolution of

the AMO index is negligible.
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Warming trend over the North Atlantic
and the AMO

To properly obtain the AMO, the response of the SST to

external forcing (e.g., greenhouse gases) needs to be removed. For

LFCA, the assumption is that this SST response is heterogeneous

spatially. The more traditional approaches, however, such as that

of Trenberth and Shea (Trenberth and Shea, 2006; TS2006

hereafter), assume a globally uniform response, and the

externally forced trend is represented by the global mean SST.

To test whether these different assumptions affect the resulting

AMO patterns derived from ERv5 data, we first remove the global

mean SST at each grid point (i.e., detrended SST), and then define

the AMO index as the area-weighted North Atlantic SST based on

the detrended SST (the same as with TS2006), and the AMO

pattern as the regression of this AMO index onto the detrended

SST, or by applying LFCA to the detrended SST (hereafter,

GM_LFCA). Both approaches result in a much improved spatial

coherence of the AMO pattern, with a CI of 99.9% when the AMO

index is defined as the area-weighted detrended SST (Figure 8A vs.

Figure 1A) and a CI of 91.0% when the AMO pattern is derived

from detrended SST using LFCA (Figure 8B vs. Figure 1A). This

indicates that different assumptions regarding the SST’s response

to changes in external forcing can also affect the resulting AMO

patterns derived from ERv5 and, to a lesser degree, this may also

be true for the other two datasets. On the other hand, the second

LFCA mode derived from the detrended SST shows a pattern

similar to the regional SST response to the external forcing

(Figure 8C), and the subpolar North Atlantic warming hole is

possibly associated with the AMOC slowdown (Caesar et al.,

2018). The trend of this second LFCAmode (1.31 STD/100 years)

is statistically significant according to the Mann–Kendall (MK)

trend test (see DATA AND METHOD), and thus this second

mode represents the residual of the warming trend in the North

Atlantic. However, the AMOs derived from the other two SST

datasets (HadI1/COBE2) are not sensitive to whether or not the

globally uniform forced trend is removed before the application of

LFCA (figure not shown). Thus, only the AMO pattern derived

from ERv5 is sensitive to how the externally forced SST trend is

represented, i.e., spatially uniform or heterogeneous.

Comparison among the spatial patterns and time series of

the first leading LFCA modes (i.e., North Atlantic warming) in

these three datasets shows high spatial and temporal consistency,

with PCCs ≥ 0.97 and TCCs ≥ 0.9. Therefore, this warming trend

is not likely the cause of the low coherence in the AMO pattern

derived from ERv5. However, when the first leading EOF mode

(long-term heterogeneous warming pattern) is removed from

the SST by linear regression and LFCA is applied to the residual

SST, the spatial coherence of the resulting AMO pattern

becomes even lower for ERv5 (41.6% in Figure 1F vs. 69.2% in

Figure 1A). Similar results are also found for the other two
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datasets (Figure S4). This suggests that the heterogeneous North

Atlantic warming pattern can contribute positively to the AMO

spatial coherence for all datasets.

Next, we look at the effects of these different detrending

methods on the resulting AMO indices. As shown in Figures 8E,

F (blue lines), the AMO indices obtained from LFCA differ

significantly from those obtained from the TS2006 method

around 1940 and 1980 for both the ERv5 and HadI1 datasets,

suggesting that different assumptions in the North Atlantic SST

response to global warming can result in different temporal

evolutions in the AMO index around 1940 and 1980. As the

spatially uniform warming is removed, the GM_LFCA Mode-1

indices still differ from those based on TS2006 (red lines in
Frontiers in Marine Science 12
Figures 8E, F) around 1940 and 1980, especially in HadI1. This

indicates that, with the removal of the same spatially uniform

warming trend, spatially uneven warming trends are left

(Figures 8C, D), which may explain the differences among the

AMO indices obtained from the TS2006 and GM_LFCA

methods (Figures 8D, E). Even if the TS2006 method is

applied to both ERv5 and HadI1, the resulting AMO indices

are different around 1940 (Figure 8G). This implies that a

fundamental difference exists around 1940 between ERv5 and

HadI1. Potentially, there might be other reasons behind the

inconsistencies in the AMO indices between ERv5 and the other

two datasets around 1940 and 1980, but we leave these to be

investigated in a future study.
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FIGURE 8

The AMO patterns (A) using the definition of subtracting the global mean SST (GM) based on TS2006 and (B) extracted by LFCA before
removing the global mean SST (GM_LFCA Mode-1). Dots indicate where values pass the 95% significance level, and the AMO CI is given in the
top right of the figure. (C) Second leading GM_LFCA Mode (GM_LFCA Mode-2). (D) AMO indices derived from LFCA, GM, GM_LFCA Mode-1
and GM_LFCA Mode-2 based on ERv5 SST data. (E) Similar to Figure 2C but for different approaches based on ERv5. (F) Similar to (E) but based
on HadI1. (G) Similar to (E) but using the TS2006 approach based on ERv5 and HadI1.
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Influence of ocean and atmosphere in
shaping the coherent pattern of AMO

Here we have used the piControl experiment of CESM2 and

its constructed ensemble (see DATA AND METHOD) to

investigate the possible role of ocean and atmosphere in

shaping the coherent pattern of AMO. The LFCA is applied to

the constructed ensemble member from the piControl run to

compute AMO. Figure S6A shows the correlation coefficient

between AMO in the ensemble member and AMO from each of

three SST datasets (ERv5, HadI1, and COBE2). By considering

correlation coefficient of AMO index and CI of AMO pattern, we

selected the member that resembled the one in three observed

SST datasets most. The correlation coefficient is 0.71 (0.57/0.64,

p-value<0.05) between AMO index in the ensemble member and

AMO index in ERv5 (COBE2/HadI1), and related AMO

patterns are shown in Figure S6. The ERv5-like member shows

an incoherent AMO pattern (CI=71%), while both COBE2-like

and Had1-like members show a coherent AMO pattern

(CI=88% and 91%, respectively), indicating that these three
Frontiers in Marine Science 13
members are good representation of the observational AMO

pattern/index derived from the three datasets.

Based on SST tendency equation (see DATA ANDMETHOD)

proposed by Zhang et al. (2016), we diagnosed the relative

contribution of net surface heat flux Q'net and oceanic heat

transport convergence OHTC' n shaping the tendency of decadal

variability of SST. The SST tendency, Q'net and OHTC'

(OHTC′ ≈ r0Cph
dSST0
dt − Q0net ) regressed on the AMO index at a

2-year leading time (the maximal correlation between the tendency

of AMO index and AMO index, Figure S7), respectively (Figure 9).

The atmosphere seems to drive the variation of SST tendency in the

ERv5-like member as the OHTC is almost in balance withQ'net and

SST tendency is weak over the North Atlantic prior to the maximal

positive phase of AMO. In contrast, in the COBE2-like or Had1-like

members, the OHTC contributes to the warming SST tendency

over the subpolar North Atlantic, where the upward Q'net can

directly balance SST, indicating that the atmosphere is passively

responded to SST warming. Previous study of observational surface

heat flux also supports the ocean active role in AMO (Gulev

et al., 2013).
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FIGURE 9

The (A, D, G) SST tendency, (B, E, H) net surface heat flux Q'net, and (C, F, I) oceanic heat transport convergence OHTC', regressed on the AMO
index in selected members of CESM2 piControl with a 2-year lead time, respectively. The downward direction is positive for Q'net.
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Above analysis indicates that the SST anomaly can serve as a

perturbation to the interaction within ocean and atmosphere,

and thus can influence which of ocean and atmosphere in

dominating the AMO tendency, and finally the AMO.
Conclusion and discussion

In this study, we investigate the uncertainty in the resulting

AMO indices and spatial patterns arising from the differences in

reconstructed SST observations (ERv5, COBE2, and HadI1) over

the North Atlantic from 1900 to 2019 by applying the same

methodology—namely, the LFCA method. Three indices (CI,

PCC and TCC) are used to quantify the consistency among the

AMO patterns and indices derived from the different datasets.

Instead of the commonly accepted basin-wide spatially coherent

pattern over the North Atlantic (Zhang et al., 2019), the

extracted AMO pattern from the ERv5 dataset is not spatially

coherent, with a negative anomaly over the subtropical North

Atlantic in the AMO’s positive phase. The ERv5 AMO index is

decorrelated with the HadI1/COBE2 AMO indices during 1934–

1950 owing to its preceding 10–15 years. Thus, we conclude that

the AMO properties in ERv5 differ significantly from those in

the other two datasets.

Further analysis reveals that the sensitive region and period

of the ERv5 SST data for the AMO pattern are the shipping

routes in the North Atlantic during 1940–1945 (WWII), in

association with sharply decreased sample sizes. These SST

differences introduce a spurious artificial interdecadal

oscillation during 1934–1950.

This artificial oscillation is firstly related to the seasonal SST

differences stemming from the different bias-adjustment

schemes employed in ERv5 and HadI1/COBE2. The bias-

adjustment scheme used in ERv5 leads to higher corrected

SSTs in the extratropics in MAM, SON and DJF than in JJA

before the 1950s. This results in increased meridional SST

gradients between the extratropics and tropics (warming

SSTAs in the extratropics and cooling ones in the tropics) in

MAM, SON and DJF. These are likely to serve as initial

perturbations in the air-sea interaction by firstly influencing

the wind or heat/water fluxes over the North Atlantic, and then

wind can affect the change of SST by oceanic general circulation

or affect SST directly. Given that ocean deep convection

(denoted deep mixed layer) frequently appearing in cold

seasons (such as SON, DJF or MAM) over the North Atlantic

(e.g., Alexander and Deser, 1995), SST anomalies can have

potentially footprinted on ocean deep convection by wind or

heat/water flux, and further joined in the deep ocean circulation

process, which contribute to the decadal SST variability over the

North Atlantic. So, this bias-adjustment can stimulate the

enhanced artificial oscillation and resulting incoherent AMO

pattern based on the seasonal mean SSTs in MAM, SON and

DJF but not in JJA. Such differences further cause the incoherent
Frontiers in Marine Science 14
AMO pattern extracted by LFCA based on the monthly ERv5

SST. By contrast, the bias adjustment is almost the same between

HadI1 and COBE2 in the early periods, which leads to the

consistent SST variations (Huang et al., 2015).

This artificial oscillation may also be related to the 16-year

low-pass filter employed in the bias-adjustment process used in

ERv5. This low-pass filter is mismatched with the 10-year low-

pass filter used in LFCA and the traditional definition. Thus, the

AMO pattern derived from the ERv5 dataset is affected by the

low-pass filter in the bias adjustment.

The assumed pattern of North Atlantic warming in response

to changes in external forcing can influence the resulting AMO

patterns, especially for the ERv5 dataset. The coherence of the

AMO patterns is low (high) when the warming pattern is

assumed to be uneven (even). The resulting AMO indices

der ived f rom di ff e r en t methods (TS2006 , LFCA,

TS2006_LFCA) show significant differences during 1940–1950

for the same dataset (e.g., ERv5 or HadI1); and for the same

methods (LFCA or TS2006), the AMO index from ERv5 is

significantly different from that derived from HadI1 or COBE2.

It is worth noting that we can improve the coherence of the

AMO pattern in ERv5 by using a low-pass filter frequency that is

consistent with that used to construct the ERv5 SST dataset, but

not the AMO index during 1940–1950.

The SST datasets used in previous analyses have employed

different versions of ICOADS. For example, COBE2 and its

earlier version, COBE-SST (Ishii et al., 2005), used ICOADS 2.5

and ICOADS 2.0 (Woodruff et al., 2011), respectively, and

ERSST employed ICOADS 3.0 for v5 (Huang et al., 2017), 2.5

for v4 (Huang et al., 2015), and 2.1 for v3 (Smith and Reynolds,

2003). The AMO patterns extracted from COBE-SST and

COBE2 are coherent over the North Atlantic, with high CIs

(>89%). On the other hand, the AMO patterns extracted from

ERSST.v3 and ERSST.v4 using LFCA are also unable to show a

coherent warming in the North Atlantic, with low CIs—the same

as that from ERv5 (Figure S5). This indicates that different

versions of the ICOADS data is not the source of different

coherence in the AMO patterns between ERv5 and HadI1/

COBE2. The corrected ICOADS from Chan and Huybers

(2021) is employed to obtain the AMO pattern, as the

coherent (incoherent) AMO pattern is derived from HadI1

(ERv5) merged with the corrected ICOADS (not shown),

which indicates the corrected sources do not significantly

influence the AMO pattern, but the bias adjustment in ERv5

does play a crucial role.

Uncovering the role of observational SST uncertainty that

was resulted from mid-20th century bias adjustment in the

observed AMO will help to understand the influence of ocean/

atmosphere in shaping the AMO. It is shown that the ocean heat

transport convergence seems to drive the tendency of AMO in a

coherent AMO pattern (like COBESST2 or HadISST1). In

contrast, in the incoherent AMO pattern, the atmosphere may

become the driver of the AMO tendency.
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Finally, two suggestions for how to obtain a more coherent

AMO pattern from ERv5 data are noted, as follows. First, to

obtain the coherent warming AMO pattern using LFCA over the

North Atlantic, it is necessary to preprocess the monthly SST to

an annual SST to cancel out the seasonal difference due to the

bias correction. And second, if monthly SST data are employed,

a 16-year low-pass filter is recommended in LFCA.
Data and method

Datasets

Four different monthly reconstructed SST datasets are

employed, including ERv5 (Huang et al., 2017), COBE2

(Hirahara et al., 2014), HadI1 (Rayner et al., 2003) and COBE-

SST (Ishii et al., 2005). The resolutions of these SST products are

all 1° × 1°, except ERv5 (2° × 2°), the data of which are bilinearly

interpolated into a resolution of 1° × 1° to keep the same

resolution as the other datasets. This interpolation does not

influence our results. The monthly SST climatology for 1971–

2000 is removed to obtain the SSTA. The SSTA is employed in

LFCA or a substitutive process in the figures, except in Figure 5

(using SST) in the main text. Version 3.0 of ICOADS (Freeman

et al., 2017) with quality-control (Chan et al., 2019) is used to

compute the sampling sizes of the observational SST. OISSTv2

(Reynolds et al., 2007) is used to prove that the post-1980s SST

data do not reduce the CI of the AMO in Figure 1.

Because of the large uncertainty before 1900 (Folland et al.,

2001), the SST data before this point are excluded from this

study of the AMO. HadI1 sea-ice concentration data (Rayner

et al., 2003) are also used for masking where the sea-ice’s

concentration is positive, as recommended in Drews and

Greatbatch (Drews and Greatbatch, 2016), to exclude the

influence of sea ice in our results.

The piControl experiment with external forcing fixed at

1850 level of CESM2 (Danabasoglu et al., 2020) for 200-1200

year is used. The horizontal resolution of atmosphere

component is 1.25° ×0.9˚, and that of ocean component is

about 1.125° × 0.44°. Previous studies show that CESM2 well

reproduce some characteristics of observed AMO (Deser and

Phillips, 2021). The model data anomaly is obtained by subtract

the climatology of the whole time period, and data is also linearly

detrended to remove the climate drift. To compare with the

observation (whose length of data record is about 120 years), we

created surrogate ensembles from the piControl. The 89

ensemble members with the length of 120 years are created by

selecting 200-319, 210-329, 220-339, ... , 1080-1199 year from

the piControl run, respectively. As the external forcing is a

constant, the first leading low-frequency mode was extracted

from SST anomaly over the North Atlantic (0-65 ˚N) based on

LFCA (Low Frequency Component Analysis, introduced in the
Frontiers in Marine Science 15
next) method for each member. The first leading LFCA mode

is AMO.
Low frequency component analysis

LFCA (Wills et al., 2019) aims to find low-frequency

variability by solving linear combinations of several leading

EOFs that maximize the ratio of low-frequency to total

variance. Here, the low-frequency variance represents a

“signal” that exists within the internal variability or between

realizations. Thus, LFCA is similar to maximizing EOF analysis

using the signal-to-noise ratio (Schneider and Held, 2001). On a

longer timescale, the SST response to external forcing can be

distinguished from internal variability based on maximizing the

ratio of low-frequency to total variance. For instance, the AMO

(or the Pacific Decadal Oscillation) have been isolated from

global warming based on SST in LFCA (Wills et al., 2018; Wills

et al., 2019). Compared with other methods, the advantage of

LFCA is that it can extract low-frequency signals, such as the

AMO, without the need to assume the spatiotemporal structure

of global warming in advance. A short introduction to the

algorithm is provided as follows:

LFCA is dependent on (1) the number of EOFs, (2) the

temporal length of the low-pass filter, and (3) the input data

matrix that has temporal and spatial dimensions (e.g., SST).

Here, we use Lanczos filtering with a 10-year low-pass filter to

extract the signal on decadal timescales (i.e., the AMO). The

number of EOFs is set to capture at least 85% of the total North

Atlantic SST variance, as done inWills et al. (2019). Here, we use

35 EOFs to obtain the AMO. The influence of the number of

EOFs on the extracted AMO CI is tested (Figure S1), and it is

shown that the average CI value for the AMO in COBE2 or

HadI1 is 89%, which is set as a threshold for judging a coherent

AMO pattern in this study. More details of this method can be

found in Wills et al. (2019).

In this study, LFCA is applied to the monthly SST in the

North Atlantic between 0° and 65°N, which is consistent with

the traditional definition (Zhang et al., 2019). Unless otherwise

mentioned, the Atlantic domain between 0° and 65°N is used

throughout the study. The domain is different from that

employed in Wills et al. (2019). Many factors can influence

the definition of the AMO pattern/index, such as the detrending

method (Ting et al., 2009; Frankignoul et al., 2017; Yan et al.,

2019; Deser and Phillips, 2021) or the region used for the

definition, as no single physical mechanism explains the

regional definition of the AMO (Wills et al., 2019). Our study

aims to clarify the influence of historical SST uncertainty in the

North Atlantic on the extracted AMO, which has typically been

ignored in previous studies. Thus, we use the traditional domain

(0°–65°N) to exclude the possible influence of the

domain definition.
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AMO index based on TS2006

Following a traditional method (Trenberth and Shea, 2006,

TS2006 herafter), we define the AMO index as the low-

frequency component of the difference between the area-

weighted mean SSTs in the North Atlantic (0°–65°N, 0°–80°W;

NASSTA) and the global domain (60°S–60°N). Then, a low-pass

filter with a window of 10 years is applied to obtain the low-

frequency component (i.e., the AMO). This AMO index is

compared with the AMO index derived from LFCA in Figure 8.
Coherence index, pattern and temporal
correlation coefficient

Here, we define a CI as the ratio of the area where the SSTA

is greater than zero in the North Atlantic to the total area in the

North Atlantic during the AMO’s positive phase. Thus, the CI

denotes the areal extent of coherent warming in the North

Atlantic related to the AMO:

CI = oNAAreai,j (AMO > 0, SSTA > 0)

oNAAreai,j
� 100% (1)

The numerator in the above formula is the area with positive

SSTAs in the North Atlantic during the AMO’s positive phase,

and the denominator is the total area of the North Atlantic. NA

denotes the North Atlantic, and Areai,j is the area of a grid cell.

The warming pattern for the AMO has a spatial gradient,

such as the stronger signal over the subpolar North Atlantic and

the weaker signal over the low latitudes in observations (Zhang

et al., 2019). Here, we compare the PCC of the AMO in different

datasets to quantify the similarity of the spatial gradient in the

AMO:

PCCNA =
CovNA(AMOXAMOY )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarNA(AMOX
p

)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarNA(AMOY

p
)

(2)

where AMOX and AMOY are the spatial values of the AMO

patterns in its positive phase from two different datasets; CovNA
denotes the covariance; and VarNA(AMOX) and VarNA(AMOY)

are the corresponding variances.

The TCCs between the AMO indices from different datasets

are calculated in a similar way to the above PCC formula, where

AMOX and AMOY are the AMO indices from two different

datasets, respectively.
Mann–kendall trend test

To investigate the statistical significance of the linear

warming trend, we apply the rank-based non-parametric MK
Frontiers in Marine Science 16
test (Mann, 1945). The MK test is mathematically defined as

S =on−1
i=1on

j=i+1sgn(Xj − Xi) (3)

where n is the size of the time-series data, and Xi and Xj are data

in the ith and jth times series, respectively (i< j). sgn(Xj − Xi) can

be three different values: −1 if Xj − Xi < 0; 0 if Xj − Xi= 0; and +1 if

Xj − Xi > 0. For large datasets (here, n = 1440), the S statistic is

normally distributed with zero mean. If E(S) is the mean and V

(S) is the variance of S, a standard normal test statistic is defined

as (Bisht et al., 2018)

Z =

S+1ffiffiffiffiffiffiffi
V(S)

p , if S < 0

0, if S = 0

S−1ffiffiffiffiffiffiffi
V(S)

p , if S > 0

8>>><
>>>:

(4)

As the Z computed for time-series of GM_LFCA Mode-2

(Figure 7D) is 16.8, which is much larger than the a = 0.05

significance level ( Za = 1.96), suggesting a significant warming

trend of GM_LFCA Mode-2.
Sen’s slope

The Theil–Sen approach (Sen, 1968; Theil, 1992) is

commonly used to determine the rate of transition of climate

time-series data (Sa’adi et al., 2019). Slopes between all data

points are calculated in time-series data as

slopei =
Xj − Xi

j − i

� �
; (5)

where Xi and Xj are data in the ith and jth times series,

respectively. A positive slope indicates an increasing trend, and

vice versa. Since the size of time-series data is n, N = n(n − 1)/2

estimates of the slope are obtained. Finally, Sen’s slope SS is the

median value of slope estimates:

Ss ¼ medianðslopeiÞ; (6)

As SS the for GM_LFCAMode-2 is larger than zero, this also

suggests it has a significant warming trend.
Statistical significance test

The statistical significance of the linear regression coefficient

between two sampled autocorrelated time series is assessed via

the two-tailed Student’s t-test using the effective number of

degrees of freedom Neff, which is given by

Neff = N
1 − rxry
1 + rxry

, (7)
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where N is the sample size and rx and ry are the

autocorrelations of two sampled time series at time lag of 1

year (Bretherton et al., 1999).
Monte carlo sampling test

To keep the same length of time (six years) as WWII values,

one million random samplings are used to extract ensembles of

monthly SST difference data (ERv5 minus HadI1) for the non-

WWII periods (1922–1939 and 1946–1969). The length of time

for the extracted data is six years. The extracted data obey

a normal distribution each time based on the Matlab function,

and then the mean value and STD are computed each time.

The ensemble means of the mean value and STD are used to

construct the normal distribution of SST differences for the non-

WWII period (Figure 5C). The t-test is used to test the

significance of the differences between the SST difference in

the WWII period and non-WWII periods. The computed t-

value (7.8) is higher than the threshold t-value (1.99 at the 95%

significance level).
Diagnose SST tendency equation

Based on SST tendency equation proposed by Zhang et al.

(2016), We diagnosed the relative contribution of net surface

heat flux and oceanic heat transport convergence in shaping the

tendency of decadal variability of SST using the following

formula.

r0Cph
dSST 0

dt
≈ Q 0

net +OHTC
0 (8)

Where a prime denote anomaly relative to climatology, r0 is
density of sea water, Cp is specific heat capacity of sea water, and

h is depth of mixed layer.
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