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PSS-net: Parallel semantic
segmentation network for
detecting marine animals in
underwater scene

Yu Hwan Kim and Kang Ryoung Park*

Division of Electronics and Electrical Engineering, Dongguk University, Seoul, South Korea
Marine scene segmentation is a core technology in marine biology and

autonomous underwater vehicle research. However, it is challenging from

the perspective of having a different environment from that of the conventional

traffic segmentation on roads. There are two major challenges. The first is the

difficulty of searching for objects under seawater caused by the relatively low-

light environment. The second problem is segmenting marine animals with

protective colors. To solve such challenges, in previous research, a method of

simultaneously segmenting the foreground and the background was proposed

based on a simple modification of the conventional model; however, it has

limitations in improving the segmentation accuracy. Therefore, we propose a

parallel semantic segmentation network to solve the above issues in which a

model and a loss are employed to locate the foreground and the background

separately. The training task to locate the foreground and the background is

reinforced in the proposed method by adding an attention technique in a

parallel model. Furthermore, the final segmentation is performed by

aggregating two feature maps obtained by separately locating the

foreground and the background.The test results using an open dataset for

marine animal segmentation reveal that the proposed method achieves

performance of 87%, 97.3%, 88%, 95.2%, and 0.029 in the mean intersection

of the union, structure similarities, weighted F-measure, enhanced-alignment

measure, and mean absolute error, respectively. These findings confirm that

the proposed method has higher accuracy than the state-of-the-art methods.

The proposed model and code are publicly available via Github1.

KEYWORDS

detecting marine animal, underwater scene, protective colors, PSS-net,
attention technique
1 https://github.com/Kimyuhwanpeter/marine_segmentation
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1. Introduction

In studies on marine life using autonomous underwater

vehicles, its accurate detection is essential (Xu et al., 2021;

Kandimalla et al., 2022). However, detecting marine life has

more challenging issues than detecting terrestrial animals caused

by the difficultly in observing objects under sea because of lesser

light underwater than that on land. Furthermore, many marine

animals have protective colors (Ditria et al., 2020; Panaïotis et al.,

2022). To solve these problems, previous studies have been

actively conducted on convolutional neural network (CNN)-

based object detection (Pedersen et al., 2019; Li et al., 2021; Berg

et al., 2022; Chen et al., 2022). Object detection can be classified

into two types: box-based and pixel-based object detection

(where latter is semantic segmentation). Box-based detection is

very efficient in detecting the position of a box containing an

object. However, there is a limitation in that it cannot detect

exact regions of the object. Pixel-based object detection, unlike

box-based object detection, can detect exact regions of an object

in pixel units. Therefore, this study focused on the semantic

segmentation of marine animals.

Previous studies have concentrated on CNN model

modifications for the same purpose (Islam et al., 2020; Li

et al., 2021; Zhang et al., 2021; Chen et al., 2022). A

representative CNN model modification is to apply an

attention mechanism (Zhang et al., 2021; Chen et al., 2022).

For example, the WaterSNet (Chen et al., 2022) used an

attention fusion block (AFB) module, which employs an

attention mechanism. The AFB module is adopted to utilize

global context information. In addition, the WaterSNet was

designed to extract multiscale features using a receptive field

block (RFB) module. Moreover, Koch et al. (2015) reduced the

impact of water degradation diversity by basically designing a

model with a Siamese structure (Koch et al., 2015) and

simultaneously using a random style adaption (RSA) module.

Finally, they improved the performance of marine animal

segmentation by combining RSA, RFB, and AFB modules.

Next, Li et al. (2021) designed the ECD-Net by combining

various modules, similar to WaterSNet. Specifically, first, an

interactive feature enhancement module (IFEM) was proposed

to consider the relationships between the features in the encoder.

Furthermore, cascade decoder modules (CDMs), which

integrate the features of the cross-layer, were developed to

improve the performance of marine animal segmentation (Li

et al., 2021). Based on the above, the combination of various

modules in the WaterSNet and the ECD-Net is effective in

improving the model performance.

A dual pooling-aggregated attention network called the

DPANet was proposed (Zhang et al., 2021). A residual

network (ResNet) is used as the backbone of a DPANet model

(He et al., 2016). The feature maps output by this backbone

model are input into a pooling-aggregated position attention

module (PPAM) as well as a pooling-aggregated channel
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attention module (PCAM). The outputs of these modules are

finally combined for marine animal segmentation. The existing

position attention modules (Huang et al., 2019; Fu et al., 2020)

do not consider fine-grained contextual detail information.

However, the PPAM overcomes this drawback and generates

spatial attention maps more efficiently than the previous

researches. The existing channel attention modules (Fu et al.,

2020) have limitations in various feature representations because

they do not focus on the fine-grained inter-channel relationship.

However, the PCAM improves various feature representation

functions using the interdependent relationships between the

channel maps in a computationally friendly manner (Zhang

et al., 2021). Another research proposed the SUIM-Net (Islam

et al., 2020) and introduced two versions: SUIM-NetRSB and

SUIM-NetVGG. First, the SUIM-NetRSB, in which a residual skip

block (RSB) is added to the decoder, is the first model designed

to utilize the benefits of skip connections (Ronneberger et al.,

2015) and residual learning (He et al., 2016). Furthermore, this

design is aimed at ensuring real-time processing while

accomplishing good segmentation performance (Islam et al.,

2020). In comparison, the SUIM-NetVGG model was designed

only to improve the segmentation performance using the visual

geometry group (VGG) (Simonyan and Zisserman, 2015).

Finally, the SUIM-NetVGG model was chosen as the final

proposed model in this study to focus more on the

segmentation performance.

In addition, the effects of various image quality enhancement

techniques for underwater change detection on the

segmentation algorithm have been investigated previously

(Radolko et al., 2016; Radolko et al., 2017). Although research

on CNN-based segmentation has not been conducted,

experiments related to various existing segmentation

algorithms have been reported (KaewTraKulPong and

Bowden, 2001; Zivkovic, 2004; Zivkovic and Heijden, 2006;

Radolko and Gutzeit, 2015).

The above previous studies generally focused on improving

marine segmentation performance using conventional models.

Specifically, they improved the segmentation performance by

extracting features of the foreground and the background

simultaneously. However, this method has the disadvantage of

not ensuring the segmentation performance according to the

ratio of the background and the foreground. Considering this

aspect, the parallel semantic segmentation network (PSS-Net)

proposed in this study not only extracts the background and

foreground features separately but also improves the

segmentation performance for the background and the

foreground by designing the corresponding loss functions.

Furthermore, two segmentation maps are created during

segmentation by dividing an image into the foreground and

the background. The PSS-Net was designed to fuse two feature

maps to obtain the final segmentation result. Section 2 describes

the PSS-Net in detail. In this study, the MAS3K dataset (Li et al.,

2021) is used for the experiments because the object
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https://doi.org/10.3389/fmars.2022.1003568
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Kim and Park 10.3389/fmars.2022.1003568
segmentation problem is more challenging than with other

datasets (SUIM (Islam et al., 2020) and underwater change

detection (Radolko et al., 2016). Moreover, the object

segmentation problem is more challenging with the MAS3K

dataset because it has more diverse entities of marine animals.

The contributions of this study are as follows:

-This study proposed the PSS-Net, which is expected to

achieve high performance in detecting marine animals by

separately learning their foreground and background regions.

-For the PSS-Net proposed in this study, two models are

designed in parallel. Moreover, an attention mechanism and

separate losses (object and background losses) are established

between the two models to extract the features of the foreground

and background regions more efficiently.

-The PSS-Net used feature fusion segmentation to fuse the

foreground and background feature maps extracted from the

two models to improve the segmentation accuracy. The

proposed PSS-Net and algorithm are publicly available

via Github1.

The remainder of this paper is organized as follows. Section

2 describes the proposed method, and Section 3 presents the

experimental results. Section 4 discusses the results, and Section

5 draws the conclusions.
2. Materials and methods

2.1. Model architecture of PSS-net

This section describes the PSS-Net proposed in this study,

and its overall structure is shown in Figure 1.

As can be seen in Figure 1, the U-net (Ronneberger et al.,

2015) is used as the backbone and VGG-16 (Simonyan and

Zisserman, 2015) as the encoder of our proposed PSS-Net. The
Frontiers in Marine Science 03
existing conventional models for semantic segmentation (Islam

et al., 2020; Li et al., 2021; Zhang et al., 2021; Chen et al., 2022)

train both the background and foreground from the feature map

extracted from one model. However, the PSS-Net proposed in

this study extracts the background and foreground feature maps

from different models respectively, and trains the background

and foreground based on them. Moreover, the layers between

the models focus on the background and foreground

components, helping to predict the final background and

foreground regions.
2.2. Loss for PSS-net

Previously, a loss considering both the background and

foreground segmentation was used. However, for the loss of

the PSS-Net proposed in this study, background and foreground

losses were designed to correspond to the structure of the model

described in Section 2.1. This was because the class ratio of the

foreground and the background is imbalanced, and overfitting

may occur. Previously, the focal loss (Lin et al., 2017), as

expressed in Equation (1), was used to solve this problem.

FOCALloss =
− 1

MNo
M

i=0
o
N

j=0
a · 1 −

1
1 + eyi,j

� �
· ln

1
1 + eyi,j

� �
  (class = 1)

− 1
MNo

M

i=0
o
N

j=0
(1 − a) ·

1
1 + eyi,j

� �
· ln 1 −

1
1 + eyi,j

� �
  (class = 0)

8>>>><
>>>>:

(1)

where M and N denote the height and width of the final

feature map, respectively, and i and j denote the pixel

coordinates, respectively. The pixel value of the feature map is

expressed as y. Equation (1) is commonly derived from the final

feature map extracted from one model. However, the focal loss

in Equation (1) is primarily focused on solving the class

imbalance problem, and it is ineffective in extracting the
FIGURE 1

Structure of proposed PSS-Net.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1003568
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Kim and Park 10.3389/fmars.2022.1003568
features of the object boundary region. Therefore, in this study,

we designed a loss where the background and foreground

training tasks can be performed independently of each other.

First, the loss related to the foreground consists of a weighted

binary cross entropy loss and a pixel perception loss (Pang et al.,

2020). Equation (2) expresses the weighted binary cross entropy

loss, and it was used because it was deemed effective in

predicting the boundary features of object regions.

Lwc =
oM,N

i,j=0 (1 + 5ai,j) ·oM,N
x,y=0(gx,y · ln (px,y) + (1 − gx,y) · ln (1 − px,y))

oM,N
i,j=0 5 · ai,j

(2)

where gx,y and px,y denote the probability values that pass

through the sigmoid function for the ground truth image and the

predicted feature map, respectively. ai,j is calculated using the

surrounding pixels (the pixel values for a specific region are used

during the calculation). In addition, a weighted intersection of

union (wIoU)-based pixel perception loss was used to predict

object regions excluding boundaries, and it is expressed in

Equation (3).

Lwi = 1 − oM
x=0oN

y=0(gx,y · px,y) · (1 + 5 · ax,y)

oM
x=0oN

y=0((gx,y + px,y − gx,y · px,y)(1 + 5 · ax,y))
(3)

Equations (2) and (3) were used as the object (foreground)

loss, as expressed in Equation (4).

Lobject = Lwc + Lwi (4)

The dice loss was used as the loss for the background

regions, as expressed in Equation (5).

Ldice = 1 −
2oM

x=0oN
y=0(gx,y · px,y)

oM
x=0oN

y=0(gx,y + px,y)
(5)

Based on Equation (5), the original dice loss only considers

the case in which the ground truth label is 1 (the ground truth

pixels for the object and background are 1 and 0, respectively).

However, Equation (6), which is a modified version of Equation

(5), was used in this study to consider the dice for the

background (when the ground truth pixel is zero).

Lbackground = 1 −
2 ·oM

x=0oN
y=0((1 − gx,y) · (1 − px,y))

oM
x=0oN

y=0((1 − gx,y) + (1 − px,y))
(6)

Equation (7) expresses the loss used in this study using

Equations (4) and (6).

Ltotal = Lobject + b · Lbackground (7)

b is the ratio of the foreground and background components

of an input image. It is calculated by accumulating the number of

the foreground and background pixels of the input image

separately and converting each accumulated number of pixels

to a number less than 1 using the softmax function. We refer to

the method used in a previous study (Kim and Park, 2022) for

this calculation. However, in some cases, the input image may
Frontiers in Marine Science 04
have no background or foreground component. Therefore, in

this study, the loss was finally designed as expressed in Equation

(8), to account for these cases.

Ltotal =

Lobject + b · Lbackground(if  Oratio = True and Bratio  =  True)

b · Lbackground  (if  Oratio = False and Bratio  =  True)

Lobject  (if  Oratio = True and Bratio  =  False)

8>><
>>:

(8)

whereOratio and Bratio denote the frequencies of the background

and foreground pixels in the input image. In Equation (8), if Oratio

and Bratio are each zero, False label is assigned to them. On the other

hand, if Oratio and Bratio are nonzero, respectively, True label is

assigned to them. Finally, the effect of the attention between the

models, as described in Section 2.1, is maximized owing to these

background and foreground losses, which aids in improving the

segmentation performance. The causes for this performance

improvement are as follows. In this study, the ground truth pixel

for the background was set as zero, and the ground truth pixel for

the foreground was set as one. Consequently, the px,y related to the

background trains close to zero, and the px,y of the foreground trains

close to one. Therefore, the features that provide attention to the

background and foreground region processing focus more on the

background and foreground regions.
2.3. Feature fusion-based segmentation
of PSS-net

Figure 2 shows the feature fusion-based segmentation

method of the PSS-Net proposed in this study. Moreover, to

explain the feature fusion-based segmentation process, the

outputs before predicting zero (background) and one

(foreground) are called the background final feature map and

the foreground final feature map, respectively, in this study. In

addition, the output after predictions is called the foreground

final segmentation map.

As shown in Figure 2, pixel multiplication-based fusion is

performed on the respective final feature maps (background and

foreground final feature maps) obtained from the model that

deals the background region processing and the model that deals

with the foreground regions processing. This process is the same

as the background final feature map-based attention operation

for the foreground final feature map. Consequently, the final

segmentation results are obtained by predicting the foreground

and the background. The reason for fusing these two feature

maps is to improve the segmentation results of the objects.
3. Results

3.1. Experimental dataset

In this study, experiments were conducted using the MAS3K

dataset (Li et al., 2021), which is an open database. This dataset
frontiersin.org
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consists of 1,588 camouflaged, 1,322 common, and 193

background images. We divided the MAS3K dataset into two

cases in this study and conducted the experiments. Table 1

briefly describes cases 1 and 2 of the MAS3K dataset.

In case 1, the numbers of images in the train, validation, and

test subsets are divided into the ratio of 6:2:2, including the

background images, similarly to in a previous study (Li et al.,

2021). Moreover, in Case 2, images in the dataset are included,

and it excludes the background images, which are divided into

only the train and test subsets similar to in a previous study

(Chen et al., 2022). In addition, the resolution of the input

images was 352 × 352 pixels for both Cases 1 and 2. We

conducted experiments with Cases 1 and 2, as listed in

Table 1, to conduct a reasonable performance evaluation using

the same method (Cases 1 and 2) used in the existing studies.
3.2. Implementation detail

The experiments were performed on a desktop computer

using Ubuntu 20.04 with CPU Intel® Core™ i7-9700F CPU

(Intel® Core™ i7-9700F CPU, accessed on 25 July 2022). It

contains 16 GB of RAM and NVIDIA GeForce RTX 3070

graphics processing unit (GPU) card (NVIDIA GeForce RTX
Frontiers in Marine Science 05
3060, accessed on 25 July 2022). We used TensorFlow 2.6.0

(TensorFlow, accessed on 25 July 2022) for this implementation.
3.3. Training for proposed method

The proposed PSS-Net was trained using the adaptive

moment estimation (Adam) optimizer (Kingma and Ba, 2014).

Table 2 lists the hyperparameters used to train the PSS-Net. The

same hyperparameters were used in the experiments for Cases 1

and 2.

Figure 3 shows the training and validation losses and

accuracy graphs of the PSS-Net.

As shown in Figure 3(A), the loss graph with the training

data converges to a sufficiently small value as the epoch

increased, whereas the accuracy graph with the training data

converged to a sufficiently large value. This result indicates that

the PSS-Net proposed in this study is sufficiently trained on the

training data. In addition, as shown in Figure 3(B), the loss and

accuracy graphs with the validation data in the experiment of

case 1 converge to sufficiently small and large values,

respectively, as the epoch increases. This result confirms that

the PSS-Net proposed in this study was not overfitted with the

training dataset.
TABLE 1 Descriptions of two cases in MAS3K datasets for training,
validation, and testing.

Case Train Validation Test Total

1 1,962 568 573 3,103

2 1,769 – 1,141 2,910
TABLE 2 Hyperparameters used for training of PSS-Net.

Hyperparameters Learning
rate

beta_1 beta_2 Batch
size

Epochs

Values 10−4 0.9 0.99 10 200
frontie
FIGURE 2

Feature fusion-based segmentation of PSS-Net.
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3.4. Testing for proposed method

3.4.1. Evaluation metrics
The testing accuracy was measured using the mean

intersection of union (mIoU), Fw
b (weighted precision and

recall) (Margolin et al., 2014), mE∅ (combination of local pixel

values and image-level average values) (Fan et al., 2018), Sa
object-aware and region-aware structure similarities) (Cheng

and Fan, 2021), and mean absolute error (MAE). To use these

metrics, precision and recall need to be measured, as expressed

in Equations (9) and (10), respectively. TP, FN, and FP in

Equations (9) and (10) denote the numbers of true positive,

false negative, and false positive, respectively.

RECALL =
TP

TP + FN
(9)

PRECISION =
TP

TP + FP
  (10)

Fw
b mE∅ and Sa are expressed in Equations (11)–(13),

respectively.
Frontiers in Marine Science 06
Fw
b =

(1 + b2) · PRECISIONw · RECALLw

b2 · PRECISIONw · RECALLw
(11)

mE∅ =
2 · jG ∘jY

jG ∘jG + jY ∘jY
,     (jG = G − mG · A,    jY

= Y − mY · A)   (12)

Sa = aSo + (1 − a)Sr   (13)

Equations (11) and (13) are the equations used in

(Margolin et al., 2014) and (Cheng and Fan, 2021),

respectively. In addition, b 0.3 and a of 0.5 were used based

on (Margolin et al., 2014) and (Cheng and Fan, 2021). In

Equation (12), Y and G denote the foreground map and the

ground truth image, respectively. Furthermore, mY and mG are

the averages of Y and G respectively. A is a matrix in which all

element values are equal to one, and its size is equal to Y and G

respectively. Specifically, jG and jY denote the foreground

map of the ground truth image and the foreground map of the

prediction, respectively. In Equation (13), So and Sr denote the

similarity to the object structure and the similarity to the
A

B

FIGURE 3

Graphs of losses and accuracies with (A) training and (B) validation data. (Orange and blue lines represent loss and accuracy, respectively).
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structure of the boundary region (structural similarity),

respectively. Moreover, high mIoU, Fw
b mE∅ and Sa values

imply good performance. Conversely, a small MAE value

implies a good performance.

3.4.2 Testing on case 1 with MAS3K dataset
3.4.2.1. Ablation studies

Ablation studies on case 1 of Table 1 with the MAS3K

dataset were conducted first. Experiments were conducted by

dividing the feature map fusion method, which is presented in

Figure 2, into five cases. The first method is “testing with feature

maps fusion using addition and average (Method 1).” The

second method is “testing with feature maps fusion using

multiplication without sigmoid function (Method 2).” The

third and fourth methods are “testing with feature maps

fusion using addition (Method 3)” and “testing only

foreground regions model (Method 4),” respectively. Finally,

the fifth method is “testing with feature maps fusion using

attention based on sigmoid function (proposed method)

(Method 5).” Table 3 reports the experimental results for the

five methods described above.

As can be seen from Table 3, the “feature maps fusion using

attention based on sigmoid function” used in the PSS-Net

proposed in this study exhibits higher segmentation accuracy

than the other feature map fusion methods. This result is

attributed to the fact that the combination of the attention for

each layer and the last feature attention in the PSS-Net

contributes to the improvement in the segmentation

performance. Figure 4 shows sample segmentation images

obtained from the PSS-Net.

Figure 5 shows sample attention feature maps in the PSS-

Net. Specifically, it shows the feature maps or GradCAM

(Selvaraju et al., 2017) images extracted from the third–fifth

convolutional layers of the encoder and the fourth–sixth

convolutional layers of the decoder in Figure 1, respectively. In

Figure 5, the values that are close to red represent important

features, whereas those close to blue represent unimportant

features. It can be seen that the PSS-Net proposed in this

study appropriately extracts important features for the

foreground and background segmentation.
Frontiers in Marine Science 07
3.4.2.2. Comparison of proposed PSS-net and state-
of-the-art methods

In the present experiments, the performances of the

proposed PSS-Net and state-of-the-art methods—U-Net++

(Zhou et al., 2018), PiCANet (Liu et al., 2018), BASNet (Qin

et al., 2019), CPDNet (Wu et al., 2019), PoolNet (Liu et al.,

2019), EGNet (Zhao et al., 2019), SCRN (Wu et al., 2019), U2-

Net (Qin et al., 2020), SINet (Fan et al., 2020), and ECD-Net (Li

et al., 2021)—were compared. We referred to the results

presented in a previous paper (Li et al., 2021) for the

performance benchmark of these methods. Table 4 compares

the PSS-Net proposed in this study and the existing state-of-the-

art methods.

As summarized in Table 4, the proposed PSS-Net is

confirmed to exhibit a higher segmentation accuracy than the

existing state-of-the-art methods. In particular, the mIoU, Sa F
w
b

and mE∅ performance of the proposed PSS-Net are

approximately 16%, 12%, 11%, and 5% higher than those of

the second-best method, respectively. In addition, the MAE of

the proposed PSS-Net is 0.007 lower than that of the second-best

method. Therefore, the proposed PSS-Net improves the

detection of the regions of the object and the background

compared to the existing state-of-the-art methods.

3.4.3. Testing on case 2 with MAS3K dataset
3.4.3.1. Ablation studies

Experiments for case 2 with the MAS3K dataset were

conducted. First, an ablation experiment was performed

similar to the five experiments resulting from dividing the

feature maps fusion method into five cases, as discussed in

Section 3.4.2.1. Table 5 summarizes the results of the ablation

experiments related to case 2.

Based on Table 5, the “feature maps fusion using attention

based on a sigmoid function” used in this study exhibits a higher

segmentation accuracy than the other feature map fusion

methods for case 2. This result is attributed to the fact that the

feature fusion segmentation proposed in this study is effective in

improving the performance. Figure 6 shows sample

segmentation result images obtained by the PSS-Net proposed

in this study.
TABLE 3 Comparative accuracies of testing with feature maps fusion using addition and average, multiplication, addition, and attention
(proposed method) on MAS3K dataset (case 1).

Method mIoU Sa Fb
w mE⦰ E

1 0.867 0.971 0.879 0.951 0.029

2 0.868 0.971 0.879 0.951 0.029

3 0.867 0.970 0.874 0.951 0.029

4 0.869 0.972 0.880 0.952 0.029

5 (PSS-Net) 0.870 0.973 0.880 0.952 0.029
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Figure 7 shows a sample attention feature map in the PSS-

Net. It can be found that the PSS-Net appropriately extracts

important features for the foreground and background

segmentation, even in images in which the background and

the foreground are similar.

3.4.3.2. Comparison of proposed PSS-Net and state-
of-the-art methods

In this section, we present the comparison of the

experimental results of the PSS-Net proposed in this study

with those of the BASNet (Qin et al., 2019), SCRN (Wu et al.,

2019), SINet (Fan et al., 2020), U2-Net (Qin et al., 2020), SINet-

V2 (Fan et al., 2021), C2FNet (Sun et al., 2021), and WaterSNet

(Chen et al., 2022). We refer to the results of a previous study

(Chen et al., 2022) for the performance benchmarking of these

methods. Table 6 summarizes the comparison of the PSS-Net

proposed in this study and the existing state-of-the-art methods.
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Based on Table 6, even though the existing methods slightly

outperform the PSS-Net in terms of the Fw
b mE∅ and MAE, the

PSS-Net shows much higher segmentation accuracies than the

existing state-of-the-art methods in terms of mIoU and Sa
However mE∅ measures the accuracy by correcting the

average values in the foreground map and the ground truth

image, respectively, as expressed in Equation (12). Hence, it has

a disadvantage in that the performance is affected by the average

value of the foreground map and the ground truth image. In

addition, because Fw
b b (0.3 based on (Margolin et al., 2014) and

(Cheng and Fan, 2021) considers RECALL to be more important

than PRECISION, as expressed in Equation (11), it has a

disadvantage in that the FPs are improperly considered in the

performance evaluation, as expression in Equation (10).

Moreover, as written in Equation (13), Sa does not simply

represent the MAE between the predicted image and the

ground truth image. It is a measure that represents the
FIGURE 5

Examples of attention feature map with MAS3K dataset (case 1).
FIGURE 4

Input and label (ground-truth) images, and predict images obtained using PSS-Net with MAS3K dataset (case 1). TP, FP, FN, and TN are
expressed in white, blue, red, and black, respectively.
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respective structure similarity-based accuracy of a detected

object and the boundary region. Hence, it can be inferred that

Sa along with the mIoU, shows more accurate detection results

than the other metrics.

3.4.4. Processing time
In this section, we discuss the inference time of the PSS-Net

proposed in this study. First, Table 7 lists the measured inference

time of the PSS-Net on a desktop and an embedded system
Frontiers in Marine Science 09
(Jetson TX2 board) (Jetson TX2 embedded system, accessed on

25 July 2022) as shown in Figure 8. Jetson TX2 includes an

NVIDIA Pascal™-family GPU (256 CUDA cores) with 8 GB of

GPU memory.

Based on Table 7, the inference times for one image on the

desktop and the Jetson embedded system are 6.43 ms and 38.61

ms, respectively. These inference times imply processing speeds

of 155.5 frames per second (fps) (1000/6.43) and 25.9 fps (1000/

38.61), respectively. We employed the PSS-Net proposed in this
TABLE 5 Comparative accuracies of testing with feature maps fusion using addition and average, multiplication, addition, and using attention
(proposed method) in MAS3K dataset (case 2).

Method mIoU Sa Fb
w mE⦰ E

1 0.815 0.965 0.783 0.894 0.045

2 0.815 0.965 0.783 0.894 0.044

3 0.815 0.964 0.783 0.894 0.045

4 0.816 0.966 0.784 0.894 0.044

5 (PSS-Net) 0.816 0.966 0.784 0.895 0.044
frontiersi
TABLE 4 Comparison of proposed PSS-Net and state-of-the-art methods with MAS3K dataset (case 1).

Method mIoU Sa Fb
w mE⦰ E

U-Net++ 0.429 0.692 0.522 0.754 0.099

PiCANet 0.611 0.805 0.680 0.859 0.051

BASNet 0.511 0.732 0.572 0.791 0.076

CPDNet 0.590 0.810 0.636 0.829 0.057

PoolNet 0.604 0.799 0.685 0.867 0.045

EGNet 0.596 0.806 0.677 0.853 0.047

SCRN 0.649 0.830 0.686 0.863 0.047

U2Net 0.541 0.776 0.615 0.802 0.058

SINet 0.652 0.830 0.678 0.874 0.044

ECD-Net 0.711 0.850 0.766 0.901 0.036

PSS-Net (proposed method) 0.870 0.973 0.880 0.952 0.029
FIGURE 6

Result images of PSS-Net with MAS3K dataset (case 2). TP, FP, FN, and TN are expressed in white, blue, red, and black, respectively.
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study in the Jetson embedded system because an underwater

vehicle is generally used in marine segmentation. In addition,

because a Jetson embedded system is extensively used as an edge

computing device that is attached to an underwater vehicle, the

proposed PSS-Net was used in the Jetson embedded system to

examine whether it can perform edge computing. Finally, based

on Table 7, it is confirmed that the PSS-Net proposed in this

study can operate in a limited embedded system.
4. Discussion

For the ECD-Net (Li et al., 2021), which exhibits the second-

best performance in Table 4, an IFEM is developed to extract the

main features effectively when the features are compressed in the
Frontiers in Marine Science 10
encoder. In addition, CDMs that can integrate features are

designed to improve the final marine animal segmentation

performance. In the WaterSNet (Chen et al., 2022), which

exhibits the second-best performance in terms of the mIoU

and Sa in Table 6 and slightly outperforms the PSS-Net in terms

of the Fw
b mE∅ and MAE, the AFB module is used to utilize the

global context information. In addition, an RFB module is

employed to extract multiscale features. This method is

considered to use an attention mechanism. Furthermore, two

models are used to reduce the overfitting, and a Siamese

structure is used to allow various learning.

In contrast, the core of the PSS-Net proposed in this study

can be summarized in three points. First, the proposed PSS-

Net is a model designed with parallel CNNs that can be

separately trained on the foreground and background of

marine animal images. Second, the PSS-Net proposed in

this study is a model that reinforces the foreground and

background learning by adding an attention mechanism

between the parallel CNNs. This mechanism allows

focusing on the foreground and background learning tasks

without conflicts. Third, when testing is performed, the

foreground and background feature maps extracted from
FIGURE 7

Examples of attention feature maps using MAS3K dataset (case 2).
TABLE 7 Inference times of PSS-Net on desktop and Jetson
embedded system.

Environment Inference time (per one image)

Desktop 6.43 ms

Jetson embedded system 38.61 ms
TABLE 6 Comparison of proposed PSS-Net and state-of-the-art methods with MAS3K dataset (case 2).

Method mIoU Sa Fb
w mE⦰ E

BASNet 0.678 0.820 0.748 0.869 0.044

SCRN 0.690 0.832 0.762 0.884 0.038

SINET 0.657 0.815 0.745 0.885 0.039

U2-Net 0.651 0.809 0.722 0.851 0.047

SINet-V2 0.561 0.757 0.648 0.826 0.061

C2F-Net 0.717 0.844 0.781 0.903 0.036

WaterSNet 0.739 0.856 0.804 0.913 0.032

PSS-Net (proposed method) 0.816 0.966 0.784 0.895 0.044
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the para l le l CNNs are fused to perform the final

segmentation. Moreover, the fusion proposed in this study

is regarding the attention mechanism. Thus, it is confirmed

that the PSS-Net proposed in this study shows improved

marine animal segmentation performance. However, the

detection error of the proposed PSS-Net increases when an

object has complex boundaries or the distinctiveness of the
Frontiers in Marine Science 11
object is very low compared to background due to protective

colors, as shown in Figure 9.

As shown in Sections 3.4.2 and 3.4.3, the accuracies of case 1

experiments are higher than those of case 2 experiments. That is

because the number of training data of case 1 is larger than that

of case 2 as shown in Table 1, which makes the PSS-Net more

robust to various data in case 1. In addition, the number of
FIGURE 8

Jetson TX2 board.
FIGURE 9

Examples of error cases for complex objects. TP, FP, FN, and TN are denoted in white, blue, red, and black colors, respectively.
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testing data of case 1 is smaller than that of case 2 as shown in

Table 1, which can reduce the testing error in case 1.
5. Conclusions

In this study, we established the PSS-Net for marine animal

segmentation. In addition, the PSS-Net was trained on the

foreground and the background separately to detect marine

animals accurately. This mechanism was possible because the

PSS-Net was designed by connecting the foreground and

background models in parallel. Moreover, an attention

mechanism was connected between the parallel CNNs, and the

foreground and background learning tasks were reinforced by

separate losses (object and background losses). Finally, the

background feature maps were fused to the foreground feature

maps to perform the final segmentation when testing. Subsequently,

ablation studies were conducted on this fusion. The results

confirmed that the attention-based fusion proposed in this study

has a high segmentation performance. Furthermore, we verified

that the improved marine animal segmentation performance of the

proposed PSS-Net by conducting comparison experiments with

existing state-of-the-art methods. The segmentation results of case 1

experiments using the MAS3K open dataset reveal that the

proposed method achieves performance of 87%, 97.3%, 88%,

95.2%, and 0.029 in the mIoU, Sa Fw
b mE∅ and MAE,

respectively. In addition, those of case 2 experiments using the

MAS3K open dataset reveal that the proposed method achieves

performance of 81.6%, 96.6%, 78.4%, 89.5%, and 0.044 in themIoU,

Sa F
w
b mE∅ andMAE, respectively. However, it was found that the

detection error of the proposed PSS-Net increased for cases where

the object has complex boundaries and protective colors.

In future research, we plan to perform the segmentation of

marine animal with severely complex boundaries and protective

colors based on the segmentation approach of object within the

rectangular region roughly detected by a conventional CNN

detector. In addition, we aim to expand the results of this study

to investigate how to improve the semantic segmentation

performance for multiclass marine animals.
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