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Chinese tongue sole (Cynoglossus semilaevis) is an economically important

marine fish in China. Generally, the eyeless side of the Chinese tongue sole is

white and the side with eyes is brown after metamorphosis, hypermelanosis

may still occur in the eyeless side in certain individuals after metamorphosis,

which greatly decreases consumer acceptance and market price. In order to

study the possibility of genetic improvement, we determined genomic markers

in Chinese tongue sole using the genotyping-by-sequencing method and

analyzed their association with hypermelanosis area. Genetic analysis

showed that hypermelanosis was a complicated quantitative trait, and the

estimated heritability for hypermelanosis incidence and area ratio were 0.16

and 0.21, respectively. Genomic selection analysis showed that selection based

on hypermelanosis incidence and area ratio had similar reliabilities and

prediction accuracies, indicating the feasibility of genetic improvement. Nine

loci were significantly associated with hypermelanosis, few of which included

genes or flanked genes potentially associated with skin disease, indicating the

potential complicated genetic mechanisms underlying hypermelanosis in the

Chinese tongue sole.

KEYWORDS

Chinese tongue sole (Cynoglossus semilaevis), hypermelanosis, genomic selection,
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1 Introduction

The Chinese tongue sole (Cynoglossus semilaevis) is an

economically important marine flatfish found in the coastal

waters of the Yellow Sea and Bohai Sea regions of China (Dou,

1995; Gibson, 1997). Chinese tongue sole is largely popular

owing to its taste and is widely cultivated owing to its fast growth

rate. Usually, the eyeless side of the Chinese tongue sole is white

and the side with eyes is brown after metamorphosis. Larval

pigmentation is symmetrically distributed in the larval stage,

during which the eye side presents a uniform distribution in the

metamorphosis stage, leading to the appearance of a black

brown-colored eye side. Normally, larval pigmentation on the

eyeless side completely disappears, resulting in the eyeless side

appearing pure white. However, pigmentation still occurs in the

eyeless side in certain individuals after metamorphosis (Estevez

et al., 2001; Zhu et al., 2005; Amiya et al., 2008; Yamada et al.,

2011; Isojima et al., 2013a; Matsuda et al., 2018). In Chinese

tongue soles, a relatively high proportion (10–90%) of adult

melanin is locally transformed into adult melanin, which results

in irregular black patches of skin on the eyeless side (Li et al.,

2021). Usually, hypermelanosis in the eyeless side starts in the

area under the gills of the tongue sole. Hypermelanosis in the

eyeless side also occurs in other flatfish; however, the location of

pigmentation varies. For example, pigmentation usually starts in

the caudal peduncle area in Japanese flounder (Paralichthys

olivaceus) (Isojima et al., 2013b; Kang et al., 2014).

Hypermelanosis greatly affects consumer acceptance of

flatfish in the market, and the price of Chinese tongue sole

showing hypermelanosis is at least 20% lower than that of fish

with normal skin. To meet market demand, farmers intend to

cultivate fish without hypermelanosis in the eyeless side. Studies

have explored the causes of hypermelanosis in flatfish, including

Chinese tongue sole and Japanese flounder, and have attempted

to reduce the development of hypermelanosis by changing the

background color of the breeding pond, adjusting the light

period and intensity, or adjusting the feeding time (Stickney

and White, 1975; Isojima et al., 2014; Nakata et al., 2017;

Yamanome et al., 2005). However, these approaches diminish

or alleviate the development of hypermelanosis in the eyeless

side in flatfish to a certain extent and do not completely inhibit

development. Apart from the environment, physiological and

genetic factors are also thought to be related to hypermelanosis

(Kang and Kim, 2015; Takahashi et al., 2004; Zhang et al., 2021;

Li et al., 2022). Pedigree analysis revealed that the variation in

hypermelanosis is heritable in the Chinese tongue sole,

indicating the potential to alleviate or eliminate the occurrence

of hypermelanosis via genetic improvement (Li et al., 2021).

Genetic analysis using genomic markers has gradually

become the default method in plant and animal breeding

owing to its high prediction accuracy (Morris et al., 2011;

Zhang et al., 2013; Feng et al., 2016; Martin et al., 2016;

Owens et al., 2019) and ability to identify genetic markers
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underlying the traits of interest. However, so far, no report is

found to study the genetic mechanism of hypermelanosis of

Chinese tongue sole using genomic markers. In this study,

genomic markers of Chinese tongue sole were determined

using the genotyping-by-sequencing (GBS) method and their

association with hypermelanosis incidence and area were

analyzed. The feasibility of genomic selection for avoiding

hypermelanosis was investigated which will benefit future

breeding in tongue sole aquaculture.
2 Materials and methods

2.1 Materials and phenotyping

A total of 320 one-year-old Chinese tongue soles were sampled

from Caofeidian, Hebei Province, China, in August 2021, of which

half of the sample population had hypermelanosis on the eyeless

side and the other half had normal skin. Tongue soles with

hypermelanosis were photographed on the eyeless side, and their

images were processed using Adobe Photoshop 2021 to obtain the

pixel values of the pigmented parts and whole eyeless side. The

ratios of pigmented area to the entire eyeless area, which was a

continuous trait, were recorded.Whether a fish had hypermelanosis

was a binary trait, the fish with hypermelanosis were recoded as 1

and the others with normal skin were recoded as 0. Caudal fins of all

individuals were sampled and preserved in anhydrous ethanol for

DNA extraction.
2.2 Genotyping

DNA was extracted using a TIANamp Marine Animals

DNA Kit (Tiangen Biotech Co., Ltd, Beijing), digested using

enzymes Pst1 (NEB, Beijing) and Msp1 (NEB, Beijing)

simultaneously at 37°C for 2 h, and then ligated with barcodes

and adaptors at 22°C for 2 h. The ligated products were used as

templates and amplified using polymerase chain reaction (Qi

et al., 2018). The pooled GBS libraries (100 ng) were sequenced

on an Illumina Nova platform with paired-end 150 bp reads.

Raw reads were first separated by barcodes using the module

‘process_radtags’ via Stacks v2.1 (options: -r –rensz-1,

-adapter_mm 1) (Catchen et al., 2013), and the quality of

reads was checked and filtered using fastp (Chen et al., 2018).

The clean reads were aligned to the genome reference database

using bwa (Li, 2013) (v0.7.17) with default parameters. Using

sequencing, a total of 2,629,256,786 reads were produced,

averaging 8,216,427 reads per sample; a total of 2,517,131,004

clean reads were obtained, accounting for 95.74% of the total

reads. GATK (v4.1.3) (McKenna et al., 2010) was used to call out

all the single nucleotide polymorphisms (SNPs). To obtain

robust results in subsequent analyses, the following criteria

were applied for variant filtering using vcftools (v0.1.16)
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(Danecek et al., 2011): loci with sequencing depth< 4, SNPs with

a minor allele frequency (MAF)< 0.01, and SNPs that were

missing in more than 20% of the samples were removed. A total

of 464,732 SNPs were obtained for all individuals. After quality

control based on an MAF of ≥0.05 and a call rate of ≥0.8, 89,670

SNP loci remained (Table 1). Based on our previous study, the

missing genotypes were imputed according to linkage

disequilibrium between markers (Jiang and Li, 2016).
2.3 Statistical analysis

2.3.1 Genomic selection
For continuous traits (portion of the hypermelanosis area),

the genomic best linear unbiased prediction (GBLUP) model

(VanRaden, 2008) was used for genomic selection analysis. The

model is expressed as follows:

y = Xb + Zg + e (1)

where y is the vector of continuous traits; b is the vector of

fixed effects, including population mean, sex, and pond effects; g

is the vector of additive genetic effects explained by polygenes,

g eN(0,Gs 2
g ), where G is the realized genetic relationship

matrix calculated from genomic markers (VanRaden, 2008)

and s 2
g is the genetic variance explained by the polygenes; X
Frontiers in Marine Science 03
and Z are the corresponding design matrices for b and g,

respectively; e is the vector of residuals; and eeN(0, Is 2
e ),

s 2
e is the variance of random errors. The heritability was

calculated as follows:

h2 = s 2
g = s 2

g + s 2
e

� �
For binary traits (incidence of hypermelanosis), the

generalized linear mixed model (GLMM) was used as follows:

logit y*ð Þ = Xb + Zg + e (2)

where y* indicates binary traits, logit(y*) =log(p/(1-p)), and p is

the frequency of incidence of hypermelanosis.

h2* = s 2
g = s 2

g + p2=3
� �

The mixed model equations of models (1) and (2) are as

follows:

X0X X0Z

Z0X Z0Z+lG-1

" #
b̂

ĝ

" #
=

X0y

Z0y

" #

and

X0X X0Z

Z0X Z0Z+lG-1

" #
b̂

ĝ

" #
=

X0logitðy*Þ
Z0logitðy*Þ

" #
TABLE 1 Single nucleotide polymorphism (SNP) information.

Chromosome Number of SNPs Span of SNPs (kb) Distance between adjacent markers (kb)

1 7509 34487.4 4.593

2 4800 20030.8 4.173

3 3534 16223.2 4.591

4 4623 19946.0 4.315

5 4724 19260.0 4.077

6 4028 18806.6 4.669

7 4069 13800.9 3.392

8 6456 29837.1 4.622

9 4565 19601.2 4.294

10 4425 20990.2 4.744

11 4001 20448.8 5.111

12 3822 18371.2 4.807

13 4112 21863.8 5.317

14 5096 28818.0 5.655

15 4333 20005.4 4.617

16 3973 18745.1 4.718

17 3475 16409.4 4.722

18 3261 15166.4 4.651

19 3655 17741.8 4.854.

20 3514 15226.5 4.333

W 241 15998.6 66.384

Z 1454 21794.5 14.98

Total 89670 443572.8 4.947
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Variance components were estimated using the DMU

software (Madsen and Jensen, 2013). For binary traits, the

residual variance was restricted as a unit. Ten-fold cross

validation was performed to study the reliability of the

genomic predictions (Li et al., 2017; Zhang et al., 2020).
2.3.2 Genome-wise association study
The model of the genome-wise association study for

hypermelanosis area (3) and hypermelanosis incidence (4) is as follows:

y = Xb + Zg + bm + e (3)

logit y*ð Þ = Xb + Zg + bm + e (4)

where m is the vector of genotypes of each marker, which

were coded as 0 for homozygotes of the first allele, 1 for

heterozygotes, and 2 for homozygotes of the alternative allele,

and b is the effect of the corresponding marker.

To improve the computation speed, a method similar to that

of the efficient multilocus mixed model was used (Segura et al.,

2012). First, the corresponding phenotypic covariance matrix for

the model was calculated as: V = s 2
gG + s 2

e I. Subsequently, the

linear mixed model was transformed to a simple linear

regression via Cholesky decomposition of the phenotypic

covariance structure V using the following equations:

For continuous traits:

V−1
2y = b V−1

2m
� �

+ e

For binary traits:

 V−1
2 logit y*ð Þ = b V−1

2m
� �

+ e

b is equivalent to that in the mixed model and can be quickly

tested using a simple linear model.

After a genome scan, critical threshold values were

determined (Piepho, 2001).Ten-fold cross validations were
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performed for each model, the 10% individuals were set as

missing, and predicted using the other 90% individuals, the

correlation between real values and predicted values were used

for the model evaluation. The cross validation was replicated

50 times.
3 Results

3.1 Descriptive statistics

For individuals with an incidence of hypermelanosis in the

eyeless side, the portion of pigmented area accounted for the

whole eyeless side ranged from 0.004–0.714. More than 70% of

the individuals showed pigmentation in less than 10% of the area

on the eyeless side (Figure 1).
3.2 Genomic selection

The results obtained from hypermelanosis analysis using the

GLMM was slightly different from those using the GBLUP

models. The heritability calculated using the GLMM model

was 0.16 (for binary traits) and that calculated using the

GBLUP model was 0.21 (for continuous traits). Cross-

validation showed that the reliabilities of genomic prediction

for hypermelanosis area (continuous trait) and incidence (binary

trait) were 0.29 ± 0.14 (mean and standard deviation) and 0.27 ±

0.11, respectively (Table 2).
3.3 Genome-wide association study

With model (3), eight SNPs were significantly associated

with the hypermelanosis area and were distributed on

chromosomes 4, 5, 6, 7, 9, 11, and 20 (Figure 2A). Although
FIGURE 1

Distribution of hypermlanosis area in Chinese tongue sole.
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the two SNPs on chromosome 4 were very close, no data

suggested that they were present on the same locus because

the correlation between the genotypes of these two SNPs was

only 0.3. With model (4), only one locus was significantly

associated with hypermelanosis incidence and was located on

chromosome 9 (Figure 2B) at a different position from the locus

associated with hypermelanosis area present on the same

chromosome. Nearly all loci explained approximately 10% of

the total phenotypic variance (Table 3), indicating that they were

potential quantitative train loci.
Frontiers in Marine Science 05
4 Discussion

In contrast to features in ornamental fish, abnormal body

color is an undesirable characteristic in flatfish aquaculture

(Padowicz and Harpaz, 2007; Lewbart 2016; Atsumi and

Koizumi, 2018). Hypermelanosis is influenced by genetic and

epigenetic factors, as well as environmental conditions, such as

nutrition (Haga et al., 2004), tank color (Matsumoto and Seikai,

2008), and density (Takahashi, 1994). Genetic selection is a

fundamental and effective approach for breeding Chinese tongue
TABLE 2 variance component estimation and cross validation of hypermelanosis.

Trait Model -2*logLik s 2
g s 2

e h2 reliability

Area ratio GBLUP -449.683 45.068 165.342 0.214 0.29 ± 0.14

Incidence GLMM -137.704 0.639 3.290 0.163 0.27 ± 0.11
fro
A

B

FIGURE 2

Genome-wide association study of hypermelanosis of Chinese tongue sole. (A): hypermelanosis area; (B): hypermelanosis incidence *:the
negative logarithm of P-values at the corresponding position.
ntiersin.org

https://doi.org/10.3389/fmars.2022.1002292
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yao et al. 10.3389/fmars.2022.1002292
soles with preferred body color. Based on the data of a large

number of families and generations, the heritability of

hypermelanosis in the eyeless side is reported to be moderate

(Liu et al., 2016; Li et al., 2021) in the Chinese tongue sole. In our

study, the heritabilities were both low for the hypermelanosis

area and incidence, which were significantly lower than those

reported previously. It is usually considered that heritability

estimated using genomic markers is lower than that estimated

from pedigree, that is, the so-called missing heritability (Eichler

et al., 2010). It is possible that certain markers in linkage

disequilibrium with hypermelanosis had not been genotyped

using our method. Considering the heritable variation,

hypermelanosis may be a complex quantitative trait with low

or moderate heritability. Genetic evaluation using genomic

markers is a feasible and effective approach to decrease the

incidence and extent of hypermelanosis.

Usually, a quantitative trait has a higher reliability than that

of a binomial trait (Bangera et al., 2017). However, in our study,

either the GBLUP or the GLMM model was used for genomic

selection and they had similar reliabilities. Since the relationship

between the genomic prediction accuracy (r) and the reliability

(R) is r=R/h , the genomic prediction accuracies for both

hypermelanosis area ratio and incidence were approximately

65%, indicating the feasibility of genomic selection and a

possible long duration for improvement.

The use of markers associated with traits of interest is an

effective approach to increasing genetic merits, and marker-

assisted selection has been used successfully in few species (Yue,

2014). In the present study, several potential loci were found to

be associated with hypermelanosis in the Chinese tongue sole.

Among these loci, SNPs M17616 and M24115 were located in an

intergenic region, whereas the others were located in intronic

regions. The flanking genes of SNP M17616 are AP-1 complex

subunit sigma-3 (ap1s3) and potassium voltage-gated channel

subfamily E member 4 (kcne4), where ap1s3 encodes a member

of the adaptor-related protein complex 1 and ap1s3 knockout
Frontiers in Marine Science 06
disrupts keratinocyte autophagy and causes pustular skin disease

(Mahil et al., 2016; Mössner et al., 2018); kcne4 regulates

potassium voltage-gated channel stability (Solé et al., 2009).

The flanking genes of SNP M24115 have not been

characterized. SNP M25199 was located in an intronic region

of gene alpha-kinase 3a, which was predicted to enable ATP-

binding activity and possibly be involved in cardiac muscle cell

development. SNP M49303 was located in an intronic region of

gene bicaudal D homolog 2, which encodes an adaptor protein

that functions as an intracellular cargo transport cofactor that

regulates the microtubule-based loading of cargo onto the

dynein motor complex. SNP M29246 is located in the intronic

region of solute carrier family 16 member 10 gene, which

mediates the Na(+)-independent transport of aromatic amino

acids across the plasma membrane; it is associated with the

occurrence of melanoma in skin (He et al., 2020). Notably, the

adjacent gene ribosome production factor 2 homolog is

associated with vitiligo, which occurs when the skin lacks

normal melanocytes and leads to color patches, which is very

similar to the appearance of hypermelanosis (Derakhshani et al.,

2020). SNP M43242 was located in an intronic region of gene

SH3 and PX domains 2Aa, which was predicted to enable

superoxide-generating NADPH oxidase activator activity and

it plays a role in neural crest cell migration and posterior lateral

line neuromast primordium migration (Gallardo et al., 2015).

SNPs M17863, M40330, and M84485 were located in the

intronic regions of LOC103377888, LOC103383278, and

LOC103395801, respectively; however, these loci are

uncharacterized and no evidence showed that they and their

nearby genes were associated with skin disease.

Hundreds of genes have been found to be differentially

expressed between tongue soles with normal skin and

hypermelanosis (Li et al., 2022); however, no shared gene was

found in our study, indicating the complicated genetic mechanism

of hypermelanosis in the tongue sole. The genes activating

transcription factor 4, inositol 1,4,5-trisphosphate receptor type

2, and adenylate cyclase type 6 have been found to be associated

with hypermelanosis in Japanese flounder (Peng et al., 2019;

Zhang et al., 2021); however, they were not detected in tongue

sole, indicating that the genetic mechanism of hypermelanosis in

Chinese tongue sole differed from that in Japanese flounder

because the color of hypermelanosis in Japanese flounder is

dark, whereas it is brown in Chinese tongue sole.
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TABLE 3 SNPs associated with hypermelanosis in Chinese tongue
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