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Modeling the direct economic losses of storm surge disasters can assess the disaster

situation in a timely manner and improve the efficiency of post-disaster management

in practice, which is acknowledged as one of the most significant issues in clean

production. However, improving the forecasting accuracy of direct economic losses

caused by storm surge disasters remains challenging, which is also a major concern

in the field of disaster risk management. In particular, most of the previous studies

have mainly focused on individual models, which ignored the significance of reduction

and optimization. Therefore, a novel direct economic loss forecasting system for storm

surge disasters is proposed in this study, which includes reduction, forecasting, and

evaluation modules. In this system, a forecasting module based on an improved

machine learning technique is proposed, which improves the generalization ability and

robustness of the system. In addition, the key attributes and samples are selected by

the proposed reduction module to further improve the forecasting performance from

the two innovative perspectives. Moreover, an evaluation module is incorporated to

comprehensively evaluate the superiority of the developed forecasting system. Data

on the storm surge disasters from three typical provinces are utilized to conduct a

case study, and the performance of the proposed forecasting system is analyzed and

compared with eight comparison models. The experimental results show that the mean

absolute percentage error (MAPE) predicted by the Extreme Learning Machine (ELM)

model was 16.5293%, and the MAPE predicted by the proposed system was 1.0313%.

Overall, the results show that the performance of the proposed forecasting system

is superior compared to other models, and it is suitable for the forecasting of direct

economic losses resulting from storm surge disasters.

Keywords: storm surge, hybrid forecasting, forecasting, optimization algorithm, economic losses

INTRODUCTION

Four portions are introduced in the section. The main issues are introduced in the first part, the
second reviews the related literature and works, the third presents the main contributions, whereas
the fourth provides the structure of this article.

Main Issues
Marine disasters caused by abnormal marine environments or extreme climate change have a
significant impact on marine security, economic and social development, and clean production.
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However, storm surge disasters have resulted in a considerable
threat to human life and production, causing the most serious
impact. The China Marine Disaster Bulletin (China Marine
Disaster Bulletin, 2020–2021) shows that the total loss due
to marine disasters was about 11.64 billion in 2019 and 832
million in 2020, of which the direct economic losses caused by
storm surge disasters account for 99.44 and 97.36%, respectively.
The importance of research on the economic impact of storm
surge disasters has recently become clear (Neumann et al., 2015;
Guo and Li, 2020; Zhou et al., 2020). The rapid and accurate
forecasting of losses caused by storm surge disasters can provide
strategic decision support for the prevention and reduction of
disasters, disaster situation warnings, and rescue management.
However, due to the particularity and irregularity of natural
disasters, it is difficult to rapidly and accurately forecast marine
disaster losses. Therefore, the development of an appropriate
method to model the economic losses caused by storm surge
disasters is required, as this is widely considered a key concern
in clean production (Yang et al., 2019a).

Literature Review
In disaster loss assessment and forecasting, scholars have mainly
focused on earthquakes (Jena et al., 2020; Kim et al., 2020;
Pulinets et al., 2021), tropical cyclones (Qi and Du, 2018;
Sawant et al., 2019; Giffard-Roisin et al., 2020; Zeng et al.,
2021), and floods (Zhi et al., 2020; Soltani et al., 2021), but
few studies have been conducted on storm surge. With the
background and impact of global climate change (Hao et al.,
2021), the problem of marine disasters (Fang et al., 2017;
Yan et al., 2020) is becoming increasingly obvious. Among
the losses caused by marine disasters, storm surge disaster
losses account for a large proportion, so it is necessary to
pay attention to the research on storm surge disasters (Arns
et al., 2015). Most studies have focused on storm surge and its
forecasting methods (Sahoo and Bhaskaran, 2018; Ohz et al.,
2020), but only few on direct economic loss assessment. Three
methods are commonly adopted in this forecasting field. (1) In
previous studies, physical methods were mainly used in data
monitoring, early warning, and forecasting. Meanwhile, a large
number of data were outputted to assist the research and the
forecasting (Lakshmi et al., 2017; Nahornyi et al., 2021). Physical
models employ meteorological information or related physical
information as input, and require a great deal of historical
information to judge the specific relationship between disaster
sequences and physical information to perform forecasting.
However, the amount of data comprising this information is large
and difficult to obtain, and consequently forecasting is difficult.
(2) Statistical methods such as autoregressive integrated moving
average (ARIMA) and generalized autoregressive conditional
heteroskedasticity (GARCH) have exhibited good results in
solving low-dimensional weakly non-linear problems (Yi et al.,
2021). However, disasters themselves are complex problems,
whereas disaster loss assessment and forecasting are multi-
dimensional and non-linear problems. The traditional statistical
methods have obvious disadvantages. (3) In machine learning
methods, machine learning algorithms have shown stronger
ability to fit complex non-linear data, and, thus, have been

highly regarded. Machine learning methods had been widely
applied in some forecasting fields such as electricity price
forecasting (Yang et al., 2022). Support-vector machine (SVM),
extreme learning machine (ELM), and backpropagation neural
networks (BPNN) are commonly used forecasting methods.
Xiong et al. (2018) successfully improved ELM to predict
the seasonal price of vegetables. Liu et al. (2020) proposed
a combined model using self-organizing map (SOM), kernel
principal components analysis (KPCA), and an SVM to classify
and to forecast the patent quality in the biomedical industry.
Li et al. (2021) proposed the gray-BPNN model to predict the
grain output of Henan Province. These three methods have
been proposed to form different models for forecasting, such as
single model, hybrid model (Sahin, 2019; Wang et al., 2019b;
Yang et al., 2019b), combined model (Niu and Wang, 2019;
Wang et al., 2019a), and ensemble model (Hao and Tian,
2019).

In the field of marine disaster forecasting, single models have
been widely proposed.Wang et al. (2021) proposed GIS and open
data to quantitatively evaluate the storm surge and to estimate
the direct physical losses. Yin et al. (2017) established a gray
relational model based on the panel data dispersion, which was
applied to the study of storm surge disaster losses in the coastal
areas of China. Hybrid models have been widely proposed in
the field of disaster forecasting. Young et al. (2017) combined
the traditional physical hydrological simulation method with
the SVR to form a hybrid forecasting model in predicting
the hourly runoff of Chishan River Basin in southern Taiwan.
Compared with the physical hydrological model, ANN, SVR,
and two hybrid models (HEC-HMS-ANN, HEC-HMS-SVR)
which were based on a hydrologic modeling system, the novel
model exhibited some advantages, especially a higher accuracy in
long-term forecasting. However, the individual model research
methods on the economic impact of disasters are relatively
inaccurate. The combination model was developed to improve
the forecasting accuracy. Chen et al. (2018) introduced a new
combined model method to forecast disaster losses caused by
tropical cyclones, hence, using the model combination method,
GA-Elman neural network, SVR, and GRNN were combined
into a comprehensive evaluation model. The results showed
that their proposed model performed better than the single
model. Feng and Liu (2017) established an index system with
gray correlation analysis. Compared with the single model, the
combined model of BP and SVM was proposed to better forecast
the direct economic losses and the number of populations
affected by storm surge. Zhao et al. (2020) combined the results
of ENN and GRNN with a definite integral to achieve interval
forecasting, and obtained a large number of high-precision
results of the annual storm surge disaster economic losses. At
present, ensemble models are widely proposed to reduce bias
and to improve forecasting accuracy (Liu and Xu, 2020; Bravo
and Ayuso, 2021), but the application of this model in the
field of marine disaster forecasting remains rare (Ding et al.,
2020). Zhao et al. (2019) proposed an ensemble learning model
called Adaboost-BPNN which is designed to forecast direct
economic losses of marine disasters. Considering the interaction
between pressure, topographic constraints, and the resonant
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characteristics of the basin, Žust et al. (2020) proposed an
integrated sea level forecastingmethod calledHIDRA. In the field
of direct economic losses of storm surge disasters forecasting,
those methods have been developed gradually, but they ignore
the significance of attributes and of sample reduction, as well as
the model optimization.

Primary Work and Contributions
Therefore, with the goal of exceeding the limitations of the above-
mentioned models and methods, a novel hybrid forecasting
system is proposed herein to forecast the direct economic losses
of storm surge disasters. In contrast to most of the previous
studies, it improves the forecasting performance by considering
the complexity of the loss factors and the similarity of data.
More specifically, the system consists of three modules, including
a reduction module for data processing, a forecasting module,
and an evaluation module. Specifically, the key attributes in the
economic loss assessment attribute set of storm surge disasters
are selected by the reduction module to obtain the optimal input
of each sample. Subsequently, the forecasting module is designed
to obtain the forecasting loss results for each storm surge disaster
based on the optimal input. Afterward, the evaluation module
comprehensively evaluates the performance of the developed
forecasting system. To test the feasibility and the superiority
of the forecasting system, real data samples of direct economic
losses of storm surge disasters from 1989 to 2019 were collected
for numerical experiments. The experimental results showed that
the proposed approach exhibited good performance, which was
superior compared to that of other models, and it is suitable for
the forecasting of direct economic losses resulting from storm
surge disasters in practical applications.

The main contributions of this study are summarized
as follows:

(1) Modeling of direct economic losses of storm surge disasters

is achieved by a novel hybrid forecasting system. Previous
studies have mainly focused on improving the forecasting
performance by introducing different individual models,
which ignored the potential forecasting power of a hybrid
modeling. Therefore, a novel hybrid forecasting system
is proposed, which can bridge the research gap in
current studies.

(2) An advanced reduction module is proposed to

simultaneously obtain the key attributes and samples.

Reduction is an effective method to improve forecasting
performance. However, it is ignored by majority of the
previous studies. Therefore, in this study, we combine
rough sets with a SOM, reduce the samples after attribute
reduction, and horizontally and vertically process the data
to improve the forecasting accuracy of the system.

(3) A Forecasting module based on an improved machine

learning technique is proposed to improve the

generalization ability and robustness of the system.

The advanced machine learning technique, named as ELM
architectures, has, thus, long been ignored in modeling of
direct economic losses from storm surge disasters, despite its
superiority in other forecasting fields. Hence, the forecasting

module is developed based on an improved ELM to further
improve the performance of the forecasting systems.

Organization
The remainder of this article is organized as follows. Section
Detailed Process of the Developed Hybrid Forecasting System
introduces the reduction module and forecasting module,
respectively. In section The Direct Economic Loss Forecasting
System, the direct economic loss forecasting system is presented.
The experimental setup and a summary of the results are shown
in sections Experiments and Summary. Section Conclusions and
Future work generalizes the conclusions and suggests some
possible directions for future research.

DETAILED PROCESS OF THE DEVELOPED
HYBRID FORECASTING SYSTEM

The hybrid forecasting system based on intelligent algorithm is
successfully developed, which includes three modules: reduction
module, forecasting module, and evaluation module.

Module 1: Reduction Module
In the process of forecasting the direct economic losses caused
by regional storm surge disasters, many indicators affect the data.
Varying time intervals of storm surge have different contributions
to each other, and various factors have different effects on
the loss results. Therefore, the processing of sample data and
the selection of storm surge samples affect the accuracy of
the forecasting results. The reduction module is applied to
simultaneously reduce the indices and samples, so as to identify
the key indices affecting the loss values and to select the samples
with a strong forecasting correlation. Accuracy is also improved
by an effective dataset.

Construction of Attribute set
To maintain the integrity and validity of the index system,
the availability and accuracy of storm surge disaster loss data
should be considered. By combining frequency statistics with
theoretical analysis of disaster economic loss assessment (Yin
and Sun, 2011; Yin et al., 2011), an economic assessment of
the index system of storm surge disasters was constructed, and
the initial attribute set of the module was formed. Attribute
classification and spatiotemporal clustering were carried out for
factors under the four dimensions of the risk of disaster-caused
factors, economic loss index, vulnerability to hazards, and the
adaptability of storm surge disasters. The initial attribute set is
composed of 19 factors that affect the economic losses caused by
storm surge disasters, as shown in Figure 1.

Stage I: Attribute Reduction
The choice of rough set theory as a tool for feature selection is
based on two considerations. First, rough set theory does not
require a priori knowledge and the mathematical technology is
mature. Second, a rough set theory can directly analyze and infer
data so as to discover the hidden knowledge between the data
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FIGURE 1 | Attribute set for economic loss assessment of storm surge disasters.

and to reveal potential patterns. Thus, it is an effective method of
knowledge discovery.

Definition 1. In Pawlak’s rough set (Pawlak, 1982) attribute
reduction theory, an equivalence relation is central and primitive.
The theory begins with the notion of an information system,
which is considered as IS = (U,AT, g,V), where is a non-
empty set of finite objects, U = {x1, . . . , xi, . . . , xn}, it is called
the universe. AT is a non-nullable collection of attributes. The
information function isg :U × AT → V , which expresses the
value of xi under a, that is g(xi, a) ∈ Va(a ∈ AT, xi ∈ U), Va

is the domain that attribute what amay take.

Definition 2.Given anyA ⊆ AT, there is an indiscernible relation
IND(A) on U.

IND(A) = {(xi, xj) ∈ U × U|∀a ∈ AT, g(xi, a) = g(xj, a)} (1)

If(xi, xj) ∈ IND(A), then and cannot be discernible by attributes
from A. Generated by IND(A), the partition of is denoted as

U
/

IND(A) = {[xi]A : xi ∈ U} (2)

With regard to attribute set AT, [Xi]A are equivalent classes of
indiscernible relation, which can describe arbitrary subsets of U.

The equivalence classes of IND(A) and the empty set ∅ are the
base sets in the information system IS.

Definition 3. Let X ⊆ U, it may not be represented exactly
and clearly in U. One can describe an arbitrary subset X by
a pair of lower and upper approximations. They are defined,
respectively, as

A(X) = {Xi[Xi]A ⊆ X} and

A(X) = {Xi[Xi]A ∩ X 6= ∅} (3)

The pair [A(X),A(X)] is termed as the rough set of X in regard to
the set of attributesAT.

Definition 4. Let A and B be the two equivalence relations over
U. Then the regions of B: positive region, negative region and
boundary region can be defined as, respectively,

POSA(B) =
⋃

X∈U/B

AX (4)

NEGA(B) = U −
⋃

X∈U/B

AX (5)

BNDA(B) =
⋃

X∈U/B

AX −
⋃

X∈U/B

AX (6)
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TABLE 1 | Example dataset.

x ∈ U a b c d ⇒ e

1 2 1 3 3 1

2 1 2 2 2 3

3 3 1 1 2 2

4 2 2 1 3 3

5 2 1 3 1 2

6 3 3 1 2 2

7 3 2 2 2 3

8 1 2 2 1 2

Definition 5. An information system is called a decision system
if the collection of attributes AT can be divided into condition
attribute set A and decision attribute set B. In order to clearly
illustrate these mathematical definitions, an example will be
employed to explain the principle. In this case, four conditional
attributes (a, b, c, d), one decision attribute e, and eight objects
are represented in Table 1.

In the system, one of the significant matters in data analysis
is to find the dependency relationship between attributes. The
dependency betweenA and B can be defined in the following way:

γA(B) =
|POSA(B)|

|U|
(7)

If γA(B) = 1, B depends totally onA, if 0 < γA(B) < 1, B depends
partially on A, and if γA(B) = 0, then does not depend on A.

For example, if A =
{

b, c
}

then objects 2, 7, and 8 are
indiscernible, 1 and 5 are indiscernible. The partition of U can
be shown as

U/IND(A) = U/IND(b) ⊗ U/IND(c)

= {{1, 3, 5} {2, 4, 7, 8} {6}} ⊗ {{3, 4, 6} {2, 7, 8} {1, 5}}

= {{3} {1, 5} {4} , {2, 7, 8} , {6}} .

IfA =
{

b, c
}

and B = {e}, then

POSA(B) =
⋃

{∅, {3, 6} , {4}} = {3, 4, 6}

NEGA(B) = U −
⋃

{{1, 5} , {3, 1, 5, 2, 7, 8, 6} , {4, 2, 7, 8}} = ∅

BNDA(B) = U − {3, 4, 6} = {1, 2, 5, 7, 8} .

It follows that in attribute set A, objects 3, 4, and 6 can definitely
be classified as one class for attribute e. The rest of the objects,
however, cannot be classified.

Hence, The dependency of {e} from
{

b, c
}

is

γ{b,c}({e}) =
|POS{b,c}({e})|

|U|
=

|{3, 4, 6}|

|{1, 2, 3, 4, 5, 6, 7, 8}|
=

3

8
.

Definition 6. Given A, and an attribute a ∈ A, the significance of
the attribute a is defined as

σA(B, a) = γA(B)− γA−[a](B) (8)

The more the dependency changes, the more important the
attribute becomes. If the significance is 0, that means POSA(B) =
POSA−[a](B), then the attribute is dispensable. Otherwise, a is
said to be relatively indispensable in A. In E, if every attribute
is relatively indispensable and POSE(B) = POSA(B), So is called a
relative reduction in condition attribute set A.

For example, if A =
{

a, b, c
}

and B = {e}, then

γ{a,b,c}({e}) = |{3, 4, 6, 7}|/8 = 4/8

γ{a,b}({e}) = |{3, 4, 6, 7}|/8 = 4/8

γ{b,c}({e}) = |{3, 4, 6}|/8 = 3/8

γ{a,c}({e}) = |{3, 4, 6, 7}|/8 = 4/8

so the significance of a, b, c is calculated as follows:

σA(B, a) = γ{a,b,c}({e})− γ{b,c}({e}) = 1/8

σA(B, b) = γ{a,b,c}({e})− γ{a,c}({e}) = 0

σA(B, c) = γ{a,b,c}({e})− γ{a,b}({e}) = 0

Hence, attribute a is relatively indispensable, while, attribute b
and c can be dispensable. By experimenting, the final relative
reduction can be built.

Stage II: Sample Reduction
On the basis of the data, the features of storm surge disaster
direct economic losses. The SOM is put forward to classify the
samples automatically. The samples with high correlation degree
are gathered and retained, while the samples with low correlation
degree are separated and removed to achieve a sample reduction.

Definition 1. Self-Organizing Map (Kohonen, 1990) is an
unsupervised learning method, which can reduce the dimension
of an n-dimensional input space X to a two-dimensional output
plane, thus, forming a topology of M neurons. The weight
vector Wi(i ∈ 1, . . . ,M) represents each neuron, which is an n-
dimensional vector related to the input samples. The SOM system
schematic is described in Figure 2.

FIGURE 2 | The Self-Organizing Map (SOM) system schematic.
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Definition 2. In the initial stage, the weight of neurons is varied to
initialize the network with different topologies. When the input
vectors are sent through the SOM neural network, each neuron
varies its position by calculating the distance between the weight
and the input vector. At time step t, a new input sample X(t) is
presented to SOM, and a winner neuron is stated:

WX(t) = arg
min

j ∈ {1, . . . ,M}
∥

∥X(t)−Wj(t)
∥

∥ (9)

Then, the weight vectors are updated,

Wi(t + 1) = Wi(t)+ η(t)9(i,WX(t))(X(t)−Wi(t)) (10)

where η(t) is a decaying learning rate and 9(i,WX(t)) is called
the neighborhood function,

9(i,WX(t)) = exp(−

∥

∥WX(t)−Wi

∥

∥

2

2σ 2(t)
) (11)

σ 2(t) is the neighborhood radius,
∥

∥WX(t)−Wi

∥

∥ is the Euclidean
distance between the neurons. After repeated iterative training,
the similar weight vectors are close, can even be clustered, while
the dissimilar weight vectors are separated.

Module 2: Forecasting Module
The prediction module mainly adopts the Marine Predators
Algorithm (MPA) to optimize the ELM. The MPA (Faramarzi
et al., 2020) was developed as a novel meta-heuristic algorithm,
which is primarily modeled on ocean predators to select an
optimal foraging strategy according to the prey location. In the
forecasting module, the position of the predator is represented
by the multi-dimensional vector composed of input weights and
hidden layer thresholds, which can determine the performance of
the ELM. Then, the optimal parameters are obtained based on the
optimization criteria. These two theoretical principles will briefly
introduce the following.

Extreme Learning Machine
Definition 1. Extreme learning machine (Huang et al., 2004)
was proposed as an easy-to-use and effective single hidden-
layer feedforward neural network method. Instead of iteratively
adjusting the weights and biases of the network, the hidden layer
parameters are assigned randomly, and the least square method
is proposed to generate the unique optimal solution. Therefore,
it has the advantages of fast training speed, avoiding over fitting,
and local optimization to a certain degree.

Definition 2. Given the original training dataset (xj,tj), where xj
is the input variables, xj = [xj1, xj2, . . . , xjn]

T ∈ Rn, and tj is the

output variables, ti = [ti1, ti2, . . . , tim]
T ∈ Rm. D is the number of

hidden neurons. The output matrix of ELM is shown as follow:

T =











t1j
t2j
...
tmj











m×N

=











∑D
i=1 βi1g(aixj + bi)

∑D
i=1 βi2g(aixj + bi)

...
∑D

i=1 βimg(aixj + bi)











m×N

,(j = 1, 2, . . . ,N)

(12)

where βi = (βi1,βi2, . . . ,βim)
T is the output weights matrix

between the ith hidden neuron and the output layer nodes,
g(·) is the activation function of the hidden layer, ai =

(ai1, ai2, . . . , aiN)
T is the input weight matrix that connects the ith

hidden layer node and input layer nodes, and bi is the bias of the
ith hidden layer node.

The above-mentioned matrix can be indicated as below:

Hβ = T (13)

where H is the hidden layer output matrix:

H =





g(a1x1 + b1) · · · g(aDx1 + bD)
· · · · · · · · ·

g(a1xN + b1) · · · g(aDxN + bD)





N×D

(14)

Definition 3. In the training dataset, the inputs samples and its
corresponding targets are already given. The input weight matrix
a and bias b can be given randomly, then the output weight
matrix β can be calculated byMoore-Penrose generalized inverse
to get its least square solution:

β = H+T (15)

where is called the Moore-Penrose generalized inverse of matrix.
Then the orthogonal projection approach is taken to calculate

H+that is H+ = HT(HHT)
−1

.
The network architecture of ELM is displayed as (Figure 3).
As mentioned above, the input weight matrix a and bias b are

the two crucial parameters that are presented in ELM.

Marine Predators Algorithm
According to the theory of “survival of the fittest,” the predator
determines the optimal strategy ensuring a reasonable contact
rate with the prey. The MPA starts from the initial stage of
the population, then goes through the three optimization stages
considering different speed ratio and simultaneously simulating
the whole life cycle of the predator and prey.

Definition 1. At initialization stage, the initial populations for
both the prey and the predator can be randomly located in the
search space via the following mathematical expression:

U = lb+ rand∗(ub− lb) (16)

where lb and ub are the lower and upper boundaries for variables,
and rand∗is a random number in the range of 0–1. According
to the formula 14, the initial location matrix of prey can be
established, as below:

prey =









U11

U21

. . .

Un1

U12

U22

. . .

Un1

. . .

. . .

. . .

. . .

U1d

U2d
. . .

Und









n×d

(17)

In Equation (17), n is the number of search agents, while d is the
number of dimensions.

Definition 2. Inspired by the concept of survival of the fittest, the
first-class predators have the best foraging techniques. Therefore,
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FIGURE 3 | Network structure of extreme learning machine (ELM).

when establishing the Elite matrix, the fittest population is
selected as the first-class predator. On the basis of the location
information of the prey, the digit group of the elite matrix is
updated by searching and finding the quarry. At the end of each
iteration, if the first-class predator was replaced by a better one,
the Elite matrix would be altered.

Elite =









UI
11

UI
21

. . .

UI
n1

UI
12

UI
22

. . .

UI
n2

. . .

. . .

. . .

. . .

UI
1d

UI
2d

. . .
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(18)

Definition 3. In the initial iteration stage of optimization,
Iter < 1

3Max_Iter, (Iter is the current iteration, Max_Iter
is the maximum one), the prey searches for food in the
exploration field, while the predator chooses the optimal strategy
of immobility. Therefore, the location of the prey is determined
by the following equations.

Si = RB ⊗ (Elitei − RB ⊗ Ui), i = 1, 2, . . . , n (19)

Ui = Ui + P.R⊗ Si (20)

where RB indicates a vector including random numbers (based
on the normal distribution of Brownian motion), ⊗ represents
entry-wise multiplications. The P = 0.5. is a constant
number and R ∈ [0, 1] is a random number coming from a
uniform distribution. The multiplication of RB and prey imitates
its movement.

Definition 4. In the intermediate iteration stage of optimization,
1
3Max_Iter < Iter < 2

3Max_Iter, not only do the prey and
predator change their positions to seek food, but they also
move at the equal velocity. The population is divided into two
parts. The first part (i.e., prey) of the agents is allocated for
exploitation, and the second half (i.e., predator) is in charge of

exploration. Equation (21) imitates the movement of the first half
of the population.

Si = RL ⊗ (Elitei − RL ⊗ Ui), i = 1, 2, . . . , n�2 (21)

Ui = Ui + P.R⊗ Si (22)

where RL represents a random number vector based on the
Lévy distribution. The multiplication of RL by prey emulates the
motion of prey, while the second half of the agents perform
the following equations. The second half of the population is
represented by the following mathematical formula:

Si = RB ⊗ (RB ⊗ Elitei − Ui), i = 1, 2, . . . , n�2 (23)

Ui = Elitei + P.CF ⊗ Si,

CF = (1−
Iter

Max_ Iter
)
(2 Iter

Max_Iter
)

(24)

where CF is the adaptive parameter that controls the step size for
the predator motion.

Definition 5. In the final iteration stage of optimization, Iter >
2
3Max_Iter, the speed of prey is slower than that of predator. The
predator adopts exploitation strategy based on Lévy migration
and its location is updated as follows:

Si = RL ⊗ (RL ⊗ Elitei − Ui), i = 1, 2, . . . , n (25)

Ui = Elitei + P.CF ⊗ Si,

CF = (1−
Iter

Max_Iter
)
(2 Iter

Max_Iter
)

(26)

Definition 6. Faramarzi et al. believed that the external
environmental factors make the behavior of the population
change more or less, such as the eddy formation or Fish
Aggregating Devices (FADs) effects. In order to avoid the
local optimization, longer jumps should be considered in
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the simulation process. Hence, Equation (27) shows the
mathematical model of the FADs effects,

Ui =

{

Ui + CF[Umin + R⊗ (Umax − Umin)⊗M r5 < FADs
Ui + [FADs(1− r)+ r](Ur1 − Ur2) r5 > FADs

(27)

In Equation (27), where FADs represent the probability of
affecting the search process and is set equivalent to 0.2, and M
is the binary solution (0 or 1) corresponding to the stochastic
solution. If the array is <0.2, the array is altered to zero. If the
array is >0.2, the array is converted to one. The notation r ∈

[0, 1] defines a random number. The r1 and r2 are the random
indices of the prey.

Definition 7. An important feature of marine predators is that
they have a specific memory of their successful foraging position.
In MPA, this feature is simulated by saving the optimum solution
of the previous iteration, and the performance of each solution
of the current iteration is compared with the previous one. If it is
better, the previous solution will be replaced, which is helpful for
fast optimization.

Proposed MPA-ELM Forecasting Module
The MPA has a good ability of optimization. The input weight
matrix and bias b of ELM are optimized. The forecasting module
is constructed. The loss of training set is considered as the fitness
function of MPA, and the calculation is shown in Equation (28),

RMSE =

√

√

√

√

1

m

m
∑

i=1

(Yi − Ŷi)2 (28)

where Y is the actual value and Ŷ is the predicted value.
The pseudo code of forecastingmodule is described as follows:
The flowchart of forecasting module is shown in Figure 4, the

steps can be summarized as the following:

Step 1: Initialize positions for the prey and the predator,
construct the matrices of prey and Elite according to
Equations (17) and (18), and accomplish a memory saving.
The position coordinates of each predator are composed of
parameters a and b.
Step 2: Select the best predator. On the basis of the location
information of the prey and the previous memory of predator
to capture its food successfully, the best predator matrix
is assigned.
Step 3: Determine the update criteria according to the range
of Iter. If Iter < 1

3MaxIter, the process is in the stage 1,
execute Step 4, otherwise, execute Step 5.
Step 4: Update the solutions based on Equations (19) and
(20), and then skip to Step 8.
Step 5: If 1

3MaxIter < Iter < 2
3MaxIter, the process is in the

stage 2, execute Step 6, otherwise, the process is in the stage
3,execute Step 7.
Step 6: Update the positions of the prey and predator based
on Equations (21–24). The first half part performs Equations
(21) and (22), and the other half follows Equations (23) and
(24), and then skip to Step 8.

Algorithm 1:MPA-ELM

Fitness function:

RMSE =

√

1
m

m
∑

i=1

(

Yi − Ŷi

)2

output:

Ŷ—the forecasting direct economic losses from ELM
Parameters:

Max_Iter—the maximum number of iterations
N—the number of search agents
Fi—the fitness function of Elite i
Xi—the position of i_th search agent
lb/ub—the lower/upper bound of variables
Iter—the current iteration number
r—the random number from 0 to 1
d—the number of dimension

1 /∗Set the parameters of MPA.∗/
2 /∗Initialize search agents of Xi (i= 1, 2,..., N) randomly.∗/
3 FOR EACH i: 1 ≤ i ≤ N DO
4 Evaluate the corresponding fitness function Fi
5 END FOR
6 /∗Determine the current Elite matrix.∗/
7 WHILE (Iter< Max_Iter) DO
8 FOR EACH i=1: N DO
9 /∗Calculate the objective value of all agents.∗/

10 /∗Update the obtained solution.∗/
11 IF (Iter<Max_Iter/3) THEN
12 /∗Update all population positions in the

exploration field.∗/

13
Si = RB ⊗ (Elitei − RB ⊗ Ui), i = 1, 2, . . . , n
Ui = Ui + P.R⊗ Si

14 ELSE
15 IF (Max_Iter/3<Iter<2∗Max_Iter/3) THEN
16 FOR EACH i=1: N /2 DO
17 /∗Update the position of the first half

population.∗/

18

Si = RL ⊗ (Elitei − RL ⊗ Ui),
i = 1, 2, . . . , n�2

Ui = Ui + P.R⊗ Si
19 /∗Update the position of the second half

population.∗/

20

Si = RB ⊗ (RB ⊗ Elitei − Ui),
i = 1, 2, . . . , n�2
Ui = Elitei + P.CF ⊗ Si,

CF = (1− Iter
Max_Iter )

2 Iter
Max_Iter

21 END FOR
22

ELSE If (2∗Max_Iter/3<Iter<Max_Iter) THEN
23 /∗Update all population positions in the final

stage.∗/

24

Si = RL ⊗ (RL ⊗ Elitei − Ui),
i = 1, 2, . . . , n
Ui = Elitei + P.CF ⊗ Si,

CF = (1− Iter
MaxIter )

(2 Iter
MaxIter )

25 END IF
26 END IF
27 END FOR
28 /∗ Using FADs effect and update current agent based on

Equation. (27).∗/
29 Iter=Iter+1
30 ENDWHILE
31 RETURN Xi

∗

32 Set the weight and bias of the ELM according to Xi
∗

33 Input the testing data into ELM to obtain the forecasting
value Ŷ
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FIGURE 4 | The flowchart of marine predators algorithm (MPA)-ELM forecasting module.

Step 7: Update the positions of the prey and predator based
on Equations (25) and (26), and then skip to Step 8.
Step 8: Apply the model of the FADs effects using Equation
(27), and then skip to Step 9.
Step 9: Evaluate the objective function, and then skip to
Step 10.
Step 10: Determine whether the termination condition is
satisfied. If it is met, the program ends, and the best position
parameter is the output. Otherwise, skip to step 2.
Step 11: Obtain the optimal ELM.
Step 12: Calculate the error, output the predicted result.

Module 3: Evaluation Module
In order to evaluate the effectiveness of the proposed system, an
evaluation module is provided. There is no unified standard to
confirm the validity of various models. Therefore, by consulting
the relevant literature in the field of prediction (Wang et al.,
2018; Gu et al., 2021), a variety of error metrics are adopted in
this paper, including mean square error (MSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE),
PMSE, PMAE, and PMAPE, as shown in Table 2. Where m
represents the number of testing data, A and F represent the
collected and predicted economic losses data, respectively. The
A is the average value of the actual data, and F is the average
value of forecasting results. Specifically, MSE, MAE, and MAPE
can be considered to evaluate the forecasting accuracy, and
the smaller value of these indicators shows better forecasting
performance. Performance improvement percentage indicators
namely PMSE, PMAE, and PMAPE further evaluate the
improvement between different models to quantitatively describe
the degree of performance improvement. The evaluation module
evaluates the forecasting accuracy, the degree of performance
improvement, and the forecasting ability of the system. In
summary, six indicators are selected, which can focus on a
comprehensive scientific evaluation.

TABLE 2 | Performance metric rules.

Metric Definition Equation

MSE The average of m error

squares

MSE = 1
m

m
∑

i=1

(Ai − Fi )
2

MAE The mean absolute error of

forecasting results

MAE = 1
m

m
∑

i=1

|Ai − Fi |

MAPE The average of m absolute

percentage errors

MAPE = 1
m

m
∑

i=1

∣

∣

∣

(Ai−Fi )
Ai

∣

∣

∣
× 100%

PMSE The improvement rate of

MSE between model 1 and

model 2

PMSE =
(

MSE1−MSE2
MSE1

)

× 100%

PMAE The improvement rate of

MAE between model 1 and

model 2

PMAE =
(

MAE1−MSE2
MAE1

)

× 100%

PMAPE The improvement rate of

MAPE between model 1

and model 2

PMAPE =
(

MAPE1−MAPE2
MAPE1

)

× 100%

THE DIRECT ECONOMIC LOSS
FORECASTING SYSTEM

A new hybrid forecasting system RS-SOM&MPA-ELM is
proposed for the prediction of the direct economic losses
caused by storm surge disasters. Figure 5 illustrates the hybrid
forecasting framework of our proposed new hybrid approach.
The proposed hybrid approach is generalized as given below:

Step 1: Data collection and processing. Before being input to
the model, the data is processed into a pattern that meets its
requirements, including data normalization, discretization,
and processing of the training format. At the same time, the
data set is divided into training data set and testing data set.
Step 2: Attribution and sample reduction. Rough sets are
proposed to reduce initial attributes, and the key features
affecting the direct economic losses are selected. The decision
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FIGURE 5 | The forecasting framework of forecasting system.

table, composed of normalized and discretized data sets
of direct economic loss factors of storm surge disasters,
is reduced by positive region reduction rules and by
dependency reduction rules. Then, according to the features
extracted from RS, disaster-related parameters of several
storm surge are input into the SOM as the initial training
set. Subsequently, sample sets that contribute to improving
prediction performance are selected as the new training set.
Step 3: The MPA optimization. First, the parameters of ELM
are initialized. Second, ELM is embedded into the MPA for
calculation, including the input weight and the bias update.
Finally, after the embedded model training is completed,
the algorithm judgment conditions are checked to determine
whether the maximum iteration times has been satisfied. If
the requirement is met, the optimized parameters are output,
otherwise, repeat the above process.
Step 4: Final system performance test. After the completion
of the third step, the optimized model is obtained, the
test data set is input into the forecasting module. Then,
the result is output, and the forecasting performance
is tested.

EXPERIMENTS

To verify the superior performance of the system and to
ensure the diversity of data, experiments were carried
out on the data of three provinces. The experimental
environment is macOS 10.14.6, on a system with an Intel(R)
Core CPU (Core-i5 2.6 GHz), and 8G RAM. Different
tools were used to implement the methods of this paper.
Rough sets were implemented in Python 3.8.3, and all the
other models were implemented in the MATLAB R2016b
software package.

Experimental Data
This study involves 19 variables, including 18 characteristic
variables of attribute sets and direct economic losses of storm
surge disasters. This paper selected 60 relatively complete
records of storm surge disasters in Guangdong, Zhejiang
and Fujian provinces from 1989 to 2019 as the research

TABLE 3 | Data sources.

Variables Source

Maximum storm surge (cm) Fujian Marine Disaster Bulletin,

2012–2021; Zhejiang Marine Disaster

Bulletin, 2012–2021; Guangdong

Marine Disaster Bulletin, 2014–2021;

Nanhai Marine Disaster Bulletin,

2016–2021; China Marine Disaster

Bulletin, 2020–2021, Collection of

Storm Surge Disasters Historical Data

in China 1949–2009, (Yu et al., 2015)

Maximum wind speed at landing (m/s)

Central air pressure at landing (hPa)

Damaged area of crops (1,000 HA)

Affected area of aquaculture (1,000 HA)

The length of marine engineering damage

(km)

The number of damaged vessels

The disaster-affected population (10,000)

GDP per capita (CNY) Guangdong Statistical Yearbook,

1990–2020; Zhejiang Statistical

Yearbook, 1990–2020
Population density (people/km2 )

Proportion of primary industry in GDP (%)

Per capita disposable income of urban

households (CNY)

Number of doctors per 10,000 people Fujian Statistical Yearbook,

1990–2020; China social statistical

yearbook, 2006–2020
Number of beds per 10,000 people

Number of medical institutions

Local fiscal revenue (CNY100M)

Per capita disposable income of rural

households (CNY)

Mariculture area (1,000 HA) China Agricultural Statistical Report,

1990–2017; China Marine Statistical

Yearbook, 1993–2017
Sown area of crops (10,000 mu)

objects (Because there are no complete storm surge samples
collected in 2020 and 2021, the selected samples extend to
2019). To ensure the validity and dependability of the data,
the relevant data obtained are from the public sources in
Table 3.

Normalization and Discretization
Each sample in the original data table has 19 different attributes,
and each attribute represents different meanings about the
economic losses caused by storm surges disasters, including data
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about the natural attributes of storm surges and information
about the affected areas. Each group of data has different
dimensions. To eliminate the dimensional influence between
indicators and to speed up the training speed, the general data
processing method should be the normalization before entering
data into the model. The normalization calculation method is
shown in Equation (29), where xj is the input data of the j-th node
in the input layer of the model, xmax and xmin are the maximum
and minimum values of the input sequence, respectively, and xj
is the normalized data with the range of [0, 1].

xj =
xj − xmin

xmax − xmin
(29)

To reduce the attributes based on rough set theory, it is
necessary to initially discretize the data. The sample variables
are divided into several intervals, and each interval is regarded
as a category. This process of categorizing data variables is
often called discretization. All values within each category are
mapped to the same value, converting the actual value to a
numeric attribute of the symbol. The equal distance partition
algorithm is proposed for discretization. After discretization, the
original decision table is replaced by a new decision table of
numerical attributes.

Experimental Design
To verify the effectiveness and robustness of the developed
prediction system, two experiments will be done, denoted as
Experiment I: compared with the traditional single models,
Experiment II: compared with the improved hybrid models.

To verify the superiority of the proposed RS-SOM&MPA-
ELM forecasting system in predicting the economic losses
caused by storm surge disasters, some forecasting models are
selected as comparison models. Therefore, the single neural
network algorithmmodels, different hybridmodels, and different
optimization algorithm-based models are considered. To sum
up, eight comparative models are established to evaluate the
developed hybrid forecasting system. These comparison models
are listed in Table 4.

To ensure the fairness of the comparison between the models,
the basic parameters of each algorithm are set according to the
default values. To ensure fairness, some parameter settings in
the original literature are maintained for competing models,

TABLE 4 | Comparison models.

Experimental Comparison models

Experimental I BPNN

SVM

ELM

Experimental II RS+SOM+BPNN

RS+SOM+SVM

RS+SOM+ELM

MPA+ELM

RS+SOM & PSO+ELM

while some parameters are shared. For example, the number
of iterations or the frequency of training of all models is set
to 50, and each model was performed 250 times to output
statistically stable results. To judge the number of SOM clustering
categories, two, three, and four values are selected to do the
experiment. The results show that 60 samples are classified
according to the occurrence time. To reflect the classification
features to the greatest extent and to ensure the sufficient
number of samples, the optimum clustering numbers of SOM is
determined as 2. The BPNN and ELM adopt Sigmoid function as
the activation function. The Radial Basis Function is adopted in
SOM and SVM as kernel function. The regularization parameter
C and kernel parameter in all SVM-based comparison models
are searched in grid ranges of [2−8, 28] and [2−5, 25] with
step 0.5. The specific experimental parameters are shown in
Table 5.

Moreover, due to the uncertainty of the occurrence of storm
surge disasters and the incompleteness of statistical data, the
economic loss forecasting of storm surge disasters exhibited the
characteristics of small sample size. In the proposed system and

TABLE 5 | Experimental parameter values.

Models Experimental parameter Default value

BPNN Neuron number in the input layer 5

Neuron number in the hidden layer 7

Neuron number in the output layer 1

Number of the hidden layer 5

Learning velocity 0.1

Training requirements precision 0.00004

Maximum number of trainings 50

SVM Penalty parameter 50

Value of gamma in kernel function 0.2

Setting type 3

Value of epsilon in loss function 0.05

Maximum number of errors 0.1

ELM Neuron number in the input layer 19

Neuron number in the output layer 1

Number of the hidden layer 1

SOM Neuron number in the input layer 5

Neuron number in the output layer 2

Learning rate 0.5

Maximum number of trainings 50

MPA Search agents number 30

FADs 0.2

Constant number P 0.5

Random index of agents 0 to 1

Maximum number of iteration times 50

PSO Population scale 20

Acceleration constant C1 1.49445

Acceleration constant C2 1.49445

Speed limit 0.1 to 0.2

Variable value −10 to 10

Maximum number of iteration times 50
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TABLE 6 | Forecasting performance of comparison models.

Models MSE MAE MAPE (%)

Model 1 17.5536 4.1327 36.9559

Model 2 6.7561 2.4689 21.9069

Model 3 3.5866 1.8464 16.5293

Model 1: BPNN, Model 2: SVM, Model 3: ELM.

comparison models, two groups of data are proposed as the
testing set, which are the economic loss samples of regional
storm surge disasters in 2019 and 2018. At the same time, two
storm surges are coded sequentially: the first sample and the
second sample. The remaining samples constitute the initial
training data set. The SOM is proposed to, respectively, select the
corresponding new training set for the samples. The results are as
follows. The new training set of the first sample is from sample 35
to sample 59, whereas that of the second sample is from sample
34 to sample 58. Subsequently, for the five attributes selected by
RS, the test and error test should be carried out by minimizing
the MAE and the MAPE of the training set to verify whether all
of them are input. The results show that in the training set of
test samples, regardless of which of the five factors selected by
RS is removed, good performance is not obtained. Hence, five
attributes are determined as the input of forecasting module.

Experiment I: Comparison With the Traditional Single

Models
In Experiment I, three single models are adopted for forecasting
through the comparison of performance forecasting standards,
where BPNN and SVM are the most popular machine learning
models. The ELM is the method related to the forecasting model
that we use. Researchers have shown that these models have good
performance in forecasting. All the performance metrics of each
single model are shown in Table 6.

For the direct economic losses forecasting, in terms of the
comparison among the results of single models, ELM has the
best forecasting performance, followed by SVM and BPNN. The
difference of calculation results of the threemodels shows that the
ELM for this kind of structure is more suitable for the considered
problem. Therefore, it is selected as the basic forecasting module
of the proposed forecasting system. Although ELM results are
better than the other two models, the forecasting results of single
model are not ideal.

Experiment II: Compared With the Improved Hybrid

Models
In Experiment II, a series of hybrid methods are selected to
apply to multi factor forecasting. Taking proposed forecasting
method ELM as an example, the first type of hybrid approaches
only employed the forecasting module (MPA-ELM), the second
type of hybrid approaches only conducted a reduction operation
(RS+SOM+ELM), whereas another type of hybrid approaches
only changed the optimization algorithm for the proposed
model (RS+SOM&PSO+ELM).

After attribute reduction on the basis of RS, five attributes
are obtained: the length of marine engineering damage C6, the
disaster-affected population C8, proportion of primary industry
in GDP C11, mariculture area C14, and the number of beds
per 10,000 people C17. Through SOM neural network training,
according to the occurrence time of storm surge, 60 storm surge
samples are divided into two groups: one group comprised of 32
storm surges from 1989 to 2008, and the other group comprised
of 28 storm surges from 2008 to 2019. The recent storm surges
were selected as the testing samples, and the storm surges samples
from 2008 to 2017 were selected as the training set.

After training, the parameters of the proposed model and
other models for forecasting are obtained. The MSE, MAE,
and MAPE [Equation (24)] are used as indices to evaluate the
forecasting performance. To ensure the reliability and stability
of forecasting results, considering the inherent randomness of
MPA and ELM, these models run 250 times, and the average
forecasting value is taken as the final result.

The comparison between the results obtained by the above
hybrid models and by the actual values is shown in Table 7. The
MSE, MAE, and MAPE for the predicted values of each model
are listed in Table 8. The IR between different approaches is
presented in Table 9. The results of the tables also demonstrate
the following:

(1) The experimental results show that the forecasting
performance of all hybrid models is better than that of the
single models.

(2) The proposed system significantly outperformed all models
compared in terms of level of accuracy for the forecasting of
direct economic losses caused by storm surge disasters. This
verifies that the proposed forecasting system is an effective
tool for forecasting direct economic losses caused by storm
surge disasters, with the lowest MSE, MAE, and MAPE of
0.0133, 0.1154, and 1.0313%, respectively.

(3) Table 9 displays the contribution of reduction module
operation in attribute reduction and sample selection, in
which Models 1, 2, and 3 represent BPNN, SVM, and ELM,
respectively, and Models 5, 6, and 7 refer to approaches
that, respectively, combined RS-SOMwith the abovemodels.
For each corresponding group, Models 5–7 outperformed
Models 1–3, respectively, according to the positive IR
values. Through the positive PMAPE and PMAE criteria,
the results clearly show that the models with the reduction
module obtained higher levels of forecasting accuracy, which
indicates that reduction module is very helpful to improve
forecasting performance. Thus, it is particularly significant
to master the features and preprocess the data.

(4) The performance of the models with the optimization
algorithm is better than other models, which proves that
the optimization algorithm can significantly improve the
forecasting ability and stability of the model. Among them,
the model with MPA algorithm is better in forecasting
performance, and the optimization time is relatively short.

(5) The forecasting performance of model 9 is improved
compared with models 5 and 6. The performance of the
models with forecastingmodule is better than that with other
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TABLE 7 | Predicted results of testing set.

Comparison models

Sample number MPA+ELM RS+SOM+BPNN RS+SOM+SVM RS+SOM+ELM RS+SOM+PSO+ELM RS+SOM+ MPA+ELM Actual value

1 12.7953 11.8747 11.2483 11.2016 11.1858 11.1700 11.0400

2 13.2193 12.5694 11.2292 11.2173 11.2163 11.4908 11.3900

TABLE 8 | Forecasting performance of hybrid models.

Hybrid models Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

MSE 3.2123 1.0141 0.0341 0.0279 0.0255 0.0133

MAE 1.7923 1.0071 0.1846 0.1672 0.1598 0.1154

MAPE (%) 15.9800 8.9577 1.6493 1.4900 1.4228 1.0313

Model 4: MPA+ELM, Model 5: RS+SOM+BPNN, Model 6: RS+SOM+SVM, Model 7:

RS+SOM+ELM, Model 8: RS+SOM+PSO+ELM, Model 9: RS+SOM+MPA+ELM.

TABLE 9 | IR between different approaches.

Models PMSE (%) PMAE (%) PMAPE (%)

Model5→ Model1 94.2228 75.6309 75.7611

Model6→ Model2 99.4953 92.5230 92.4713

Model7→ Model3 99.2221 90.9445 90.9857

Model9→ Model4 99.5860 93.5613 93.5463

Model9→ Model5 98.6885 88.5414 88.4870

Model9→ Model6 60.9971 37.4865 37.4704

Model9→ Model7 52.3297 30.9809 30.7852

Model9→ Model8 47.8431 27.7847 27.5162

Model 1: BPNN, Model 2: SVM, Model 3: ELM, Model 4: MPA+ELM, Model 5:

RS+SOM+BPNN, Model 6: RS+SOM+SVM, Model 7: RS+SOM+ELM, Model 8:

RS+SOM+PSO+ELM, Model 9:RS+SOM+MPA+ELM.

forecasting models. In general, BPNN and SVM showed
strong performance in the forecasting field in the past,
but poor performance in this research framework. This is
primarily due to the characteristics of the disaster loss data,
small sample problems, and the instability of forecasting
results. The stability and forecasting performance of the
system RS-SOM &MPA-ELM proposed in this paper is
superior to that of the existing methods.

SUMMARY

According to the performance comparisons of both single
models and hybrid models above, it is obvious that the
forecasting results of RS-SOM&MPA-ELM are better than
other models. Moreover, the forecasting performance of hybrid
models is better than that of single models. In addition, some
interesting phenomena are found during the study, as noted
briefly below:

(1) The results of hybrid models are better than those of
single models, and these single models cannot directly

obtain satisfactory results. The main factors that affected the
forecasting results are the redundancy and the non-linearity
of the original influence factors. It is necessary to preprocess
the direct economic loss factor table of storm surge disasters,
so as to further improve the forecasting accuracy.

(2) In the contrast experiment, with or without RS-SOM, the
forecasting results of the models with RS-SOM are better
than those without RS-SOM. The RS can remove the
redundant factors and screen out the key factors to improve
the accuracy of forecasting. When the samples are clustered
by SOM, there is a significant correlation between the sample
classification and the occurrence time of storm surges. Other
samples within 10 years (including 10 years) from the
occurrence time of forecasting samples are more relevant to
their data. This paper attempts to explain the reasons for this
result: if the time interval between the two storm surges is
longer, the gap between the industrial structure, economic
level, forecasting technology level, and social management
level is larger. The items causing economic losses are also
different. On the contrary, the closer the occurrence time is,
the higher the similarity of samples will be.

(3) In this work, risk of disaster-caused factors are not selected
as critical factors, and different factors are chosen in other
papers. Different methods and different samples lead to
different choices, but the forecasting performance of the
proposed approach is good, which verifies the rationality
of the factor selection. However, it can be considered that
different feature selection methods can be proposed for
cross-validation in future work.

(4) Compared with the comparison models, the new forecasting
system can obtain better accuracy in the forecasting of direct
economic losses caused by storm surge disasters. The data
presents the characteristics of small samples. Therefore, the
forecasting system can be applied to other areas for small
sample forecasting, such as economic loss forecasting for ice
disasters, red tides, tsunamis, and other disasters, short-term
time series forecasting, and so on.

(5) Although the proposed hybrid model has been verified
to have a good forecasting ability in the small sample
forecasting of economic losses caused by storm surge
disasters, it still has some limitations and needs to be
improved. First of all, in terms of data, the collection of
economic loss evaluation index of storm surge disasters
is limited by the practical difficulty, and the initial 18
index selection is subjective. Secondly, although the
proposed optimization algorithm MPA improves the
forecasting accuracy, it increases the forecasting time and
the model complexity.
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CONCLUSIONS AND FUTURE WORK

Storm surge disaster is the most serious source of marine disaster
losses, which causes massive losses to coastal areas every year.
Reasonable disaster loss assessment and forecasting help to carry
out disaster management and reduce losses effectively. Therefore,
direct economic loss forecasting of storm surge disasters has
become an important topic. The proposed RS-SOM&MPA-ELM
system is composed of three modules: one of which is the
reduction module of RS-SOM, the second is the forecasting
module of MPA-ELM, and the last is the evaluation module.
The reduction module reduces the attributes and samples of
the initial data simultaneously, to obtain the key input set of
the forecasting module. In terms of model performance, the
training set processed by reduction module performs better on
single ELMmodel, the PMAPE can reach 90.9857%. The random
allocation parameters of ELM are selected and optimized by
MPA. Experimental results show that the performance of the
system optimized by MPA is better than that of RS+SOM+ELM
model. The improvement rate of MAPE between the models
is 30.7852 %. Based on the data sets of storm surge disasters
in Fujian, Zhejiang, and Guangdong, the proposed forecasting
system is effective. The module is friendly to small sample
forecasting, and the performance of the proposed system is better
than other comparison models.

In the article, all the data are numerical data, while multi-
source data can be added to the later system. At present, we
focus on the samples under normal circumstances. In the future
research, we would focus on the special sample data and pay

more attention to huge disasters with extreme risks. It would be
expected to establish a forecasting systemwith good performance
for sparse samples.
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