
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Guan-hong Lee,
Inha University, South Korea

REVIEWED BY

Abd Mujahid Hamdan,
Ar-Raniry State Islamic University
Banda Aceh, Indonesia
Jinhai Zheng,
Hohai University, China

*CORRESPONDENCE

Xianbin Liu

liuxb_801@163.com

SPECIALTY SECTION

This article was submitted to
Coastal Ocean Processes,
a section of the journal
Frontiers in Marine Science

RECEIVED 25 July 2022
ACCEPTED 06 December 2022

PUBLISHED 19 December 2022

CITATION

Liu X, Chen J, Yue W, Wang Q,
Zhan C, Zeng L, Song J, Wang L
and Cui B (2022) Tracing the source–
sink process of fluvio-clastic materials:
Magnetic records of surface sediments
in the Yangtze River basin.
Front. Mar. Sci. 9:1002335.
doi: 10.3389/fmars.2022.1002335

COPYRIGHT

© 2022 Liu, Chen, Yue, Wang, Zhan,
Zeng, Song, Wang and Cui. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 19 December 2022

DOI 10.3389/fmars.2022.1002335
Tracing the source–sink
process of fluvio-clastic
materials: Magnetic records of
surface sediments in the
Yangtze River basin

Xianbin Liu1*, Jing Chen2, Wei Yue3, Qing Wang1, Chao Zhan1,
Lin Zeng1, Jian Song1, Longsheng Wang1 and Buli Cui1

1School of Resource and Environmental Engineering, Ludong University, Yantai, China, 2State Key
Laboratory for Estuarine and Coastal Research, East China Normal University, Shanghai, China,
3School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou, China
In this study, we collected surface sediments from the mainstream and major

tributaries of the Yangtze River to systematically analyse their magnetic

properties, and discuss the implications for tracing source–sink process of

fluvio-clastic materials. Our results showed that the surface sediments from

tributaries in the upper basin had a significantly higher content of ferromagnetic

minerals and coarser grain sizes than that in themid-lower basin. Themagnetic

susceptibility (clf) of surface sediments from the mainstream was 34.16*10-8

m3/kg at Shigu, rapidly rose to 230.56*10-8 m3/kg at Yibin, and then dropped to

68.92*10-8 m3/kg at the river mouth. The clf of Yalong River sediments in the

upper basin was 276.86*10-8m3/kg, considerably higher than that of the

sediments from other tributaries, and greatly contribute to the clf of

the sediments in the mainstream, reflecting the dominant constraining role

of the Emeishan basalts. The distinctive magnetic properties of the upper core

sediments from Jianghan basin and the Yangtze delta closely match those of

surficial river sediments of the upper Yangtze basin. This may indicate the

addition of clastic materials eroded from the upper basin, resulting from the

cut-through of the Three Gorges during the evolution of the Yangtze River that

occurred in the late Cenozoic. Investigating the magnetic properties of the

surface sediments in the Yangtze River basin can provide insights into the

source–sink process of clastic materials and environmental changes.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2022.1002335/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.1002335/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.1002335/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.1002335/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.1002335/full
https://xueshu.baidu.com/usercenter/paper/show?paperid=27c31712c53a96f6819c5dd685f9983d&site=xueshu_se
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.1002335&domain=pdf&date_stamp=2022-12-19
mailto:liuxb_801@163.com
https://doi.org/10.3389/fmars.2022.1002335
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2022.1002335
https://www.frontiersin.org/journals/marine-science


Liu et al. 10.3389/fmars.2022.1002335
1 Introduction

Rivers, as the link between land and sea, play a key role in

exchanging of global energy and materials. About 15–19*109 t of

clastic materials are transported by rivers from basin to estuaries

and marginal seas yearly (Milliman and Meade, 1983; Syvitski

et al., 2003; Milliman and Farnsworth, 2011). This source–sink

process makes a significant impact on earth surface processes

such as soil erosion, shoreline change, and even global

biogechemical cycle. (Wang et al., 2011; Wittmann et al., 2016;

Li et al., 2017; Jiang et al., 2018; Nel et al., 2018; Park et al., 2021;

Ji et al., 2022).

The Yangtze River, with a drainage area up to 1.8 × 106 km2,

linking the Tibetan Plateau and the western Pacific marginal

seas, is the longest river in Asia. It annually discharges 490×106

tons sediments into the delta and East China Sea, and dropped

sharply to 130×106 tons due to the construction of the world’s

largest reservoir– the Three Gorges Dam (Dai and Liu, 2013,

Yang et al., 2014; Yang et al., 2015; Dai et al, 2018);. The source

to sink transport processes of the Yangtze River sediments have

recently attracted great interest on two aspects in terms of time

scale (Fan et al., 2012). One is the attempt to decode the impact

of human activities in river basin on spatio-temperal variation in

sediment delivery processes, especially the industrial and

agricultural development, dam construction (Yang et al., 2014;

Yang et al., 2015; Dai et al., 2016; Luan et al., 2016; Dai et al.,

2018; Yang et al., 2018; Guo et al., 2019; Mei et al., 2021; Yang

et al., 2021). The other is to set up the provenance distinguishing

models, to achieve robust understanding the evolution of

Yangtze River in geological time and its relationship with the

gigantic geomorphological changes in East Asia (uplift of the

Tibet Plateau, the regional extension throughout eastern China)

during the Late Cenozoic, and evolving east Asian monsoon

(Yang et al., 2006; Gu et al., 2014; Yue et al., 2016; Liu et al., 2018;

Yue et al., 2019; Zhang et al., 2019; Zheng et al., 2019; Yang

et al., 2021).

A number of approaches including isotopic geochronology,

geochemical compositions, mineral assemblages have been used

to trace the source-sink processes of the Yangtze River sediment

(Chappell et al., 2006; Yang et al., 2007; He et al., 2013; Zheng

et al., 2013; Luo et al., 2014; Li et al., 2016; Yue et al., 2016; Yue

et al., 2019; Yang et al., 2021). It is still difficult to fingerprint the

discrimination of individual tributaries accurately for huge

drainage area, complex tectonics, and various climatic

environments (Fan et al., 2012; Yang et al., 2021). Therefore, it

still needs to refine the sediment fingerprinting methodology

and promote comparison studies between the surface sediments

and sedimentary strata.

The magnetic properties of sediments have documented

rich information on the environmental evolution (Liu et al.,

2012). Previous studies have explored the magnetic properties
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of the Yangtze River sediments. However, they have primarily

focused on local areas in the basin (Zhang et al., 2002; Niu

et al., 2008; Zhou et al., 2008; Zhang et al., 2009; Luo et al.,

2011; Luo et al., 2013; Pan et al., 2015; Chu et al., 2016).

Systematic studies targeting the entire Yangtze River basin are

limited. Here, we collected surface sediments from the

mainstream and major tributaries of the Yangtze River basin,

and systematically analysed their magnetic properties, and

further discussed their implications for source-sink progress

of sediment transport.
2 Background of study area

The Yangtze River basin lies between 90°33′–122°25′ E, 24°
30′–35°45′ N. Geographically, the Yangtze River is

approximately 6300 km long, and is divided into the upper,

middle, and lower reaches with divisions at Yichang and Hukou.

The upper Yangtze River is about 4500 km long, with an

elevation above 2000 m and a basin area of roughly 100*104

km2. The major tributaries joining the mainstream in the upper

reaches include the Yalong River, Dadu River, Min River, Tuo

River, Jialing River, and Wu River. The middle Yangtze River is

about 955 km long, with an elevation of 500–2000 m and a basin

area of roughly 63*104 km2. The main tributaries joining the

mainstream in the middle reaches include the Han River, Yuan

River, Xiang River, and Gan River. Poyang Lake and Dongting

Lake, two major freshwater lakes in China, are also distributed in

the middle reaches. The lower Yangtze River is about 938 km

long, with an elevation below 500 m and a basin area of roughly

12*104 km2. No large rivers join the mainstream of the Yangtze

River in the lower reaches.

The Yangtze River basin is generally controlled by

subtropical monsoon climate. The annual average temperature

decreases from east to west. Due to the large area, complex

landform, and monsoon climate, the mean annual precipitation

varies dramatically throughout the Yangtze River basin. The

mean annual precipitation is generally less than 400 mm in the

source region and typically 800–1600 mm in the central and

eastern parts of the basin.

Multiple types of source rocks are distributed in the upper

reaches of the Yangtze River, including large areas of the

Paleozoic carbonate rocks, Mesozoic sedimentary and igneous

rocks, and scattered metamorphic rocks (Figure 1, Changjiang

Water Resources Commission, 1999). The Emeishan basalts are

distributed in the upper basin, and their formation is closely

related to the volcanic eruption triggered by the intense mantle

plume activities in the Permian. The middle and lower Yangtze

River basin is mainly distributed with the Paleozoic marine,

Mesozoic terrestrial sedimentary rocks, and Quaternary loose

sediments of fluvial and lacustrine facies.
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3 Methodology

Our research team collected mainstream samples in dry

season (January 2013) on the floodplain at Shigu, Yibin,

Yichang, and the river mouth (Figure 1). The tributary

sediments were sampled at the confluences of tributaries and

mainstream. To reduce random errors, we collected 2–7 surface

sediment samples within a certain area around in each sampling

site. A total of 65 samples were obtained from the mainstream

and tributaries of the Yangtze River. Since Emeishan basalts are

widely exposed in the upper Yangtze River basin, with an area of

30*104 km2, and their magnetic properties are distinct from

those of other rock types, we collected one representative sample

from the Jianchuan area in the upper basin (Figure 1).

The collected samples were dried in an oven at a low

temperature of 30°C for 72 hours in the laboratory, avoiding

any mineral changes (Maher, 1986). After the samples were

completely dry, any plant roots or other impurities were

removed from the sediments by plastic tweezers. Then, the

sediments was packed into a non-magnetic plastic sample box

(8 cm3 capacity) for further magnetic testing. Low and high

frequency susceptibility (clf and clf) was measured at 0.47 kHz

and 4.7 kHz, respectively, using a Bartington MS2

magnetometer. Each measurement consists of two replications

in order to avoid measurement error. The frequency-dependent

susceptibility (cfd%) was calculated as cfd% = (clf – chf)/clf*100.
The anhysteretic remanent magnetization (ARM) was

determined using a Dtech2000 alternating field demagnetizer

(with a maximum AC magnetic field of 100 mT and a DC
Frontiers in Marine Science 03
magnetic field of 0.04 mT). The remanent magnetization was

then measured by a Minispin spinner magnetometer. After

obtaining the isothermal remanent magnetization under a 1 T

magnetic field using an MMPM10 pulsed-field magnetometer,

the samples were rapidly placed into the Minispin spinner

magnetometer to measure their remanent magnetization. In

this study, the isothermal remanent magnetization obtained

under a 1 T magnetic field (IRM1T) is defined as saturation

isothermal remanent magnetization (SIRM). After obtaining the

SIRM, the samples were demagnetized under a 300 mTmagnetic

field in the opposite direction, and their remanent magnetization

was measured again to derive the demagnetization parameters.

S-ratio = – IRM– 300 mT/SIRM; HIRM (the “hard” IRM) = (SIRM

– IRM– 300 mT)/2. The representative samples collected were

examined using a variable field translational balance (VFTB) to

obtain their hysteresis loops and thermomagnetic curves. The

magnetic analyses were performed at the State Key Laboratory of

Estuarine and Coastal Research, East China Normal University.
4 Results

4.1 Magnetic properties of surface
sediments from the mainstream

The results showed that the clf value of the surface sediments

from the mainstream firstly increased and then decreased. The

minimum value was 34.16*10-8 m3/kg at Shigu. Then it rapidly

rose to 230.56*10-8 m3/kg at Yibin and slightly decreased to
FIGURE 1

Distribution of source rocks in the Yangtze River basin and the sampling sites. 1) the large-scale Emeishan basalt block in the upper Yangtze
basin; 2) sampling sites: ① Shigu (26°52′52″N, 99°57′31″E) ② Yalong River (YLR, 26°36′42″N, 101°48′00″E); ③ Dadu River (DDR, 29°33′19″N, 104°
43′50″E); ④ Min River (MR, 29°35′28″N, 103°45′54″E); ⑤ Jinsha River (JSR, 26°36′42″N, 101°47′32″E); ⑥ Tuo River (TR, 29°35′39″N, 105°03′25″E);
⑦ Jialing River (JLR, 29°43′30″N, 106°32′08″E); ⑧ Three Gorges (Yichang, 30°40′47″N, 111°16′07″E); ⑨ Yuan River (YR, 29°01′50″N, 111°41′08″E);
⑩ Xiang River (XR, 27°49′27″N, 113°08′43″E); ⑪ Han River (HR, 30°22′53″N, 113°26′55″E); ⑫ Dongting Lake (DTL, 29°22′45″N, 113°05′10″E); ⑬
Gan River (GR, 28°32′28″N, 115°48′43″E); ⑭ Poyang Lake (PYL, 29°43′41″N, 116°11′51″E); ⑮ River Mouth(31°36′19″N, 121°25′26″E); the Emeishan
Basalt site (star, 26°35′01″N, 101°38′36″E); 4) Zhoulao Core (ZLC), from the middle Yangtze basin, below the Three Gorges valley (Zhang et al.,
2008; 30°02′09″N, 112°59′07″E); the Core LQ11 on the delta (Liu et al., 2018; 31°2′30″N, 121°23′54″E).
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210.50*10-8 m3/kg at Yichang. The value dropped to 68.92*10-8

m3/kg at the river mouth (Figure 2). The cfd% of all surface

sediment samples from the mainstream was lower than 3%,

indicating magnetic mineral grains in the surface sediments were

basically free of superparamagnetic (SP) particles (Thompson

and Oldfield, 1986). The variation trend of cARM was similar to

those of clf and SIRM. The cARM/clf ratio gradually increased

from Shigu through Yibin downstream, reaching the maximum

at Yichang. Then, the value slightly decreased at the Yangtze

River estuary. In comparison, the cARM/SIRM ratio exhibited a

continuously increasing trend downstream, implying a gradually

decreasing grain size of the magnetic minerals. The S-ratio was

above 0.9, indicating the predominance of the low-coercivity

ferromagnetic minerals. The HIRM value varied significantly

among the sampling sites, the lowest at Shigu and the highest at

Yibin (Thompson and Oldfield, 1986; Figure 2).

The variation patterns of the thermomagnetic curves for

samples from different sites along the mainstream were relatively

similar (Figure 3). The magnetization intensity sharply declined

near 585°C and then decreased slightly, indicating a high content

of magnetite and small amount of hematite in the samples. The

hysteresis loops before and after paramagnetic correction were

both narrow, and the closure point of the hysteresis loop after

paramagnetic correction occurred at 300 mT, indicating a high
Frontiers in Marine Science 04
abundance of low-coercivity ferromagnetic minerals (Thompson

and Oldfield, 1986; Figure 4).
4.2 Magnetic properties of surface
sediments from the tributaries

The clf values of the surface sediments from the tributaries in

the upper Yangtze River basin were generally high. The Yalong

River sediments had the highest values, with a mean of

276.86*10-8 m3/kg. The Jialing River sediments had the lowest

values, with a mean of 55.86*10-8 m3/kg (Figure 2). The clf values
of the surface sediments from the tributaries in the middle and

lower Yangtze River basin were generally low. In which, the Han

River sediments had the highest values, with a mean of 80.35*10-

8 m3/kg. The Gan River sediments had the lowest values, with a

mean value of 5.86*10-8 m3/kg. The SIRM of the surface

sediments from the tributaries exhibited similar variation

trends to the clf results. The mean SIRM of the Yalong River

sediments was 51908.04*10-5 Am2/kg, significantly higher than

that of the sediments from the other tributaries. The SIRM of the

Gan River sediments was the lowest, with a mean value of only

669.22*10-5 Am2/kg. Except for the surface samples from

Dongting Lake, the cfd% of each tributary sample was less
FIGURE 2

Magnetic parameters of the surface sediments from the mainstream and tributaries of the Yangtze River and those of the Emeishan basalts.
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than 3%, indicating that the magnetic mineral grains in the

surface sediments from most tributaries were essentially free of

SP particles. Except for the Yalong River sediments, the cARM of

the surface sediments from each tributary in the upper Yangtze

River basin was 83.23–162.79*10-8 m3/kg, with minor

fluctuations. The cARM/clf and cARM/SIRM of most samples

from the upper reaches were significantly smaller than those

from the middle and lower reaches, indicating that the grain size

of magnetic minerals from the tributaries in the upper Yangtze

River basin was generally coarser than those from the tributaries

in the middle and lower basins. The S-ratio and HIRM of most

samples from the tributaries in the upper Yangtze River basin

were slightly higher than those from the tributaries in the middle

and lower basins.

The thermomagnetic curves of the representative samples

generally exhibit similar patterns. The magnetization intensity

sharply declined near 585°C and then decreased slightly,

indicating a high content of magnetite and small amount of

hematite in the samples (Figure 5). The hysteresis loops before

and after paramagnetic correction were both narrow, and the

closure point of the hysteresis loop after paramagnetic correction

occurred at 300 mT, indicating a high abundance of low-

coercivity ferromagnetic minerals, such as magnetite

(Figure 6). Compared to the hysteresis loops of the other

samples, those of the Dongting Lake samples, before and after

paramagnetic correction, were distinct, indicating a higher
Frontiers in Marine Science 05
content of paramagnetic minerals in the Dongting Lake

sample. Moreover, the hysteresis loop after paramagnetic

correction was still not completely closed at 500 mT, implying

that the sample also contained certain amounts of high-

coercivity magnetic minerals. The magnetization intensity of

the samples from the Gan River and Xiang River decreased to a

certain extent at 750 mT, indicating a certain amount of

diamagnetic minerals in samples.
4.3 Magnetic properties of the
Emeishan basalt

The magnetic parameters of the Emeishan basalt sample

from Jianchuan (Figure 2) are as follows. The clf and SIRM

exhibited significantly high values of 1086.73*10-8 m3/kg and

155776.63*10-5 Am2/kg, respectively. The cARM/clf and cARM/
SIRM ratios were 9.59 and 6.69*10-5 A/m, respectively. The S-

ratio of the sample was 0.99, showing the predominance of the

low-coercivity ferromagnetic minerals in the magnetic particles.

The thermomagnetic curves of the Emeishan basalt sample

(Figure 7) showed the following properties. The magnetization

intensity remained roughly constant before reaching 585°C and

then dropped sharply near 585°C, indicating a high abundance

of representative coarse-grained magnetite. The hysteresis loops

before and after paramagnetic correction (Figure 7) almost
FIGURE 3

Thermomagnetic curves of the surface sediments from the Yangtze River basin (red: heating; black: cooling).
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completely overlapped, and the loop of magnetization intensity

was completely closed under a magnetic field of 100 mT,

implying that low-coercivity magnetic minerals dominate the

magnetic particles.
5 Discussion

5.1 Relationship between magnetic
properties of the surface sediments and
source rocks in the basin

The fluvial clastic deposits may be subjected to hydrodynamic

sorting during the transportation process. The statistical results show

that the sediment flux into the sea before the closure of the Three

Gorges Dam primarily came from the upper Yangtze River basin

(Chen et al., 2001). Theheavymineral assemblages and trace element

properties ofmagnetite in the sediments fromthe estuarywerehighly

consistent with those in the sediments from the upper basin, which

means that the hydrodynamic sorting effect on the minerals was

overall not significant (Yue et al., 2016).

Significant differences exist in the magnetic properties of

various rocks. The magnetic susceptibility (clf) primarily

depends on the content of ferromagnetic minerals (Thompson
Frontiers in Marine Science 06
and Oldfield, 1986). The clf of basic and ultrabasic rocks is

significantly high, typically greater than 1000*10-8 m3/kg, and

the average of basalts can reach 1800*10-8 m3/kg. The average clf
of granite is 20*10-8 m3/kg. The clf of metamorphic rocks is

generally low, with an average of 5*10-8 m3/kg for common

gneisses and 1*10-8 m3/kg for slates. Sedimentary rocks have the

lowest susceptibility overall, generally less than 10*10-8 m3/kg

(Thompson and Oldfield, 1986).

In the lower Yalong River basin, the outcrops were

dominated by Paleozoic carbonate rocks, low-grade

metamorphic rocks, and Emeishan basalts (Changjiang Water

Resources Commission, 1999). Among the tributaries in the

basin, the mean clf of the surface sediments from the Yalong

River was 276.86*10-8 m3/kg, and significantly higher than that

of the samples from other tributaries. The clf of the Emeishan

basalt sample from Jianchuan was 1086.73*10-8 m3/kg,

indicating that the widely exposed Emeishan basalts have a

significant contribution to the clf of the surface sediments in

the Yalong River.

The clf of the samples from the tributaries in the middle and

lower basin was typically low except Han River. The clf of the
Han River sediments was relatively high, with an average of

80.35*10-8 m3/kg. Quaternary loess deposits are widely

distributed in the upper Han River basin. The clf of the loess
FIGURE 4

Hysteresis loops of the surface sediments from the Yangtze River basin (black: before paramagnetic correction; red: after the correction; Ms,
Mrs and Bc in the figures means saturation magnetization, saturation remanent magnetization, and saturation coercivity respectively).
frontiersin.org

https://doi.org/10.3389/fmars.2022.1002335
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2022.1002335
on the Loess Plateau deposited during glacial periods was

primarily 40−60*10-8 m3/kg, and the paleosols developed

during interglacial periods had a susceptibility in the range of

100−200*10-8 m3/kg (Evans and Heller, 2001). The widely

distributed Quaternary loess deposits within the upper Han

River basin may cause the relatively high clf of the surface

sediments in the Han River.

The clf of the surface sediments from the major tributaries in

the middle and lower Yangtze River basins, such as the Xiang

River, Yuan River, and Gan River, is generally low and roughly

related to the types of strata exposed in these tributary basins.

The surface sediments in the Dongting Lake were mainly from

the Xiangjiang River and Yuanjiang River. The strata exposed in

the upper Yuan River basin are primarily sandstones, slates, and

the Cretaceous red beds. The Cretaceous red beds, along with a

few sandy conglomerates, are widely distributed in the middle

and lower basin (Changjiang Water Resources Commission,

1999). The strata exposed in the Xiang River basin are

predominantly Carboniferous limestones and Cretaceous red

beds. The Gan River basin is widely distributed with pre-Sinian

and pre-Devonian metamorphic rocks.

The outcrops in the area from the source of Yangtze River to

Shigu were mainly carbonate and clastic rocks, scattered with a
Frontiers in Marine Science 07
few intermediate-acid intrusive and metamorphic rocks, whose

clf was generally low, thus leading to the low clf (34.16*10-8 m3/

kg) of the surface sediments at Shigu. The clf of the surface

sediments in the mainstream of the Yangtze River rapidly

increased to 230.56*10-8 m3/kg at Yibin and slightly decreased

to 210.50*10-8 m3/kg at Yichang. The clf of the surface sediments

from the mainstream at Yibin and Yichang was slightly lower

than that of the Yalong River samples but significantly higher

than the samples from other tributaries in the upper Yangtze

River basin. This means that the Yalong River sediments greatly

contribute to the susceptibility value of the sediments in the

mainstream. With the addition of the low-susceptibility clastic

materials in the middle and lower reaches, the susceptibility of

the sediments in the mainstream gradually decreased to

68.92*10-8 m3/kg at the river mouth.
5.2 The source-sink progress of
sediment transport

The Yangtze River originates in the northeast region of the

Tibetan Plateau, and flows through three major topographic

regions of China before injecting into the East China Sea. A
FIGURE 5

Thermomagnetic curves of the surface sediments from the mainstream of the Yangtze River (red: heating; black: cooling).
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series of previous studies have demonstrated that the Yangtze

River was formed under drastic macro-geomorphological

changes in Asia during the Cenozoic such as the uplift of the

Tibetan Plateau, continuous subsidence of eastern China (Clark

et al., 2004; Fan et al., 2012; Yue et al., 2019). After a series of
Frontiers in Marine Science 08
geomorphological processes such as river capture and headward

erosion, a large river roughly 6300 km long was finally shaped.

Most scholars believe that the Huangling anticline in the

Three Gorges area was once the drainage divide of the paleo-

Yangtze River system and the paleo-Jinsha River system (Clark
FIGURE 6

Hysteresis loops of the surface sediments from the mainstream of the Yangtze River (black: before paramagnetic correction; red: after the correction).
FIGURE 7

Thermomagnetic curves (left) and hysteresis loops (right) of the Emeishan basalt sample.
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et al., 2004; Zheng et al., 2013). The paleo-Jinsha river flowed

westward through the Sichuan Basin and eventually into the

South China Sea. The paleo-Yangtze River was the prototype of

the modern Yangtze River, flowing eastward into the sea. After

multiple phases of river capture, the flow direction of the paleo-

Jinsha River was reversed, thus forming the modern

Yangtze River.

After the incision of the Three Gorges, clastic materials from

the upper Yangtze River basin first arrived in the Jianghan Basin.

Thick sedimentary layers in the Jianghan Basin are ideal research

objects for investigating the tectonic movements in the Three

Gorges area and the evolution of the Yangtze River. Magnetic

analysis of the sediment from the Zhoulao core in the Jianghan

Basin has shown that the clf of the sediments significantly

increases at the depth of 110 m (Figure 8, Zhang et al., 2008).

At the horizons with abrupt changes in magnetic properties, the

sediment grains also become coarser, indicating sharply

increased hydrodynamic forces during the deposition period.

These results are related to the addition of the Emeishan basalt

fragments and the clastic sediments from the source region of

the modern Yangtze River, which may imply a major

reconstruction of the Yangtze River system.

The sediments in the upper Yangtze River basin have a

significantly higher content of ferromagnetic minerals than those

in the middle and lower basin (Figure 9). During the source–sink

transportation process, the materials from the upper basin are

mixed with the low clf clastic materials from the middle and
Frontiers in Marine Science 09
lower basin, thus the sediments reaching the estuary are a

complex of the mixed clastic materials. The content and grain

size magnetic materials in the strata at the Yangtze River delta

have consistent variation trends with those in the strata in the

Jianghan Basin (Figure 8). The content of the ferromagnetic

minerals of the core LQ11 significantly increases at the depth of

110 m (1.2 Ma), and the magnetic mineral grains become coarser

at the same time (Liu et al., 2018). The high clf value of the strata
at the Yangtze River delta implies that the clastic materials from

the upper reaches of the Yangtze River, especially those eroded

from the Emeishan basalts, might have reached the estuary,

which also means the incision of the Three Gorges and the

formation of the modern Yangtze River.
6 Conclusions

Our study systematically analyzed the magnetic properties of

surface sediments from the mainstream and major tributaries of

the Yangtze River basin, tracing the source–sink process

of clastic materials. The surface sediments from tributaries in

the upper basin had a significantly higher content of

ferromagnetic minerals and coarser grain sizes than that in the

mid-lower basin. The clf of the Yalong River sediments in the

upper basin was 276.86*10-8m3/kg, greatly contribute to the clf
of the sediments in the mainstream, reflecting the dominant

constraining role of the Emeishan basalts. The distinctive
FIGURE 8

Comparison of magnetic parameters of the sediments from the LQ11 borehole at the Yangtze River delta (Liu et al., 2018) and the Zhoulao
borehole in the Jianghan Basin (Zhang et al., 2008).
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magnetic properties of the upper core sediments from major

depocenters including Jianghan basin and the Yangtze delta

closely match those of surficial river sediments of the upper

Yangtze basin. This may indicate the addition of clastic materials

eroded from the upper basin, resulting from the cut-through of

the Three Gorges during the evolution of the Yangtze River.

Investigating the magnetic properties of the surface sediments in

the Yangtze River basin can provide insights into the source–

sink process of clastic materials and environmental changes.
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