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Combined effects of
nanoplastics and heavy
metal on antioxidant
parameters of juvenile
tri-spine horseshoe crabs
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Shanghai Ocean University, Shanghai, China, 2Key Laboratory of Exploration and Utilization of
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3Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine
Science, Beibu Gulf University, Qinzhou City, China, 4Institute of Tropical Aquaculture and Fisheries,
Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
Juvenile tri-spine horseshoe crabs (Tachypleus tridentatus) were exposed to

determine the effects of single and combined stresses of polystyrene

nanoplastics (nano-PS) and heavy metal (Cu2+) on antioxidant enzyme

parameters. The juveniles were exposed to a 21-day 100-nm polystyrene

concentration (104 particles l-1) and a concentration of Cu2+ (10 µg l-1)

followed by a recovery period of 7 days. The in vivo antioxidant activity for

whole horseshoe crab was analyzed. The results revealed that all antioxidant

parameters, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione

(GSH), malondialdehyde (MDA), and lipid peroxidation (LPO), showed both

increased and decreased levels in different experimental groups of horseshoe

crabs having different experimental conditions compared to the control group

at three time points, i.e., on days 7, 14, and 21. Similarly during the

recovery period, SOD, CAT, and MDA showed decreased levels in all

experimental groups, while GSH and LPO showed increased levels in all

experimental groups of horseshoe crabs under the influence of different

experimental conditions of nanoplastics and heavy metals compared to the

control group on day 28. These results showed that the exposure of nano-PS

and Cu2+ had precise effects on juvenile horseshoe crabs. Integrated biomarker

responses showed that nano-PS and Cu2+ had adverse effects on juvenile

horseshoe crabs. By principal component analysis, the potentially toxic effects

of nano-PS and Cu2+ on horseshoe crabs were obtained.
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Introduction

Horseshoe crabs belong to arthropods of the family

Limulidae, suborder Xiphosurida, and order Xiphosura. Only

four species belong to three genera that exist in the world,

namely, Limulus polyphemus, Tachypleus tridentatus ,

Tachypleus gigas, and Carcinoscorpius rotundicauda. Rudkin

and Young (2009) reported horseshoe crabs with an ancestry

dating to the late Ordovician Period, approximately 445 million

years ago, and thereby known as “living fossils”. Tachypleus

tridentatus and C. rotundicauda can be found in the Beibu Gulf,

southern China (Obst et al., 2012; Hu et al., 2015a). Horseshoe

crabs play an important ecological role in supporting other

species in the food web. They have a larger adult body size as

compared to many other invertebrates on the shores; due to this,

horseshoe crabs can be attributed as an indicator species to

reflect the health of coastal shore systems (Chen et al., 2004).

However, environmental pollution and shoreline habitat

destruction are causing the population depletion of horseshoe

crabs (Jackson and Nordstrom, 2009; Shin et al., 2009). A field

survey was conducted in 2019 to study the depletion of

horseshoe crab populations from different sites around the

northern Beibu Gulf, China, where they revealed that the main

reasons were unsustainable fishing practices and anthropogenic

activities (Liao et al., 2019). Greater anthropogenic activities,

including fishery and mariculture, have contributed to a huge

sum of microplastics within the South China Sea (Wang et al.,

2018; Li et al., 2020).

More than 300 million tons of plastic items are globally

manufactured every year, of which around 10% goes into the sea

(Jambeck et al., 2015; Thompson, 2015). China is regarded as

one of the biggest nations, known for plastic production and

consumption in the world (Fu and Wang, 2019). Each year, a

colossal number of microplastics (MPs) enter the ocean through

anthropogenic activities (Su et al., 2022). A material known to be

non-toxic in bulk can be toxic at the nanometer scale due to its

characteristic properties (Karlsson et al., 2009). MPs have

unevenly chemically active surfaces and large surface areas.

Due to these properties, MPs absorb large varieties of

hazardous materials including heavy metals from the

surrounding environment and transfer them along the food

webs resulting in potential hazards to organisms (Tang et al.,

2018; Hüffer et al., 2018; Liu et al., 2020; Zhou et al., 2020).

Laboratory experiments have proved that MPs have strong

negative effects on invertebrates and fishes (Duis and Coors,

2016). Polyethylene (PE), polypropylene (PP), polystyrene (PS),

polyamides (PA), and polyvinyl chloride (PVC) have caused

physical damage and adverse effects on the intestine, enterocytes,

digestive tracts, and liver of zebrafish (Danio rerio) (Lei et al.,

2018; Capó et al., 2021). Endocrine disorders, immune

responses, oxidative stress, and alterations in gene expression

have been reported in organisms as a result of different kinds of

MPs (Qiao et al., 2019). Exposure to PE, PP, and PVC induced
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behavioral changes and decreased the reproductive and survival

rates in marine crustaceans, copepods, shrimp, and fish (Yin

et al., 2019; Costa et al., 2020; Wang et al., 2020).

Among the absorbed toxic contaminants on MP, heavy

metals are the major toxic contaminants of inorganic nature

(Khalid et al., 2018). Excessive amounts of heavy metals can

exert adverse effects on soil and aquatic ecosystems, can reduce

the growth and activity of organisms, and through the food

chain can cause threats to human health and downstream

animals (Cao et al., 2021). In an experiment, original and aged

polyethylene particles were used to adsorb metal ions of different

heavy metals in freshwater; it was found that the main factor

affecting the adsorption was different in ion concentration

between the liquid phase (metal solution) and the solid phase

(PE particles), where the metal ion concentration eventually

reached equilibrium (Turner and Holmes, 2015). Due to

weathering and oxidation, the surface morphology of the

particles changed, which made it easy to obtain electric charge

and to adsorb metal ions to achieve charge balance. On account

of the adsorption of harmful chemicals, ingestion of

contaminated MPs by marine fish causes liver inflammation,

oxidative stress, and other pathological reactions (Rochman

et al., 2013). A few years back, some researchers also observed

activated antioxidant enzymes in Nile tilapia (Oreochromis

niloticus), during 14 days of exposure to MPs (Ding et al.,

2018). It was noted that polystyrene microplastic accumulation

induced disturbed lipid and energy metabolism and liver

oxidative stress in zebrafish (Danio rerio) (Lu et al., 2016).

The Beibu Gulf in the South China Sea is an important

passageway between China and the Association of Southeast

Asian Nations (ASEAN). Various kinds of industries have been

developing in the Beibu Gulf. This has caused more serious

heavy metal pollution besides improving the local economy (Lao

et al., 2019). The sample collected in recent years indicated a

higher concentration of Cu than before, particularly in areas

where oil production occurs (Chen et al., 2018; Lao et al., 2019).

Some areas have a higher concentration of heavy metals and are

not suitable for mariculture (Gu et al., 2015; Gu et al., 2018).

Previous research studies have proven that copper has a role in

the physiological and biochemical processes of organisms, for

example, cell growth, development, mitochondrial respiration,

and the antioxidant defense system (Tao and Gitlin, 2003).

Similarly, copper is an essential element in the metabolism of

arthropods and is needed for the synthesis of many important

enzymes, such as superoxide dismutase, phenoloxidase, and

hemocyanin, but excessive copper has its detrimental effects

(Schmidt et al., 2021). Excessive ingestion of copper can put

ecosystems and human food safety in danger (Schmidt et al.,

2021). When the amount of copper exceeded the amount

required by cells, copper could cause oxidative stress (Guo

et al., 2017). Moreover, copper stress had varying effects on

immune-related factors such as alkaline phosphatase (AKP),

acid phosphatase (ACP), and phenoloxidase (PO), which are
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important components in the immune defense system of

organisms (Wei and Yang, 2016).

The toxicity of nanoplastics and heavy metals has not been

studied on a wider spectrum. Furthermore, no data are addressing

the combined toxicity of nanoplastics and heavy metals to date.

Therefore, it is worth inspecting whether these two pollutants

have ecological effects after the short-term exposure to marine

organisms. This study aims to observe the antioxidant activity

indexes (SOD, CAT, MDA, GSH, LPO activity) in juvenile

horseshoe crabs after exposure to polystyrene nanoplastics in

the combination of heavy metal (Cu2+).
Material and methods

Experimental animals

In this study, juvenile T. tridentatus were artificially bred at

Shanghai Ocean University, China. Its body weight was 0.0242 g ±

0.0064 g and body length 0.622 cm ± 0.131 cm. The juveniles were

placed in dechlorinated seawater with a salinity of 28 ± 0.5 PSU

and a pH of 8.1 ± 0.1. Juvenile horseshoe crabs were acclimatized

for a week in the laboratory of Shanghai Ocean University with

continuous air access for 24 h. Every day, a multiparameter

instrument (model 5200A, YSI, USA) was used to measure the

water quality in all the glass tanks, and the water temperature was

(24 ± 1) °C; The photoperiod was 12 h of light and 12 h

of darkness..
The experimental materials

Polystyrene microspheres (100 nm) with fluorescent dyes

were purchased from Tianjin Beisler Chromatography

Technology Development Center, China. Anhydrous Cu2+

was purchased from Shanghai Xianding Biotechnology

Co., Ltd. (CAS: 7758-98-7; purity 99%). Enzyme activity

assay kits were purchased from Nanjing Jiancheng

Bioengineering Institute.
Experimental design

For this study, four different tanks of 4-l volume were used

for exposure. Continuous water circulation was enabled using an

oxygen pump. For each of the four groups, 100 individuals were

kept in a tank. Each tank contained dechlorinated seawater with

a salinity of 28 ± 0.5 PSU, pH of 8.1 ± 0.1, and water temperature

of 24 ± 1°C. Juvenile horseshoe crabs were divided into four

treatment groups labeled A, B, C, and D. Group A was fed only

freshly hatched Artemia, group B was fed nanopolystyrene

(nano-PS 104 particles l-1)-attached Artemia, group C was fed

copper (Cu2+ 10 µg l-1)-attached Artemia, and group D was fed a
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bait of a mixture of heavy metals and nanoplastics (10 µg l-1)

prepared according to the method of Jinhui et al. (2019).

In preparation for the nanoplastic bait, the heavy-metal-

saturated nanoplastics were collected by centrifugation at 2,500

rpm and 20 mg of nano-PS was added to 10 g Artemia. After

mixing, the nanoplastic bait was poured into the glass aquarium

containing 100 individuals of juvenile horseshoe crabs and 4 l of

filtered seawater at 24 ± 1°C temperature. Water renewal was

conducted every 2 days. Horseshoe crabs were fed daily at 5:00

p.m., and each bait was prepared 2 h before feeding. Samples

were taken on days 7, 14, 21, and 28. The duration of the

experiment was 21 days followed by 7 days of recovery period

with a water temperature of 24 ± 1°C and dechlorinated seawater

with a salinity of 28 ± 0.5 PSU and a pH of 8.1 ± 0.1.
Sample preparation for
antioxidant activity

After 21 days of exposure followed by a 7-day recovery

period, 10 horseshoe crabs from each exposed group were

collected, and excessive limbs and carapace were removed to

obtain tissue samples. Physiological saline was added (saline

weight: tissue mass, 9:1) to samples under ice bath conditions.

The tissues were then homogenized in a centrifuge tube (6,000 r/

min; four times; 20 s each) to obtain a 10% tissue homogenate

solution. The solution was centrifuged for 10 min at 3,000 rpm

at 4°C, and the SOD, CAT, GSH, and LPO activities and

MDA content were determined in the supernatant using

recommended kits, according to the manufacturer’s instructions.
Integrated biomarker response analysis

To determine the stress levels in each treatment group, the

integrated biomarker response (IBR) method was used to

integrate all the measured biomarkers (Beliaeff and Burgeot,

2002). In this study, the IBR method was used to indicate the

stress levels in juvenile horseshoe crabs after 21 days of exposure,

followed by a 7-day recovery period for nano-PS and Cu2+ in

four different groups. It followed the detailed instructions

provided by Beliaeff and Burgeot (2002).

Primarily for biomarkers, the mean value and standard

deviation of all groups in a comparison with the whole

experiment were calculated. The calculation of Y was conducted

as Y = (X - m)/s, where Y is the value of each standard biomarker,

X is the response of the biomarker, m is the mean value of the

biomarker, and s is the standard deviation. Then, the treatment

biomarker score S was calculated as S = Y + |Min|, where S ≥ 0 and

|Min| is the absolute minimum value of Y for each biomarker

response. The acquired values of score S were used to plot radar

graphs. Lastly, IBR values were procured as the sum of the

triangular regions defined by k-standardized biomarkers
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IBR =o
k

i=1
Ai

Where Ai = Si × Si+1 × Sin(2p/k)/2.
Data analysis

All data were processed through Statistical Package for Social

Sciences (SPSS) software. Before analysis, Levene’s test was used

to test the homogeneity of the variance and the Shapiro–Wilk

test was used to test the normality of the data. Then, the effects of

MPs and heavy metals were determined through one-way

ANOVA followed by Tukey’s HSD tests. The results were

presented as means ± SD, and p< 0.05 was considered a

significant difference between the treatments. Principal

component analysis was executed for all biochemical

parameters using XLSTAT® 2014.
Results

On day 7, the nanoplastic (nano-PS 104 particles l-1)-exposed

group showed a significant reduction in SOD activity compared to

the control. The heavy metal (Cu2+ 10 µg l-1)-exposed group

showed a significant increase in SOD activity compared to the

control. Similarly, nano-PS+Cu2+ treatment induced significantly

higher SOD activity compared to control in experimental

horseshoe crabs. On day 14, all the groups showed higher SOD
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which showed a decreased SOD activity compared to the control

group. On day 21, all the groups showed a significant reduction in

SOD activities compared to the control. During the recovery

period, the Cu2+- and nano-PS+Cu2+-exposed groups showed a

significant reduction in SOD activities compared to the

control (Figure 1).

All the nano-PS-, Cu2+-, and nano-PS+Cu2+-exposed groups

showed no significant effects on CAT activities compared to the

control on day 7. Only the nano-PS-exposed group induced

higher CAT activities in horseshoe crabs on day 7 compared to

the control group. On day 14, both nano-PS- and Cu2+-exposed

groups showed decreased CAT activities compared to the control,

while the nano-PS+Cu2+-group showed higher CAT activities

compared to the control. Similarly on day 21, the nano-PS-

exposed group showed significantly higher activities compared

to the control, and the Cu2+- and nano-PS+Cu2+-exposed groups

showed significantly lower activities compared to the control.

During the recovery period, all the groups showed a significant

reduction in CAT activities compared to the control (Figure 2).

The horseshoe crab groups that were subjected to Cu2+ and

nano-PS+Cu2+ showed significantly higher MDA levels compared

to the control on day 7. The nano-PS-exposed group showed no

significant effects on MDA level on day 7. On day 14, the nano-

PS- and Cu2+-exposed groups showed higher MDA levels

compared to the control, while the nano-PS+Cu2+ group

showed lower MDA levels compared to the control. All the

groups showed no significant effects on MDA levels compared

to the control on day 14. On day 21, all the groups subjected to
FIGURE 1

Superoxide dismutase (SOD) activities in whole tissues of Tachypleus tridentatus exposed to 100-nm micro-PS (104 particles l-1), Cu2+ (10 µg l-1), and a
combination of PS and Cu2+ at days 7, 14, and 21, allowed to recover for 7 days (28 days). Data are provided as mean values ± standard deviations. The
superscripts of different lowercase letters indicate significant differences (p < 0.05) between the four groups.
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different treatments showed lower MDA levels compared to the

control. During the recovery period, significantly lower MDA

levels were noted in all experimental treatment groups compared

to the control (Figure 3).
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Compared with the control group on day 7, GSH levels were

decreased in the nano-PS- and nano-PS+Cu2+-exposed groups.

On days 14 and 21, all the groups having different experimental

conditions showed lower GSH levels compared to the control
FIGURE 2

Catalase (CAT) activities in whole tissues of Tachypleus tridentatus exposed to 100-nm micro-PS (104 particles l-1), Cu2+ (10 µg l-1), and a
combination of PS and Cu2+ at days 7, 14, and 21, allowed to recover for 7 days (28 days). Data are shown as mean values ± standard deviations.
The superscripts of different lowercase letters indicate significant differences (p < 0.05) between the four groups.
FIGURE 3

Malondialdehyde (MDA) activities in whole tissues of Tachypleus tridentatus exposed to 100-nm micro-PS (104 particles l-1), Cu2+ (10 µg l-1), and a
combination of PS and Cu2+ at days 7, 14, and 21, allowed to recover for 7 days (28 days). Data are presented as mean values ± standard deviations.
The superscripts of different lowercase letters indicate significant differences (p < 0.05) between the four groups.
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group. During the recovery period, there were no significant

effects on GSH levels compared to the control (Figure 4).

On day 7, all the groups having different experimental

treatments showed lower LPO levels compared to the control.

The nano-PS- and nano-PS+Cu2+-exposed groups showed

significant effects on day 7. All the treatments on days 14 and

21 showed no significant effects on the LPO levels compared to the

control. The nano-PS- and nano-PS+Cu2+-exposed groups

showed higher LPO levels compared to the control while the

Cu2+-exposed group showed lower LPO levels compared to the

control on day 14. All the experimental treatments at day 21

showed lower LPO levels compared to the control. At the recovery

period, all the experimental groups of horseshoe crabs having

different experimental conditions showed higher LPO levels

compared to the control (Figure 5).

IBR values were computed from the standardized data of six

different biomarkers in juvenile horseshoe crabs exposed to

microplastics and heavy metals after 21 days of exposure and a

recovery period of 7 days (Figure 6). The graphs represent the stress

levels of antioxidant enzymes of juvenile horseshoe crabs under the

influence of microplastics and heavy metals. The obtained IBR values

ranged from 2.325 (group 2) to 12.840 (group 3) on day 7 (Figure 6A),

from 4.376 (group 3) to 12.957 (group 4) on day 14 (Figure 6B), from

3.254 (group 4) to 7. 350 (group 2) on day 21 (Figure 6C), and from

4.092 (group 4) to 7.655 (group 3) on day 28 (Figure 6D). Figure 6E

shows the stress level of all groups of horseshoe crabs exposed to

different experimental conditions throughout the whole experimental

period. The highest IBR value 12.957 was observed in the co-exposed

(nano-PS + Cu2+) group on day 14, and the lowest value 2.325 was
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noted in themicroplastic (nano-PS)-exposed group on day 7. The PCA

of the effects of nano-PS and Cu2+ on antioxidant activity (biochemical

indicators) showed that 35.07% of the total variance was accounted by

PC1 (Figure 7). This axis represents the specific reaction of

microplastics and heavy metal exposure which separated the control

group and the nano-PS- (104 particles l-1), Cu2+- (10 µg l-1), and co-

exposed (nano-PS + Cu2+) groups.
Discussion

Previous studies have shown that toxins in oceanic water can

be toxic to organisms by stimulating the generation of reactive

oxygen species (ROS) (Sussarellu et al., 2016) as well as by

producing oxidative stress (Livingstone, 2001; Lushchak, 2011).

SOD, CAT, and GSH can serve as sensitive biomarkers of

environmental pollution in aquatic organisms. SOD is the first

and foremost defense line in antioxidant systems, which effectively

scavenges reactive oxygen species in living organisms (Tomanek

et al., 2011). The SOD enzyme converts the superoxide radical

anion (O−2) into H2O2 which then converts into harmless forms

O2 and H2O. In the current study, the activity level of SOD was

elevated in the presence of the nano-PS-, Cu2+-, and co-exposed

groups of juvenile horseshoe crabs as compared to the control,

indicating the activation of the oxidant defensive system. This

study is consistent with previous studies onD. rerio and E. sinensis

(Lu et al., 2016; Yu et al., 2018). However, over a 21-day exposure,

pollutant-exposed juveniles had a lower SOD activity as compared

to the control group. This might be due to damage to the immune
FIGURE 4

Glutathione (GSH) activities in whole tissues of Tachypleus tridentatus exposed to 100-nm micro-PS (104 particles l-1), Cu2+ (10 µg l-1), and a
combination of PS and Cu2+ at days 7, 14, and 21, allowed to recover for 7 days (28 days). Data are given as mean values ± standard deviations.
The superscripts of different lowercase letters indicate significant differences (p < 0.05) between the four groups.
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system of juveniles due to continuation of stress for a relatively

long time. Similarly, decreased SOD activities were noted during

the recovery period. It may be because animals like horseshoe

crabs which have a strong immune defense system were unable to

recover completely from such a stressful situation. Likewise, CAT

activity has also increased, destroying H2O2 which could

otherwise penetrate through the biomembranes and may

inactivate several enzymes (Vutukuru et al., 2006). CAT plays

an important role in the defense against oxidative stress through

the removal of H2O2 which is the major precursor of hydroxyl

radical (Soldatov et al., 2013). On day 14, a significant increase in

CAT activity levels in the co-exposed group was noted as

compared to the control group, indicating that two pollutants

together were inducing the generation of ROS. The factor behind

this increase might be time-dependent because on days 21 and 28

(recovery period), the SOD activity was at the lowest levels. Other

groups including the nano-PS- and Cu2+-exposed groups had

lower CAT activity levels than the control group. Previous studies

showed an increase in CAT activity in the clam S. plana exposed

to polystyrene MPs but also an inhibition in the digestive gland of

the marine musselsM. galloprovincialis andM. edulis (Avio et al.,

2015; Paul-Pont et al., 2016; Ribeiro et al., 2017). The results of

this study coincide with our findings. During the recovery period,

both SOD and CAT activities decreased significantly indicating

the inhibition of these enzymes and it was extremely low in the co-

exposed group. The probable reason for this decrease could be the

exhaustion of energy caused by oxidative stress (Yu et al., 2018).

Excessive production of ROS can induce lipid peroxidation

which causes damage to cells and cell membranes. There was an

increase observed in the LPO activity level in some experimental
Frontiers in Marine Science 07
groups of horseshoe crabs. Similarly, reduced activity levels were

observed in some pollutant-exposed groups. Crustaceans are

considered a rich source of PUFA. The heavy metal (Cu2+)

exposed herein is redox active, accumulated significantly in

horseshoe crab tissues, and could contribute to the generation

of ROS which is responsible for damaging lipids, proteins, and

DNA (Lesser, 2006). In the recovery period, elevations in LPO

levels were observed in all pollutant-exposed groups as

compared to the control group indicating the presence of ROS

even when there was no exposure. Lipid peroxidation (LPO)

reactions are generally free radical-driven chain reactions in

which one radical can induce the oxidation of a comparatively

large number of substrate molecules, which are represented by

polyunsaturated fatty acids (PUFA) (Porter, 1984). For LPO

enzyme activity, increased reactive oxygen species react with

polyunsaturated fatty acids which induce the release of toxic and

reactive aldehyde metabolites, such as MDA. This study is

consistent with Rangasamy et al. (2022). MDA is the end

product of LPO, engendered by free radical damage of

unsaturated fatty acids which can cross-link with DNA,

interrupting protein activity, resulting in DNA damage, and

inducing gene mutations. A concentration of MDA can be used

to indicate oxidative stress to measure the endogenic oxidative

state of the body (Li et al., 2016). MDA exhibited a huge increase

on day 7 in some experimental groups, indicating that heavy

metal Cu2+ and nano-PS have a strong influence on the

antioxidant parameters in the form of a single toxicant as well

as in combination. This study is consistent with previous studies

(Wang et al., 2010; Jinhui et al., 2019). Moreover, during the

recovery period, inhibition of MDA activity was observed in all
FIGURE 5

Lipid peroxidation (LPO) activities in whole tissues of Tachypleus tridentatus exposed to 100-nm micro-PS (104 particles l-1), Cu2+ (10 µg l-1), and a
combination of PS and Cu2+ at days 7, 14, and 21, allowed to recover for 7 days (28 days). Data are given as mean values ± standard deviations. The
superscripts of different lowercase letters indicate significant differences (p < 0.05) between the four groups.
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FIGURE 6

(A–D) represent radar plots of IBR for different treatments of experimental juvenile horseshoe crabs on days 7, 14, 21, and 28, respectively, showing
the stress levels as indicated by antioxidant parameter levels in the graphs. (E) represents the stress levels presented by different groups of
experimental horseshoe crabs throughout the experimental period.
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experimental treatments. GSH is used by GPx as a cofactor to

convert H2O2 into water and alcohol. Animal GPx can act as a

prooxidant that removes harmful peroxide metabolites in cells

(Hu et al., 2015a; Peng et al., 2017). From the results, it was

concluded that microplastics and heavy metals have negative

impacts on the antioxidant parameters of horseshoe crabs. Javed

et al. (2017) observed lower levels of GSH during exposure as

compared to reference fish. In the current study, some

experimental groups had lower GSH levels than the control

group during exposure, which may be due to energy exhaustion

due to excessive stress that ultimately results in the inhibition of

antioxidant activities in the horseshoe crabs. During the recovery

period, juveniles were able to successfully recover according to

the control group which indicated that horseshoe crabs

regained fitness.

IBR indices in animals and plants were applied in both

laboratory experiments (Bertrand et al., 2016; Bertrand et al.,

2017) and field studies (Santos et al., 2016), but the modes of

toxicities have merely been studied. To evaluate contaminated

sites, IBR indices were developed for immunotoxical biomarkers

in mussels (Auffret et al., 2006). In the present study, IBR indices

allowed us to observe the potential effects of nano-PS and Cu2+

in juvenile horseshoe crabs during 21 days of exposure and 7

days of purification period. Differences in the biomarkers were

observed among different experimental groups of horseshoe

crabs. As indicated by the IBR values, a non-linear increase or

decrease in stress response over time was observed between the

different experimental groups of limulus compared to the

control group. The IBR results coincide with the findings of

Todgham and Stillman (2013), who stated that external

environmental stressors, for example, chemical pollutants
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including metals and various organic compounds, can act

independently or may exert antagonistic and synergistic effects

on an organism’s physiological performances. Similarly,

Madeira et al. (2016) reported an increase in IBR values in the

gills of clownfish as a result of an environmental stressor

(elevated temperature) on days 7 and 14 of the 28 days of

experiment but noted the lower IBR values on day 21 of the same

experiment. The increase in IBR values may be due to the

activation of the antioxidant defense system of horseshoe crabs

in response to stress conditions as stated by Lushchak et al.

(2011) that environmental stressors like chemical pollutants and

various organic compounds can bring about the increase in ROS

generation which provokes the antioxidant defense system of

organisms. A reduction in IBR values compared to the control

can be a result of exhaustion of cellular defense mechanisms

(Madeira et al., 2016). Our results are similar to Huang et al.’s

(2018) results reporting that nano-TiO2 caused adverse effects

on juvenile flounders.

According to the results, juvenile horseshoe crabs were

exposed to a polystyrene concentration (104 particles l-1) and a

concentration of Cu2+ (10 µg l-1) for 21 days and a purification

period of 7 days and suffered from higher levels of stress in

contrast to the control group. Apart from it, the obtained values

highlighted the capacity of the experimental juvenile horseshoe

crabs to respond to environmental pollutants, supporting the

fact that horseshoe crabs can act as a bioindicator of microplastic

and heavy metal pollution, at least at the range of nano-PS (104

particles l-1) and Cu2+ (10 µg l-1). Taking into account the

standardized value (S), it is possible to identify which

biomarker had the most important weight on final IBR values

for the tested conditions. Among the five biomarkers, SOD and
FIGURE 7

Biplot of principal component analysis with all measured variables (TP, SOD, CAT, MDA, GSH, LPO) at five different time points (days 7, 14, 21,
and 28) in five different treatments (●artemia only with 0 conc., ▲nano-PS 104 particles l-1 conc., ■Cu2+ 10 µg l-1 conc., ♦ nano-PS + Cu2+).
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MDA showed the highest values on day 7 in the only

microplastic-exposed group and CAT was the highest in the

co-exposed group on day 14, which indicates the stress levels in

horseshoe crabs toward experimental stressors. However, 21

days of caused stress was significant that juvenile horseshoe

crabs were unable to recover completely in a 7-day recovery

period, despite the fact that they have a stronger immune

responsive system. The PCA biplot suggested that all enzymes

were influenced by exposure, trying to counteract the effects of

heavy metals and microplastics to reduce the oxidative stress. A

positive relationship was observed between all enzymes which

correlated with the results of Hu et al. (2015b).

This study is consistent with Wen et al. (2018), who explained

that heavy metals and microplastics have adverse effects on

antioxidant activity. They found that when Cd and MPs were

co-applied to Amazon discus fish, a severe oxidative stress response

and an innate immune defense were generated compared to the

administration of a single poison. Elevations in antioxidant enzyme

activities in living organisms exposed to fraught conditions indicate

their ability to tolerate environmental stressors (Vosloo et al.,

2013). This study provides evidence that environmental

microplastics, mainly nano-PS combined with a heavy metal

(Cu2+), can affect the antioxidant activities of the assessed

species. In this study, Cu2+ + nano-PS caused more severe

oxidative stress in combination in the co-exposed group.

However, a study showed that the combination of MPs and

heavy metals can induce hippocampal oxidative damage and

increase mortality, but this effect was mainly caused by heavy

metals, not MPs (Jinhui et al., 2019). Contrarily in this experiment,

nano-PS as a single pollutant also caused oxidative stress. Heavy

metal and nanoplastic induced oxidative stress independently as

well as in combination. So, it can be said that in combination they

made the damage more severe than a single pollutant.
Conclusion

In the present study, juvenile T. tridentatus were exposed to

nanoplastics and heavy metals in combination as well as

individually. Both nanoplastics and heavy metals induce the

antioxidant response of juvenile tri-spine horseshoe crabs.

Integrated biomarker responses indicated that heavy metals
Frontiers in Marine Science 10
and microplastics in combination caused more severe

oxidative stress than as a single pollutant, highlighting the

interaction between nano-sized plastics and heavy metals.
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