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A Seasonal Undercurrent Along the
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In the North West Shelf region of Australia is a surface current (Holloway Current),

which flows southwestward along the shelf break. This paper describes a seasonal

undercurrent below the Holloway Current. A 5-day climatology is constructed from the

output of an eddy-resolving oceanic general circulation model (OGCM). A seasonal

northeastward-flowing undercurrent is found on the upper continental slope during the

climatological April–May. This undercurrent reverses during February–March. During its

annual cycle, the phase of the undercurrent tends to propagate southwestward and

upward. The annual frequency dominates, but the positive and negative phases of

the undercurrent are not symmetric in the yearly cycle because of the contributions

from the semi-annual and 1/3-annual components. We propose a hypothesis that

this undercurrent is a beam of coastal trapped wave (CTW). As an initial attempt to

assess the plausibility of this hypothesis, we construct an idealized linear coastal-trapped

wave (CTW) solution driven by an idealized harmonic meridional winds at the annual

frequency. The solution takes the form of a beam originating from the forcing region on

the continental shelf and propagating offshore and southward. When it emerges on to

the continental slope, it takes the form of an undercurrent. This idealized solution shares

several properties with the undercurrent in the OGCM despite several discrepancies.

Keywords: eddy-resolving oceanic general circulation model, annual cycle, North West Shelf, eastern boundary,

coastal trapped waves

1. INTRODUCTION

Along the northwest and west coasts of Australia flow several coastal currents [see the review paper
by Phillips et al. (2021) and references therein]. The Leeuwin Current flows poleward along the west
coast; it is a permanent current with well known annual variability. One of the sources of this surface
current is the Holloway Current (D’Adamo et al., 2009), which flows southwestward along the shelf
break in the North West Shelf region of Australia and extends from the sea surface to ∼100m
(Brink et al., 2007; Marin and Feng, 2019). It is strongest during austral autumn (D’Adamo et al.,
2009; Bahmanpour et al., 2016; Katsumata and Ridgway, under review). Marin and Feng (2019)
examined the semi-annual and intraseasonal variabilities of the Holloway Current and reported
that the variabilities are consistent with the propagation of 2nd-mode and 1st-mode coastal trapped
waves, respectively.

Below the Leeuwin Current along the west coast, there is a well known equatorward
undercurrent, called the Leeuwin Undercurrent (LUC), which hugs the continental
slope and extends from 200 to 800m (e.g., Furue et al., 2017). In the annual average,
the LUC leaves the continental slope, veering offshore westward or northwestward
(Duran, 2015; Furue et al., 2017). Its annual variability, if any, is not known.
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The vertical structure of the coastal currents on the northwest
coast is not well known either. One of Brink et al.’s (2007)
hydrography-based longshore velocity plots during mid-June to
mid-July shows a subsurface core of northeastward (opposite to
the surface current) velocity hugging the continental slope (their
Figure 4). Bahmanpour et al.’s (2016) monthly-mean mooring
data shows a hint of a subsurface counter flow during May (their
Figure 4). A plot from a high-resolution numerical model of
Marin and Feng (2019) sometimes shows a similar subsurface
counter flow (their Figure 12). One potential mechanism to
cause an undercurrent is Kelvin waves or coastal trapped
waves (e.g., McCreary, 1981a; Samelson, 2017). For the Leeuwin
Current, the poleward advection of lighter water by the surface
current can cause an equatorward undercurrent by thermal wind
shear (Benthuysen et al., 2014; Schloesser, 2014). This type of
undercurrent sits above or in the upper part of the pycnocline.

1.1. Coastal Trapped Waves and Kelvin
Waves
Pressure disturbances near the coast in a stratified ocean away
from the equatorial region propagate along the coast as coastal
Kelvin waves or coastal trapped waves. Since these waves
propagate vertically as well as along the coast, they can drive
oscillatory undercurrents (Nethery and Shankar, 2007).

The terminology is often confused but here in this paper, we
call those waves strongly affected by the bottom slope “coastal
trapped waves (CTWs)” and the other, simpler type on which the
bottom slope has negligible impacts, the coastal “Kelvin waves”
(Wang and Mooers, 1976; Hughes et al., 2019).

Both types of wave are trapped to the coast or to the
continental shelf and slope and propagate with the coast on
their left hand side in the southern hemisphere (e.g., Gill, 1982,
section 10.4, for Kelvin wave; e.g., Brink, 1991, for CTW). They
are often viewed as a superposition of “modes,” each with a
fixed crossshore–depth structure and a phase speed of longshore
propagation depending on the background stratification and
bottom topography (e.g., McCreary, 1981b, for Kelvin wave; e.g.,
Brink, 1991, for CTW). A typical phase speed of the gravest
“baroclinic” mode is ∼2–3m/s around Australia (e.g., Chelton
et al., 1998, for Kelvin wave; e.g., Church et al., 1986a, for CTW),
the speed of CTW strongly depending on the bottom topography.

A number of past studies on Australian coastal currents
utilized a linear CTW formulation (see section 2.3 below). For
example, Church et al. (1986a,b), Freeland et al. (1986),Merrifield
and Middleton (1994), and Maiwa et al. (2010) examined
velocity data from mooring arrays or numerical models on the
continental shelf and slope of the east coast or south coast of
Australia and found that some fraction of the variability over time
scales of ∼10 d agrees with theoretical CTW modes (section 2.3
below). At intraseasonal to annual time scales, Ridgway and
Godfrey (2015) and Marin and Feng (2019) examined observed
variability of sea-level anomaly and longshore velocity anomaly,
respectively, and interpreted them as propagation of CTWs.

1.2. Trapping to the Boundary
When the Coriolis parameter varies in the longshore direction
(the planetary beta effect), the Kelvin waves on the eastern side of

the basin propagate westward away from the coast as a Rossby
wave and do not take the form of a trapped wave when the
frequency of the wave is lower than a crtical frequency, that is,
when ω < cjβ cos θ/(2|f |), where ω is the frequency of the
Kelvin wave, cj is the phase speed of gravity wave for the jth
vertical mode, and θ is the angle the coast line makes with due
north (Clarke and Shi, 1991). For each given frequency, we often
express this result in terms of the “critical latitude,” which is the
latitude yc that satisfiesω = cjβ(yc) cos θ/[2|f (yc)|]. For example,
the 1st-mode Kelvin wave at the annual frequency is trapped to
the coast only poleward of 50◦ or 40◦ for a meridional or 45◦-
slanted coast line, assuming that c1 ≈ 3m/s, which is a typical
value offshore of the northwest coast of Australia (Chelton et al.,
1998). For this reason, coastally-trapped low frequency flows can
exist in a flat-bottom ocean only when dissipation arrests high-
order modes (e.g., McCreary, 1981a) or when mesoscale eddies
trap the flows (Cessi and Wolfe, 2013).

When the continental shelf and slope are influential, however,
there is no clear answer as to whether or not CTWs remain
trapped to the coast equatorward of the critical latitude. To the
best of my knowledge, there has not been analytic solutions to the
linearized system (described in Appendix A) with planetary beta
except for a steady-state solution discussed below. Clarke and
Gorder (1994) considered the poleward propagation of ENSO
signal with bottom topography in numerical solutions to the
linear system and concluded that friction is necessary for the
signal to be trapped to the eastern boundary equatorward of the
critical latitudes of the ENSO frequencies. It is, however, not clear
whether or not coastal trapped signals remain without friction
when they are generated at the coast. Samelson (2017) developed
a theory of how low-frequency variability propagates poleward
as a CTW along an eastern boundary and part of their energy
leaves the coast as planetary Rossby waves. Furue et al. (2013)
obtained analytic solutions of inviscid steady flow trapped to the
continental slope along the eastern boundary to a 1 1

2 -layer system
on a beta plane, demonstrating that inviscid longshore steady
flow can exist thanks to the topographic beta of the slope.

1.3. Coastal Undercurrents
A pair of a surface equatorward current and subsurface poleward
flow along an eastern boundary is a ubiquitous feature for
eastern-boundary upwelling systems (e.g., Samelson, 2017). In
the South Indian Ocean, a similar pair is found, the Leeuwin
Current and the Leeuwin Undercurrent, but with opposite
signs: the surface and subsurface currents flow poleward and
equatorward, respectively. This difference is because it is a
downwelling regime due to the strong surface steric gradient
(Thompson, 1984, 1987; Godfrey and Ridgway, 1985).

In McCreary’s (1981a) solutions in an flat-bottom ocean, not
only the currents are trapped to the coast as stated above but
also they form a baroclinic pair similar to the observed flows
along the eastern boundary. This mechanism requires perhaps
unrealistically large vertical mixing and also the lateral boundary
conditions for this flat-bottom model may not be realistic in the
presence of the continental shelf and slope (Samelson, 2017).

Samelson (2017) proposes an inviscid model that produces a
pair of steady coastal currents along the eastern boundary similar
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to observation. This solution is constructed by matching a fast
CTW response on an f plane on the continental shelf with a slow
quasi-geostrophic response on a β plane on the continental slope.

1.4. Present Study
In this study, we construct a 5-day climatology from a 25-year
output of an eddy-resolving OGCM and describe a seasonal
undercurrent trapped to the continental slope of the North West
Shelf region of Australia. We propose a hypothesis that this
undercurrent is a beam of CTW. As an initial attempt to assess
the plausibility of this hypothesis, we construct a solution to
an idealized linear CTW model on an f plane, which shows an
undercurrent that has some similarity to the undercurrent in the
OGCM.

The rest of this paper is structured as follows. The next section
(section 2) describes the OGCM data and an observational
dataset, presents the methods of analysis, and then briefly
describes the idealized CTW model; details of the model are
found in Appendix A. The appendix also discusses some salient
properties of the idealized solution which are not directly relevant
to the comparison with the OGCM.

Section 3 first describes the seasonal undercurrent. The
dominant temporal Fourier components are then examined to
elucidate the temporal-spatial characteristics of the flow and
the propagation of the signals at the dominant frequencies.
The section then shows solutions to the idealized linear model
and discusses its similarities to, and differences from, the
undercurrent in the OGCM. Section 4 finally summarizes the
results and discusses them for potential future extensions of the
present study. Supplementary Material records minor details of
the methods and also includes figures which are not essential to
this paper but can be useful to the interested reader.

2. DATA AND METHODS

2.1. Data
2.1.1. OGCM

Details of our model, called OFES2, are found in Sasaki et al.
(2020) and the data is available from the OFES homepage1.
The model domain extends from 76◦S to 76◦N; the model’s
resolution is 1/10◦ horizontally and it has 105 levels in the
vertical with 55 levels in the upper 500m. It is a variant of
MOM3 (Pacanowski and Griffies, 2000) with a parameterization
of vertical mixing based on St. Laurent et al. (2002) and a mixed
layer parameterization of Noh and Kim (1999) and is driven by
sea-surface fluxes of momentum, heat, and salt determined using
the bulk formulae of Large and Yeager (2004) on the basis of
re-analysis product called JRA55-do (Tsujino et al., 2018).

The bottom drag coefficient is 2.5 × 10−3 (nondimensional).
The coefficients of lateral biharmonic viscosity and diffusivity
vary latitudinally with the cube of the zonal grid spacing (Smith
et al., 2000) and are 27× 109 and 9× 109m4/s at the equator,
respectively (Masumoto et al., 2004). Only the upper 800m is
processed to save computational time (The deepest model layer

1https://doi.org/10.17596/0002029. The server is temporarily out of service as of

this writing. The service will resume in the near future.

included spans from about 750m to 784m, but we use “800m”
as a nominal lower limit for convenience). This depth range was
chosen to accommodate both the Leeuwin Current (0–200m)
and the Leeuwin Undercurrent (200–800m; Furue et al., 2017).

The ouptputs are daily snapshots, from which we construct
a 5-day or pentad climatology over the 25-years of 1992–2016.
Although the actual mean length of a year is slightly longer than
365 d, we compress the time axis and treat the mean year as
365 d. There are 73 pentads in the climatological year and the
pentad data are defined at the center of each pentad. Details are
found in Supplementary Material. This data analysis is inspired
by Ridgway and Godfrey (2015), who show a set of monthly plots
from a climatological sea level to infer the propagation of coastal
trapped waves around Australia. Their plots, however, suggest
that to see details of the propagation, the temporal resolution
would have to be much higher than monthly. In the present
study, we choose a 5-day climatology because 1) as can be seen
below, a 5-day interval well resolves the propagation of CTWs,
2) 73, 5, and 1 are the only natural numbers that divide 365
evenly, and 3) 5-day climatology would require much less storage
and processing time than 1-day climatology.

We also apply the standard temporal Fourier expansion on the
climatological data. For completeness, we record the formalism
of the Fourier expansion we use in Supplementary Material.

2.1.2. CARS Aus8

For comparison with OFES2, we use a gridded climatological
dataset, called CARSAus8, of temperature and salinity. It is a 1/8◦

version of CARS (Dunn and Ridgway, 2002; Ridgway et al., 2002).
Hydrographic profiles, including Argo, up to the end of 2012
are included in the production of the product2. Thanks to the
many high-resolution crossshore profiles that are also included
(Ridgway et al., 2002), CARS Aus8 resolve the signatures of
narrow coastal currents such as the Leeuwin Current (LC) and
Leeuwin Undercurrent along the west coast of Australia (Furue
et al., 2017) and the Leeuwin Current Extension (LCE) and
Zeehan Current (ZC) along the south coast of Australia and the
west coast of Tasmania (Duran et al., 2020). The climatological
dataset includes annual mean, annual harmonic, and semi-
annual harmonic. The timeseries reconstructed from these three
components are shown to be generally consistent with other in-
situ observations for the near surface coastal currents (LC, LCE,
ZC, etc.) mentioned above (Furue et al., 2017; Duran et al., 2020).

2.2. Methods
2.2.1. Rotation of Coordinates

To simplify the analysis and discussion of the flow along
the northwest coast of Australia, we introduce a coordinate
system which is rotated clockwise by 45◦ (Figure 1), inspired
by Katsumata and Ridgway (under review). Here we treat the
longitude-latitude coordinates as if they were Cartesian and then
the transformation is simply

[

xr − xo
yr − yo

]

≡
[

cos 45◦ − sin 45◦

sin 45◦ cos 45◦

] [

x− xo
y− yo

]

, (1)

2http://www.marine.csiro.au/atlas/
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FIGURE 1 | Bottom topography from the OGCM (shading), the 200-m isobath

(red curve with dots), and the rotated coordinates. See the text for the

explanations of the latter two. The numbers along the yr axis are the values of

yr. This map is plotted in such a way that longitudinal and latitudinal intervals

have the same lengths on the paper, so that the rotated y axis makes 45◦ on

the paper.

where x and y are the original longitude and latitude, xr and yr

are the rotated longitude and latitude, and (xo, yo) ≡ (113.85◦E,
21.95◦S) is the pivot of the rotation. The pivot is the location of
the 200-m isobath (see section 2.2.2) at 22◦S. Note that the two
coordinate system shares the pivot (xo, yo) in that (x, y) = (xo, yo)
implies (xr, yr) = (xo, yo) according to (1). The rotated latitude is
marked in Figure 1 along the yr axis through the pivot.

We sometimes use a notation like 18◦Sr to denote yr = −18◦,
for example. The relation between this rotated latitude and the
real latitude is obtained along the xr = xo axis by solving (1) for
y when xr = xo, as y = yo + (yr − yo)/

√
2.

When the original points (x, y) form a square grid (where
1x = 1y), the transformed points (according to formula 1) are
shown to also form a square grid with 1xr = 1yr = 1x/

√
2.

The original gridpoints fill only half of the xr-yr gridpoints. The
remaining half are determined by horizontal interpolation.

We accordingly define rotated velocity components ur and
vr and, for simplicity, call vr the “longshore velocity” in the
North West Shelf region (defined in this paper as equatorward of
22◦S). In the west coast region, v is called the longshore velocity.
When discussing the flow field along the northwest coast, we say
“northeastward” and “southwestward” for longshore directions.

2.2.2. 200-m Isobath

As a reference of analysis, we define a curve that approximately
follows the 200-m isobath (red curve in Figure 1). We first locate
the scalar gridpoints of the model whose depths are closest to
200m [Since themodel uses partial bottom cells (Pacanowski and
Griffies, 2000), the model’s topography is as close to the real one
at the given horizontal resolution]. We then manually remove
points in such a way as to ensure that only one point exists for
each y along the west coast (poleward of 22◦S) or for each yr along
the northwest coast (equatorward of 22◦S).

Along the west coast of Australia, this manual procedure was
not necessary because the 200-m isobath is relatively regular
and largely oriented north–south. Along the northwest coast, in
contrast, the 200-m isobath is complex (Figure 1), necessitating
some manual removal. In particular, the removal of the concave
shapes of the 200-m isobath at about 123◦E, 13◦S and 125◦E, 12◦S
result in large jumps in xrc(y

r); see the jumps in the red curve in
the xr direction northeast and southwest of yr = −8◦ in Figure 1.

As will be seen below, the main currents focused on in this
paper exist around ∼150m depth but we still choose the 200-m
isobath as a reference because this isobath is more “stable” along
the northwest coast. Shallower isobaths migrate wildly in the
crossshore direction and are not always representative of the
inshore edge of the continental slope.

To represent the flow along and on the continental slope, we
take average between xrc − 0.5◦ and xrc + 0.2◦ as this is a typical
width of the current we analyze below. For convenience, we call
this averaging band the “xc strip.”

2.3. Linear Coastal-Trapped-Wave Model
To compare with the OFES2 results, we use an idealized linear
model for coastal trapped waves (CTWs). In this section, we
present only an outline of the model and its configuration; details
are found in Appendix A. The original formalism is developed
in a series of papers including Brink and Allen (1978) and Brink
(1982b); the formalism is summarized and comprehensively
discussed in Clarke and Brink (1985) and a concise summary is
found in the appendix of Church et al. (1986a).

For this model, we take y to be the longshore (northeastward)
coordinate, x ≤ 0 to be the crossshore (southeastward)
coordinate with x = 0 at the lateral boundary, and z to be the
vertical. We assume a horizontally-uniform background density
stratification and linearize the primitive equation around the
state of no motion with this stratification; we further make the
“long-wave” assumption (Appendix A). We ignore friction for
simplicity; potential impacts of friction are briefly discussed in
section 4.3. We consider curl-free longshore winds only and
assume that the Coriolis parameter is uniform.

Then, the set of equations has coastally-trapped wave
solutions in the form of

p =
∑

j

Fj(x, z)φj(y, t), (2)

where φj is the solution to

[−(1/cj)∂t + ∂y]φj = bjτ
y(y, t). (3)

The solution to the latter equation is a wave that is forced
by τ y and propagates in the negative y direction at a speed
of cj > 0. The “coupling coefficient” bj, determined by
the shape of the “mode” Fj(x, y), represents how strongly the
wind forces mode j. The “modes” Fj are the solutions to a
two-dimensional eigenvalue problem, which depends on the
background stratificationN(z) and the bottom profile z = −h(x);
and cj are the corresponding eigenvalues.

We numerically solve this eigenvalue problem using Brink
and Chapman’s (1987) Fortran program, whose latest version
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(updated in 2007) is available from https://www.whoi.edu/
cms/files/Fortran_30425.htm, with a representative background
stratification and a smoothed bottom topography of a part of the
northwest coast of Australia (Appendix A). Themaximum depth
is set to 2,000m.

We use 90 gridpoints in the vertical. The horizontal (in x)
gridspacing is about 6.6km, there are 100 gridpoints in x, and
h(x) reaches the prescribed maximum depth (2,000m) at x ≈
−390 km. The artificial offshore boundary (x ≈ −660 km) is
sufficiently far from this bottom edge (x ≈ −390 km) of the
continental slope for all the coastal modes to sufficiently decay
until the artificial boundary is reached (Figure A2 in Appendix),
a necessary condition for the accuracy of the calculated modes
(Brink and Chapman, 1987). We obtain modes 1–24, all of
which are sufficiently resolved both in the horizontal and vertical
(Figure A2 in Appendix).

We will use a simple oscillatory wind τ y ∝ eιωt at a given
frequency over a limited latitude range L > y > 0, calculate
the y-t structure of the response of each mode according to (3),
and obtain the total solution as a superposition of the modes
according to (2).

The original CTW model is somewhat more general
(Appendix A.4) than described above but we make the
simplifications as our aim of using this model is not a
quantitative comparison with the OGCM flow field but
a qualitative interpretation of the latter without huge
quantitative disagreement.

3. RESULTS

3.1. Horizontal Structure
Figure 2 shows the mean flow for the “surface” (0–200m) and
“subsurface” (200–800m) layers.

From mid March through May, the southwestward-flowing
Holloway current is clearly seen (not shown) along or near the
shelf break of theNorthWest Shelf region. This seasonality agrees
with D’Adamo et al.’s (2009) description. The current’s annual
mean (Figure 2A) is similar to that of Marin and Feng (2019)
(Supplementary Material). As noted in the introduction, the
mean Leeuwin Undercurrent (LUC) leaves the coast of Australia
at 22◦S and flows westward or northwestward in a broad current.
That is also the case for OFES2 (Figure 2B).

During the annual cycle, however, the undercurrent appears
to extend to 13◦S along the coast during May 8 to July 12
(Figure 3). On closer examination, there is a coastal branch
for this undercurrent, which peaks around May 13 (Figure 3).
Shortly after this peak, an offshore branch intensifies and peaks
around June 17 (not shown). As will be shown below, the inshore
branch of the undercurrent is a narrow longshore flow hugging
the continental shelf just below the shelf break on the northwest
coast. The profile of the continental shelf and continental slope
varies much more than along the west coast but the shelf break is
systematically shallower just below at 100m. For this reason, the
vertical averages for the upper and lower layers for Figure 3 are
separated at 100m.

Figure 4 compares density anomaly between CARS and
OFES2. It is interesting that there is a very thin strip of density

anomaly along the continental slope of the northwest coast
(Figure 4A). The overall pattern of density anomaly is roughly
similar to that from CARS Aus8 but CARS does not include the
narrow density anomaly. CARS well resolves the mean Leeuwin
Current (LC), the mean Leeuwin Undercurrent (LUC), and the
annual cycle of the LC along the west coast of Australia (Furue
et al., 2017), but the narrow signal hugging the continental slope
in theNorthWest Shelf region is not visible in CARS (Figure 4B),
probably because the signal is too narrow or because observations
included to construct CARS are too scarce to resolve this flow,
whose annual-mean strength is small (see below), or both. We
have examined other depths in CARS (not shown) but did not
find the seasonal signal we see in OFES2. There is, however,
some support for the existence of the undercurrent: several
past mooring observations show a very narrow undercurrent-
like structure (Introduction) and another eddy-resolving model
shows a similar undercurrent to our model’s (see below).

3.2. Vertical Structure
Figure 5 shows the anomaly of vr across the 13◦Sr (15.6◦S) and
19◦Sr (19.9◦S) sections (see the schematic map, Figure 1, for the
“rotated latitude”). The northeastward-flowing undercurrent is
located below the shelf break within the pycnocline and hugs the
continental slope. In the 19◦Sr section, the surface southwestward
flow (the Holloway Current) has a clear narrow core above
the undercurrent. In contrast, the surface core is weak in the
13◦Sr section and the Holloway Current is broad. Unlike the
undercurrent, the Holloway Current is not trapped to the shelf
break or to the continental slope (Figure 3A), sometimes moving
on to the continental shelf and sometimes wandering offshore. Its
width also varies. It is interesting that an eddy-resolving oceanic
re-analysis, HYCOM (Cummings and Smedstad, 2013; Helber
et al., 2013), shows a similar undercurrent at a similar timing
(Supplementary Figure S4).

During February–March appears a negative (southwestward)
undercurrent core (not shown) whose structure is similar to the
positive core. This discussion has been on the annual anomaly
field but in the raw velocity field, both the positive and negative
undercurrent cores are clearly visible (not shown) as the annual
mean velocity is weak here (see below).

The y-z structure of this undercurrent is depicted along
the 200-m isobath in Figure 6. The positive anomaly of
the “longshore” velocity appears to spread from ∼1◦Sr (7◦S)
counterclockwise along the continental slope down to at least
34◦S (We will later discuss whether this is a continuous feature
or not). South of 22◦S, the vertical extent of the positive anomaly
rapidly grows southward, and this depth range is comparable to
that of the LeeuwinUndercurrent. In the NorthWest Shelf region
(north or northeast of 22◦S), the undercurrent is shallower and its
vertical extent is much smaller. Note the gradual deepening of the
core of the undercurrent from, say, ∼180m at 10◦Sr to ∼210m
at 20◦Sr.

A similar structure exists in the potential density anomaly
from OFES2 (Supplementary Figures S2B,D). We have made
comparable plots for the potential-density anomalies from CARS
Aus8. These plots (Supplementary Figures S2A,C), however, do
not show similar structures to OFES2’s although the overall
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FIGURE 2 | Mean flow vertically integrated (A) over 0–200m and (B) over 200–800m from OFES2. The color shading shows the “longshore” component of the

transport vector, that is, V poleward of 22◦S and V r equatorward of it. To reduce the clutter, the arrows are scaled by the square root of the length: U/|U|1/2. The
green curve approximately follows the 200-m isobath (section 2.2.2).

FIGURE 3 | Velocity anomaly (pentad annual cycle minus annual mean) vertically integrated (A) over 0–100m and (B) over 100–800m on May 13. For this plot, the

division between the upper and lower layers is at 100m, as the separation between the surface current and the undercurrent is located roughly at this depth. See text.

To reduce the clutter, the arrows are scaled by the square root of the length: U/|U|1/2. The green curve approximately follows the 200-m isobath (section 2.2.2).

larger-scale structure is roughly similar. This result is consistent
with the lack of density anomaly in the map for CARS Aus8
(Figure 4B).

3.3. Temporal Structure
If one looks at the animation (not shown) of Figure 6 over the
climatological year, one notices that the phase lines generally
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FIGURE 4 | Potential density anomaly (A) for OFES2 and (B) for CARS Aus8 at 270m on May 13. This depth is chosen because the density anomaly associated with

the northeastward undercurrent is largest (Figure 5B). The green curve approximately follows the 200-m isobath (section 2.2.2).

FIGURE 5 | Annual anomaly of vr (shaded) across the (A) 13◦Sr (15.6◦S) and (B) 19◦Sr (19.9◦S) sections on May 13. The green contours show potential density at an

interval of 0.2σθ .

migrate upward and southwestward below the shelf break (100–
150m) along the northwest coast. Figure 7 shows Hovmöller
diagrams at a fixed rotated latitude and at a fixed depth. Below
the shelf-break depth (∼150m; see Figure 5B), phases propagate
upwards from 300 to 150m in both velocity and density fields. In

density there appears to be downward phase propagation above
the shelf break, but this is probably a false impression due to the
winter deepening and summer shoaling of the mixed layer (See
Figure 5 for the mixed layer depth during May). At 160m phase
propagation is southward (Figures 7C,D). Its speed is roughly
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FIGURE 6 | Annual anomaly along the shelf break on May 13 of longshore velocity averaged over the xc strip, that is, between xc − 0.5◦ and xc + 0.2◦, where xc(y) is

the location of the 200-m isobath (see section 2.2.2). The North West Shelf region ( y > 22◦S) and the west-coast region ( y < 22◦S) are plotted on the left and right,

respectively. Green numbers and green dashed vertical lines indicate true latitudes along the xr = 0 axis and the black numbers above the plot are the rotated

latitudes yr. See the text and Figure 1.

0.2m/s, which is indicated by the green line. As discussed later,
the region of southward and upward phase propagation deepens
southward, reminiscent of the downward-southward slope in
Figure 6.

3.4. Fourier Components
Figure 8 shows the spectrum of longshore velocity over the
region where the seasonal undercurrent is strong on the
continental slope along the northwest coast. The annual signal is
the strongest followed by the 1/2-annual (semi-annual) and the
1/3-annual. The mean flow, which is negative (southwestward,
not shown), is less than 1 cm/s. In what follows, we focus on
Fourier modes n = 1, 2, 3.

Figure 9 shows the amplitude of longshore velocity for the
n = 1–3 modes. South of 9◦Sr (12.8◦S) and below the surface
maximum, there is a band of high amplitude that corresponds
to the seasonal undercurrent shown in Figure 6. The amplitudes
of higher harmonics are generally smaller and the cores shift
to shallower depths south of 9◦Sr. The phase field for the
annual mode (Figure 9D) shows relatively smooth upward and
southwestward propagation south of 9◦Sr. At∼300m, phase θ ∼

0 (indicated by a thick contour line) and θ increases upwward
past 90◦ (thin solid line) and then past 180◦ (thick line), which
is the same as −180◦, and keeps increasing from −180◦ past
−90◦ (thin dashed line). In contrast, there is a sharp jump in
phase across 9◦Sr. The other two modes show a similar vertical
propagation south of 9◦Sr.

This propagation is further visualized using Hovmöller
diagrams (Figure 10). The vertical propagation (Figures 10A–C)
in the undercurrent range (below ∼150m) is clear. The annual
component propagates slower than the other two modes. The
nodal depth (where the variability is minimal) shifts somewhat
upwards for higher frequencies. Above the nodal depth, the
propagation is still upwards for the annual mode, whereas it
is downward for the 1/2-annual, and it is not clear for the
1/3-annual.

The annual component shows a southwestward propagation
(Figure 10D) at a speed of about −0.2m/s from 9◦Sr to 20◦Sr.
The speed again appears to be smaller than those of the other
two modes (Figures 10E,F) although the propagation speeds and
directions are somewhat less regular for the higher modes than
for the annual.
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FIGURE 7 | Depth–time Hovmöller diagrams of (A) longshore-velocity anomaly and (B) potential density anomaly at yr = 19◦Sr. Latitude–time Hovmöller diagrams of

(C) longshore velocity anomaly and (D) potential density anomaly at z = −160m. All quantities are averaged between xc − 0.5◦ and xc + 0.2◦, where xc(y) is the

location of the 200-m isobath. The green straight line indicates the southwestward propagation speed of 0.2m/s. Note that color intervals are uneven for density as

the near-surface density anomaly is much larger than that associated with the undercurrent.

These three Fourier modes add up to create the
(northeastward-flowing) undercurrent during April–May
in the total field (Figure 7C). The negative phase (blue) in
the annual harmonic during October–March (Figure 10D)
is canceled during December–January and reinforced during
February–March by the positive phases of the other two modes
(Figures 10E,F). This is how the negative peak in the total field
(Figure 7C) is constructed. This conclusion is supported by the
fact that the actual superposition of the three Fourier modes
(Supplementary Figure S5A) is almost indistinguishable from
the original field (Figure 7C) southwest of 9◦Sr.

Figure 11 shows the y-z structure of the three harmonics
when the positive signal is strongest (Figure 6). The vertical

extent of the undercurrent of each harmonic somewhat
increases southwestward. In addition to that, the core of
the undercurrent for higher modes is located at shallower
depths. Both trends contribute to the vertical spreading of the
positive anomaly in the total field (Figure 6). This conclusion is
supported by the fact that the superposition of the three modes
(Supplementary Figure S6A) is very similar to the original field
southwest of 9◦Sr (Figure 6 and Supplementary Figure S6B).
Even though the phase discontinuity at 9◦Sr (12.8◦S) is not
very clear in the total field, it is clearer in each Fourier
mode (Figure 11). It is interesting that the contribution from
higher Fourier modes is significant northeast of 9◦Sr, that is,
the difference between the superposition of the lowest three
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FIGURE 8 | Power and amplitude spectra of longshore velocity averaged over

the xc strip (see section 2.2.2), 10◦Sr–20◦Sr, and 150–200m. This region

roughly coincides with the region where the seasonal undercurrent is strong

(Figure 6). The amplitude of mode 0 is the absolute value of the temporal

average, the latter of which is negative (not shown). The maximum Fourier

mode number is 36 because there are 73 pentads in the 5-day climatology,

but only the modes up to 15 is plotted. The remaining modes (not shown) are

as weak as modes 4–15. The definitions of the spectra are standard but see

section S1.2 in Supplementary Material S2, for the precise definitions.

modes and the original field is significant northeast of 9◦Sr

(Supplementary Figure S6).

3.5. Similarity to Coastal Trapped Waves
The southward and upward propagation of phase is reminiscent
of coastal Kelvin waves (e.g., Romea and Allen, 1983). The
x-z structure of the flow (Figure 5), however, suggests that
the signal we have seen is a coastal trapped wave (CTW;
e.g., Clarke, 1977; Brink, 1982b; Church et al., 1986a). At the
frequencies we are interested in, however, our latitude range
(5◦S–22◦S) of interest is well equatorward of the critical latitudes
if c < 1.5m/s and c < 2.9m/s for the annual and semi-
annual frequencies, respectively, for a 45◦ slanted coast line (see
Introduction). It is not clear, however, whether CTWs completely
propagate away as planetary Rossby waves (see Introduction).
We here show an inviscid solution to a CTW model on an
f plane in the hope that such a solution at least qualitatively
captures some aspects of the true solution. The solution is
outlined in section 2.3 and details are provided in Appendix A.
The appendix also discusses some salient properties of the
solution which are not directly relevant to this comparison with
the OGCM.

A periodic zonally-uniform meridional wind forces the ocean
in the region 0 < y < L at the annual frequency. We set
L = 500 km without any particular reason; this arbitrariness,
however, does not affect our discussion because as Appendix
Equation (A.3) indicates, the amplitude of the solution south
of y is proportional to L but that is the only dependency
on L. The solution takes the form of a “beam,” that is, the
variability is limited to a narrow band which extends from
the forcing region (Figure 12A). The amplitude of the wind
stress is 0.1Pa (1 dyn/cm2), to which velocity is proportional.
The amplitude of the solution (larger than 30 cm/s; Figure 12A)

is obviously much larger than that of the undercurrent
in OFES2.

As high-order CTW modes are bottom trapped (Figure A2
in Appendix), the CTW beam is clearest along the bottom
(Figure 12A). The beam propagates southward and gradually
migrates down the slope and eventually emerges on to the
continental slope to form an “undercurrent” (Figure 12B). An
obvious problem is that the beam emerges on the continental
slope only around y ∼ −10,000 km, very far downstream
(southward) from the forcing region (y > 0). This result suggests
that the actual undercurrent in OFES2 is forced very near the
continental slope, likely at the offshore protrusion at around 13◦S
(9◦Sr) of the shelf break, where the shelf break rapidly changes its
direction (Figure 1) and where the clear discontinuity occurs in
phase (Figure 9).

Note that the idealized solution is constructed as a
superposition of the lowest 24 modes (section 2.3 and
Appendix A). This is not quite sufficient for this beam in that the
summation is not well converged, and as a result, ripples remain
outside the beam (Figure 12A) and the vertical propagation does
not appear smooth (Figure 12C).

Figure 12B shows a crossshore section at y = −14,000 km
where the “undercurrent” is seen between 100 and 200m. There
is a weaker counterflow further down the slope. This section is
chosen so that the “undercurrent” comes down to a depth range
similar to that of the undercurrent in Figure 5. Although the
counterflow (blue) below the undercurrent is not visible in the
total vr field in Figure 5, it is visible in the annual harmonic from
OFES2 (Figure 11). The 9◦Sr–21◦Sr portion of this latter OFES2
plot qualitatively resembles the y-z structure of the idealized
model flow (Figure 12C), in that the beam gradually descends
the slope. The descent is very slow at a few tens of meters over
the y range of 1,400 km. The angle of descent is deeper for the
annual harmonic velocity core in OFES2 (Figure 11A): 180m at
10◦Sr to 230m at 20◦Sr, the horizontal distance corresponding to
about 1,100 km.

The Hovmöller diagrams Figure 13 are qualitatively similar to
those from the model (Figure 7); the phase speed is somewhat
faster (∼0.3m/s) in the CTW solution than in OFES2 (Figures 7,
10D).

The upward phase propagation is slower for the annual
(Figure 13A) than for the semi-annual frequency (Figure 13B),
consistent with the OGCM result (Figure 7). The difference
in the meridional phase propagation (Figures 13C,D) is not
very clear.

Some of the discrepancies may be due to the lack of dissipation
in the present CTWmodel. This point will be taken up in section
4.3 below.

4. SUMMARY AND DISCUSSION

A 5-day climatology is constructed from the output of an
eddy-resolving oceanic general circulation model (OGCM) for
the north and northwest regions of Australia. A seasonal
northeastward-flowing undercurrent is found on the upper
continental slope of the North West Shelf region during
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FIGURE 9 | Amplitudes (A–C) and phases (D–F) of Fourier modes (A,D) n = 1 (annual) and (B,E) n = 2 (1/2-annual), and (D,F) n = 3 (1/3-annual) of longshore

velocity. The phase angle uses the “phase” colormap in the cmocean collection (Thyng et al., 2016); the colormap is designed to be circular in such a way that −180◦

and 180◦ use an identical color. To guide the eye, thick contours are added at 0◦ and ±180◦, thin solid contours at 90◦, and thin dashed contours at −90◦. The

amplitude is averaged over the xc strip whereas the phase is a slice at xc(y
r)− 0.35◦. Phase values inevitably include artificial jumps, in the above case, across ±180◦;

an average of positive and negative values close to ±180◦ results in a value close to zero, which is totally wrong as an average of phase. For this reason we avoid

averaging phase. The location of the slice is chosen so that the slice reaches at least 300m at most places and at the same time avoids offshore shallow sea mounts

(not shown) as much as possible.

the climatological April–May (Figures 3B, 4A, 5, 6). An
undercurrent with the opposite sign (southwestward) appears
during February–March whose spatial structure is similar to that
of the positive undercurrent. During its annual cycle, the phase of
the undercurrent tends to propagate southwestward and upward
(Figure 7).

The annual frequency dominates followed by the semi-
annual and 1/3-annual frequencies (Figure 8), resulting in the
northeastward peak during April–May and the southwestward
peak during February–March (Figures 7C, 10D–F). The three

Fourier components share the property that the phase tends
to propagate southwestward and upward (Figures 9D–F, 10).
The vertical structure of the current is predominantly that of
the annual frequency (Figures 6, 11A) while the other two
components contribute to spread the undercurrent upward
(Figures 11B,C).

We then construct an idealized coastal trapped wave (CTW)
solution driven by an idealized harmonic meridional winds
at the annual and semi-annual frequencies. The solution
takes the form of a beam originating from the forcing
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FIGURE 10 | (A–C) z-t Hovmöller diagrams at 19◦Sr and (D–F) y-t Hovmöller diagrams at 160m for the annual (A,D), the 1/2-annual (B,E), and the 1/3-annual (C,F)

harmonics of longshore velocity averaged over the xc strip. The green lines indicate a phase speed of cy = −0.2m/s.

FIGURE 11 | Same as Figure 6 but for the (A) annual, (B) 1/2-annual, and (C) 1/3-annual harmonics (n = 1, 2, 3).
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FIGURE 12 | v from the CTW model (A) along the bottom, (B) at y = −14,000 km, and (C) averaged over x = 190–250 km at an arbitrary time for the annual

frequency. The y-range for (C) is the southern-most 1,400 km of (A).

region at the coast and propagating offshore and southward
(Figure 12A). When it emerges on to the continental slope,
it takes the form of an undercurrent (Figure 12B). Like
the OGCM counterpart (Figure 6), the undercurrent in the
CTW model gradually deepens southwestward (Figure 12C).
The upward and southward phase propagation of the
undercurrent (Figure 13) is qualitatively consistent with that in
the OGCM.

These pieces of evidence, however, are hardly sufficient to
claim that the hypothesis—that the undercurrent is a beam
of CTW—is proven. As discussed below, there are a number
of discrepancies between the idealized model and the OGCM.
Moreover, other mechanisms such as topographic rectification
of fast variabilities (like tides) into slower variability or mean
current (e.g., Brink, 2011) may also generate an undercurrent
like the one we have found. We hope that the present study will
inspire further exploration into the dynamics of the current in
the future.

4.1. Critique of the Idealized CTW Model
In the idealized CTW model, the wind-forced beam
emerges on to the continental slope far further downstream
from the wind forcing (Figure 12B). This distance
(∼10,000 km) is totally unrealistic. If there were a place
where the continental shelf is very narrow, the response
could reach the continental slope sooner but the shelf
is wide throughout the upstream region (Figure 1). This
suggests that the beam is not directly generated by winds.
See below.

Another interesting discrepancy between the CTWmodel and
the OGCM is that the structure of the flow above the shelf-break
depth is not consistent between the CTW model and OGCM. In
particular the annual cycle of density anomaly above the shelf-
break depth (Figure 7B) is not explained by the beam. The near-
surface density structure is strongly affected by the winter cooling
and summer warming and may not be strongly controlled by
CTW dynamics.
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FIGURE 13 | v from the CTW model averaged over x = 190–250m (A) at y = −14,000 km and (B) at y = −7,000 km; and (C,D) at z = −170m (A,C) for the annual

frequency and (B,D) for the semi-annual frequency. The green line segments indicate speeds of 0.2m/s and 0.4m/s. Note that the latitudinal ranges are different

between the annual (A,C) and semi-annual (B,D) frequencies because the beam emerges to the continental slope earlier for the semi-annual frequency. Note also that

the range of coloring is narrower (±20 cm/s) here than in Figure 12 because the zonal average weakens the values.

As shown in Figure 3A, the surface current (Holloway
Current) does not necessarily follow the shelf break, but when it
does, it appears to form a “baroclinic pair” with the undercurrent
(Figure 5), with a narrow surface current flowing in the opposite
direction accompanying the undercurrent. The idealized beam
solution does not have this property. This interesting feature may
be due to a subsurface generation of CTW beams, as discussed in
the next subsection.

Samelson’s (2017) solution is appealing in that it produces
both the undercurrent and the surface counterflow. For our
case, the latter would be (a branch of) the Holloway Current.
We are not sure what makes this difference between Samelson
(2017) and the CTW model here. Samelson (2017) uses an
inviscid, unstratified, f -plane, long-wave solution of coastal
trapped waves on the continental shelf (the region where the
bottom is shallower than 150m), uses the solution as an eastern
boundary condition for the stratified, β-plane quasi-geostrophic

model on the continental slope, and obtains a steady solution to
a zonally-uniform wind patch that exists only within a limited
latitude band. The problem he solves is almost the same as we do,
except that he considers the steady state, includes the β effect west
of the shelf, and ignores stratification on the shelf. He also makes
a different set of approximations. Some of these differences must
be the cause. We leave this issue for a future study.

4.2. Generation
The undercurrent signal appears to originate from 13◦S (9◦Sr),
as suggested by the discontinuity in phase (Figure 9). We have
examined (not shown) the climatological (1991–2017) wind
stress during May from J-OFURO3 version 1.1 (Tomita et al.,
2019)3 but did not find any particular features there. As the
200-m isobath shows (Figure 1), the shelf break protrudes

3https://j-ofuro.isee.nagoya-u.ac.jp/en/
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offshore and creates a feature like a submarine ridge at around
13◦S (9◦Sr). This sudden change in the topography is likely the
cause of the discontinuity in phase.

It is possible that the wave is generated further northeast and
keeps propagating along the shelf break across the submarine
protrusion and the discontinuity in phase may be an artifact of
the way we calculate the “zonal” (in xr) average along xc(y

r) (red
line in Figure 1). Because following the actual 200-m isobath
would not yield a single-valued function xc(y

r), we simply
connect the two end points of the part of the isobath extending
in the northwestward direction. If we followed the actual 200-m
isobath in some way, the discontinuitymight disappear.

On the other hand, it is also possible that some coastal-
trapped wave (CTW) originating from further northeast morphs
into the high-order-mode CTW we have been examining. One
potential mechanism is that of Dhage (2019). He explored how a
submarine ridge protruding offshore from the continental slope
scatters an incoming Kelvin wave or CTW into two beams, one
propagating upward and the other downward from the top of the
ridge. The downward propagating beamwould fit the description
of the beam in section 3. If this is really the case, the phase
discontinuity at 13◦S indicates the actual site of generation of
the beam.

But, do we then see the upward-propagating beam above
the depth of the shelf-break (top of the protrusion)? This is an
interesting question. The upward beam would soon encounter
the mixed layer and then it is not clear what happens to it. This
process might be the cause of the surface counter flow associated
with the undercurrent (Figure 5).

The generation of the current would be an interesting and
important subject for future studies. In particular, this study has
not explored potential link between the undercurrent and the
variability upstream (northeast) of the submarine ridge at 13◦S.
Calculation of energy flux (Clarke, 1987) from OGCM data, for
example, may be a good first step toward solving the problem.

4.3. Resolution and Friction
Figure 5 suggests that the undercurrent we have been examining
is moderately well resolved by themodel grid (1/10◦). High-order
CTW modes, however, should not be well resolved because of
their small cross-shore scales (Figure A2).

Bottom friction or lateral viscosity or both is probably helping
the OGCM to dissipate high-order CTWs. The bottom drag
coefficient the OGCM uses (2.5 × 10−3) is comparable with the
value in the CTWs by Brink (1982a) (although our OGCM does
not prescribe RMS velocity to include unresolved high-frequency
near-bottom flow). The continental slope is also a lateral
boundary in OGCM so that the model’s horizontal viscosity and
diffusion (which are biharmonic) may also contribute to the
dissipation.

Without dissipation, the idealized CTWbeam remains narrow
(Figure 12C). The downstream spread of the beam in OFES2
(Figure 6) may be due to the damping of high-order CTWs
by friction. To test this idea, we modify the idealized CTW
model to include an ad-hoc dissipation which is larger for
higher-order modes, inspired by the formulation of internal
vertical mixing in a similar model but with a flat bottom of
McCreary (1981a) (Appendix A.3). With this modification, the

beam spreads vertically (Supplementary Figure S7), with the
bottom of the undercurrent deepening from 200m at y =
−13,600 km to 300m at y = −15,000 km, this deepening
comparable to that of the undercurrent in the OGCM between
9◦Sr and 22◦Sr (Figures 6, 11A).

For more quantitative analyses, bottom friction and other
dissipationmust be treated more carefully. If higher-order modes
significantly contribute to the flow in reality, OGCMswould need
more horizontal and vertical resolution to resolve the higher-
order modes and the bottom boundary layer would need to be
more carefully modeled in order to produce a quantitatively
realistic undercurrent. If, on the other hand, high-order modes
are quickly damped by dissipation, current resolutions of ∼0.1◦

may be sufficient.

4.4. Leeuwin Undercurrent
It is not clear weather the undercurrent continues around the
northwest corner (22◦S) of Australia on to the west coast.
Although it is very noisy, Figure 6 suggests that the vertical extent
of the anomaly is much larger south of 22◦S, where the Leeuwin
Undercurrent (LUC) extends from 200 to 800m (Furue et al.,
2017). In contrast, the undercurrent along theNorthWest Shelf is
shallower and its vertical extent is much smaller (Figure 5B). It is,
therefore, possible that the variability of the LUC is independent
of the undercurrent along the northwest coast.

The continental slope is particularly steep around 22◦S
(Figure 1) and the beam might dissipate away there or our
OGCM may not be able to resolve it there. This issue needs
further investigation.

4.5. Offshore Branch
Figure 3B shows a broader northeastward flow offshore
(northwest) of the undercurrent we have been examining. This
offshore branch has a larger transport (Figure 3B) because
its vertical extent is much larger (not shown). If one looks at
the annual cycle of Figure 3B as animation (not shown), one
notices that this branch propagates not only southwestward but
also offshore. A similar tendency of westward propagation of
meridional flow can be seen along the west coast of Australia
(not shown). This variability might be representing a low-order
Kelvin-wave-like wave.

4.6. Concluding Remarks
In conclusion, this study has described a seasonal undercurrent
in an OGCM and proposed the hypothesis that it is a beam of
coastal-trapped waves. It poses a number of interesting questions.

As discussed above, this study has not explored potential link
of the undercurrent to variability upstream (northeast) of the
submarine ridge at 13◦S, nor has it explored the undercurrent’s
potential link to the surface flow. These issues are interesting
subjects of future study. Once these problems are solved, we will
know whether this undercurrent is a unique feature in the North
West Shelf region or a similar flow exists everywhere.

It would be also important to explore observational data. Is it
possible to tease out this signal from existing observations? CARS
Aus8 is a gridded product interpolating hydrographic profiles.
Analyzing raw hydrographic data may reveal the undercurrent. If
the impacts of the undercurrent on the surface flow is established,
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it may be possible to extract undercurrent-related signal from
sea-level data and the relation of the undercurrent with the
Holloway Current may become clear.

We have only examined a climatological annual cycle. An
implicit assumption there is that the variability is phase-locked
to the annual cycle. But, if the undercurrent is indeed explained
as CTWs, forcing which is not locked to the annual cycle should
also be capable of driving similar undercurrent-like variabilities.
Marin and Feng (2019), for example, found a variability in the
surface current in the same region that is phase-locked to MJO
(Madden-Julian Oscillation; Madden and Julian, 1971, 1994)
events. There might be an undercurrent associated with this flow.
Such signals, if any, would have been averaged out from our
climatology. Examining the raw time series, therefore, will be an
interesting future extension.
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APPENDIX

A. COASTAL TRAPPED WAVES

In this appendix, we show an idealized, simple solution of a
coastal-trapped-wave (CTW) beam, which is referred to in the
main text. Before doing so, however, we show a corresponding
Kelvin-wave solution because the latter solution is instructive in
order to understand a few salient aspects of the CTW solution.
The Kelvin-wave solution we present here is essentially the same
as those of Nethery and Shankar (2007).

A.1. Kelvin-Wave and
Coastal-Trapped-Wave Modes
Let us assume a horizontally-uniform background stratification,
linearize the primitive equations around a state of no motion
with that stratification, and ignore viscosity or diffusion. We
also assume a constant Coriolis parameter. The set of equations
sustain waves trapped to a lateral boundary. We further make
the “long-wave” assumption (that the longshore scales are much
larger than the crossshore scales, etc.; see Brink, 1982a for
details). For simplicity, assume that the only forcing is a curl-free
longshore wind.

Let x and y be the crossshore and longshore coordinates. Then,
a wave solution takes the form of

p =
∑

Fj(x, z)φj(y, t), (A1)

where φj is the solution to

[−(1/cj)∂t + ∂y]φj = bjτ
y(y, t). (A2)

The solution to the latter equation is a wave that is forced by b τ
and propagates in the negative y direction at a speed of cj > 0.
The “coupling coefficient” bj, determined by the shape of the
“mode” Fj(x, y), represents how strongly the wind forces mode j.
The “modes” Fj are the solutions to an eigenvalue problem and cj
are the corresponding eigenvalues.

When the eastern boundary is a vertical wall, the eigenvalue
problem is separable in x and z and the modes take the form of

Fj(x, z) = ex/(−cj/f )ψj(z), (A3)

where ψj(z), in turn, are the solutions to the eigenvalue problem

∂z[(∂zψj)/N
2]+ ψj/c

2
j = 0, ∂zψj|z=0,−h = 0, (A4)

and cj are the corresponding eigenvalues (e.g., McCreary, 1981a;
Gill, 1982). This eigenvalue problem depends only on the given
background stratification and can be solved numerically. (Note
that because f < 0 for our case, the above eigenfunction decays
westward x < 0 from the eastern boundary x = 0.) Together
with Equations (A2), (A3), and (A4), summation (A1) gives
the complete solution of the Kelvin wave response to the given
meridional winds.

When the coastal bottom topography is taken into account,
the eigenvalue problem for F(x, z) is no longer separable and

the two-dimensional partial differential equation has to be solved
numerically (e.g., Brink, 1982a; Church et al., 1986a). See below.
In this paper, we call waves with the vertical wall “Kelvin waves”
and waves with a sloping bottom “coastal trapped waves” or
“CTWs”.

A.2. Kelvin-Wave and CTW Beams
We consider a solution forced by a simple periodic wind confined
to the region 0 < y < L, of the form

τ y(y, t) =

{

Go(sinαy)e
ιωt 0 ≤ y ≤ L,

0 otherwise,

where α ≡ π/L.
We further assume that there is no other forcing and therefore

φ = 0 at y = L. We further ignore transients (free waves) and
retain only the forced part of the solution, which is

φj(y, t)=















−αGo

α2 − l2
[−ι(lj/α) sinαy+ cosαy+ e−ιlj(y−L)]eιωt 0 < y < L

−αGo

α2 − l2j
(1+ eιljL)eιljyeιωt y < 0,

(A5)

where lj ≡ −ω/cj < 0 is the longshore wavenumber. The
negative sign of lj indicates that the wave propagates in the
negative y direction.

For the basic density stratification, we use the annual mean
salinity and temperature fields from the World Ocean Atlas 2013
(Levitus et al., 2015) as the OFES2 data below 800m has not
been processed and is not easily accessed and because for this
theoretical, idealized calculation, the precision of the background
stratification should not matter much. We select the deep ocean
that satisfies

112◦ < lon < 120◦, −20◦ < lat < −12◦, lat− lon ≥ −134.5◦.

The last condition is to exclude the shelf region. We first
horizontally average salinity and temperature within the above
region; we then calculate potential density referred to the sea
surface and calculate the Brunt-Väisälä frequency (BVF) from
potential density on WOA’s vertical grid, using the Gibbs Sea
Water Oceanographic Toolbox (McDougall and Barker, 2011);
we then remove negative BVF values and finally interpolate
onto a new grid which is uniform in the “stretched coordinate”
(e.g., Early et al., 2020). The last treatment is necessary to avoid
unphysical modal shapes at high-order modes.

A.2.1. Kelvin-Wave Beam

When the bottom is flat, we numerically solve Equation (A4) for
the vertical modes using the background stratification and the
maximum depth is set to 5,000m. Figure A1 shows the top 300m
of a few lowest-order modes and the j = 100 mode. Note that
the local vertical wavelength of each mode is smallest where N is
largest and even there the 100th mode is well resolved.

The Kelvin-wave solution is then Equation (A1) with Equation
(A3) and shown in Figure A1C. As is well-known (e.g.,
McCreary, 1984), the phase propagates upward and southward
(not shown) and the wave solution takes the form of a “beam”,
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FIGURE A1 | (A) Mean Brunt-Väisälä frequency N(z) based on WOA13 and (B) vertical modes 1, 2, 3, and 100 (red, blue, green, and yellow). The dots on the j = 100

mode indicate the gridpoints for the numerical calculation of Equation (A4). (C) Meridional velocity (snapshot at an arbitrary time and at x = 0, eastern boundary) of

coastal Kelvin wave on an f plane forced by an annual wind. The velocity field is constructed as a sum of 100 modes [ j = 1–100 in formula (A1). The total depth is

5,000m; only the upper 300m is shown. The green dashed curve is a WKB ray starting from the southern edge of the forcing region (y > 0). See text for details.

that is, the amplitude of the wave is large only in a narrow
band. The beam extends from the forcing region (y > 0) at
the surface downward and southward. The angle of the beam
becomes deeper (steeper) as the frequency increases (not shown,
but see Nethery and Shankar, 2007).

If the summation of the modes is extended to infinity, the
variability is confined all within the narrow beam, but with only
the 100 modes, weak stripes remain above and below the beam.
The plot therefore indicates that even 100 modes are not quite
sufficient.

The trajectory of the beam (“ray”) can be calculated as follows.
A derivation of the ray equation is provided in McCreary (1984)
for various equatorial waves. The following derivation is for the
coastal Kelvin wave but is the same as McCreary’s (1984) one for
the equatorial Kelvin wave. We apply the WKB approximation
to Equation (A4); that is, we assume that ψ ∝ e−ιmz , which gives

− (m2/N2)ψ + ψ/c2 = 0

⇒ c = N/|m|

and therefore the dispersion relation becomes ω = −lc =
−Nl/|m|. The ray path is then

∂y

∂z
=

∂ω/∂ l

∂ω/∂m
= −

m

l
=

N

ω
sign(m)

(e.g. Whitham, 1974). For a solution with upward-propagating
phase (m > 0), the ray path slopes down southward (in the
negative-y direction) according to

y(z) = yo −
1

ω

∫ zo

z
dz′N(z′).

The group velocity of the ray is downward and southward
whereas the phase propagates upward and southward. This WKB
ray is indicated by the green curve in Figure A1 with (yo, zo) =
(0, 0).

A.2.2. Coastal Trapped Wave Beam

We carry out the same exercise for CTWs. The F(x, z) modes
and corresponding wave speeds c are numerically calculated
using Brink and Chapman’s (1987) Fortran program, for the
background stratification described above. The bottom profile
is an average of OFES2’s bottom profile in xr over 19◦Sr–12◦Sr ,
where the bottom topography is relatively smooth but still varies
considerably in the longshore (yr) direction. Because of this
averaging, the resultant profile does not have as clear a shelf break
as the individual profiles (Figure 5). We finally weakly smooth
the profile in the x direction using polynomial fitting (Figure A2)
and truncate it at 2,000m, which we set to be themaximum depth
for the CTWmode calculation.

We have been able to obtain up to 24 modes, among
which modes 1–4 and 24 are shown in Figure A2. We have
confirmed that the number of zero-crossings is the same as the
mode number of each mode (Brink and Chapman, 1987). This
consideration, however, is still not sufficient. High-order modes
have amplitudes trapped to the bottom slope, and the x profile
of a mode along the bottom has short wavelengths where the
bottom slope is steep (Figure A2). If the gridspacing in the x
direction is not small enough to resolve these wavelengths at the
steepest slope, the modes come out as totally unphysical profiles
(not shown) even thought they have the right number of zero-
crossings. We have examined all 24 modes to confirm that the
wavelengths are resolved even at the steepest slope. We had to

Frontiers in Marine Science | www.frontiersin.org 20 February 2022 | Volume 8 | Article 806659

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Furue A Seasonal Undercurrent

FIGURE A2 | CTW modes j = 1–4 and 24 for v. (A–E) x-z structure; (F) x profiles along the bottom, where the gridpoints are marked for the j = 24 mode to show that

the horizontal resolution is marginal for this mode. A dashed line is plotted at x = −150 km to roughly mark the transition from the continental shelf to the continental

slope.

stop at 24 modes because the horizontal resolution is marginal at
j = 24 on the continental slope (Figure A2). Beyond this mode,
the eigenfunctions jump to unphysical profiles. We have also
confirmed that the profiles of the modes only gradually change
as the mode number increases.

We then sum up the wave response (A5) over the 24 modes as
(A2) to obtain the total 4-dimensional (x, y, z, t) solution forced
by the idealized wind patch. The v response is similarly obtained

by replacing Fj’s with the corresponding modes for v (Brink and
Chapman, 1987).

As the Kelvin wave packet forms a beam in the y-z plane
(Figure A1), the CTW solution forms a “beam”, but this time,
the feature is most clear along the bottom in the x-y map
(Figure 12A). This is because the higher-order CTW waves are
trapped to the bottom (Figure A2). Twenty-four modes are not
sufficient to obtain a clean beam: there are ripples down the
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continental slope (Figure 12A), where wave energy should not
have reached.

As the spatial scales of the mode become closer to the grid
spacing as for the j = 24 mode (Figure A2F), the numerical
solution Fj and its eigenvalue cj tend to become less accurate
compared to the true (continuous) solution. Exact impacts of
this problem will be clarified only when we reduce the grid
spacing, but they are not likely critical for our problem because
the main effect high-order modes have in the solution is to
tighten the beam and the overall properties of the beam is
determined by low-order modes. This hypothesis is supported by
the solution with strong damping of high-order modes discussed
in Appendix A3, where the largest impact of friction is to
broaden the beam.

It is possible to construct a “fake” or “empirical” ray along the
bottom. Let us consider a Sturm-Liouville eigenvalue problem
analogous to Equation (A4)

∂x[(∂xψj)/M]+ ψj/c
2
j = 0

with suitable boundary conditions. We set M in such a way that
M is positive and small on the continental shelf,M is positive and
large on the continental slope, andM < 0 in the deep flat-bottom
region. The local wavelength of ψj(x) is then large on the shelf
and small on the slope; andψj(x) exponentially decays in the flat-
bottom region. In this way, we obtain a set of eigenfunctions that
qualitatively resemble the x profiles of the actual modes along the
bottom (Figure A2F) and corresponding eigenvalues cj, which
are in order-of-magnitude agreement with the actual eigenvalues
of Fj. Using the same WKB approximation as used for the Kelvin
waves, then, a ray path is obtained for a given frequency; this ray
roughly follows the beam in Figure 12A.

A.3. Friction
McCreary (1981a) considered the same continuously-stratified
linear model as we have been discussing in a flat-bottom ocean,
where he included a parameterization of vertical mixing in the
form of ν = κ = A/N2, whereA is an empirical constant andN is
the background Brunt-Väisälä frequency. This parameterization
leads to an additional linear-damping term of the form −rjuj,
−rjvj, or −rjpj in the momentum or thickness equation for each
vertical mode, where rj = A/c2j . As a result, the y-t wave equation

(A2) is modified to

[−(1/cj)(∂t + rj)+ ∂y]φj = bjτ
y(y, t) (A6)

and the solution is identical to (A5) except that −ιlj of (A5) is
replaced with −ιlj + (rj/cj) in the present solution. The solution
decays in the negative y direction and the decay scale strongly

depends on cj with stronger damping associated with smaller cj
(i.e., larger mode number j).

For simplicity, we borrow this damping instead of solving
again for CTWmodes with bottom friction (Appendix A.4) even
though McCreary (1981b) formalism is designed to represent
internal diapycnal mixing, not bottom friction. We set A =
10−8m2/s3 (which would give a vertical diffusivity of κ =
A/N2 ∼ 10−4m2/s in the main pycnocline, where N ∼
10−2 rad/s). The result is shown in Supplementary Figure S7: in
this case, the beam spreads vertically, qualitatively similarly to the
undercurrent in OFES2 (Figure 6) and the amplitude of the flow
becomes much smaller.

A.4. Discussion
The original formalism and Brink and Chapman’s (1987) code
allow for bottom drag and variation in f in the crossshore
direction, but we neglect these effects in the present paper.
It is also possible to take into account slow longshore
variations of model parameters, solve the eigenvalue problem
for F and c at each y, solve (A2) with the y-dependent c,
and obtain the final solution (A1) (Brink, 1989). For our
simple calculation, however, we also ignore this possibility and
use just one bottom profile z = −h(x) and one density
stratification N(z).

If the background stratification has a sharp jump, as at
the bottom of the surface mixed layer, the Kelvin-wave beam
generated at the sea surface is partially reflected. [This property
is shown for Yanai-wave beams in Miyama et al. (2006).] The
sum of the modes (A1) automatically produces this type of
solution (Miyama et al., 2006). Figure A1 does not include
such a reflection because the stratification is presumably smooth
enough.

On the other hand, the CTW beam along the bottom
seems to show this type of reflection: In Figure 12A, the blue
region first extends southwest, is reflected back eastward around
x = −100 km, hits the eastern boundary at y = −12,000 km,
and is reflected back westward. This property is probably due
to the rapid change in the bottom slope between x = −100 km
and−200 km.

It is also interesting that the part of the beam that
emerges onto the continental slope (red) is intensified at
x = −150 km. As indicated in Figures 12B, A2, the WTC
modes are bottom trapped on the continental slope whereas
they are less so on the shelf. This property implies that the
energy of the beam is spread over the water column on
the shelf but is focused toward the bottom when the beam
emerges on the continental slope. There must be, therefore,
downward propagation of energy when the beam is on
the shelf.
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