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Nanoplastics (NPs) are ubiquitous in harvested organisms at various trophic levels, and
more concerns on their diverse responses and wide species-dependent sensitivity are
continuously increasing. However, systematic study on the toxic effects of NPs with
different functional group modifications is still limited. In this review, we gathered and
analyzed the toxic effects of NPs with different functional groups on microorganisms,
plants, animals, and mammalian/human cells in vitro. The corresponding toxic
mechanisms were also described. In general, most up-to-date relevant studies focus
on amino (−NH2) or carboxyl (−COOH)-modified polystyrene (PS) NPs, while research
on other materials and functional groups is lacking. Positively charged PS-NH2

NPs induced stronger toxicity than negatively charged PS-COOH. Plausible toxicity
mechanisms mainly include membrane interaction and disruption, reactive oxygen
species generation, and protein corona and eco-corona formations, and they were
influenced by surface charges of NPs. The effects of NPs in the long-term exposure
and in the real environment world also warrant further study.

Keywords: nanoplastic, functional group modification, surface charge, toxic effect, mechanism

INTRODUCTION

Plastics discarded into the environment has become a global concerned pollution (Alak et al.,
2021; Zhang et al., 2021). Microplastics, especially nanoplastics (NPs, smaller than 1 µm), could
more likely to penetrate the cell membranes and impose adverse impacts on living organisms
(Shen et al., 2019). However, due to limitations in quantitative detection, the varying effects of
their environmental concentrations are still unclear, although Schirinzi et al. (2019) reported traces
of nano-sized polystyrene (PS) in estuarine and surface waters of the West Mediterranean Sea.
Toxicities of NPs on development, behavioral alterations, and oxidative stress have attached great
importance in various organisms (Duan et al., 2020). Ultimately, they may cause hazards to human
health (Sun M. et al., 2021).
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The aged plastics through photo-degradation, biodegradation,
hydrolysis, and mechanical abrasion in the environment, will
result in different surface modifications in NPs. Negatively
charged NPs, such as the carbonyl groups (−COOH), are
expected to be the most common ones due to surface oxidation
and acquisition of functionalities during the weathering (Luan
et al., 2019). Positively charged NPs, such as amino modification
(−NH2), may also consider as an important counterpart due to
the hydrolyzation of polyamides (Wang et al., 2019). However,
compared with morphology and size (Aznar et al., 2019; Cheng
et al., 2020), the presence of functional groups on the surface
modifications of plastic polymers working on their toxicological
effects remains to be systematically studied.

Thus, the toxic effects of NPs, with different functional groups
or without modification (bare NPs), were reviewed and compared
on microorganisms, plants, animals, and mammalian/human
cells in vitro in the present study. We aim to provide some
new information concerning on the health risk of NPs in
the environment.

BIBLIOMETRIC ANALYSIS

The keywords used in the bibliographic search were as
follows: “nanoplastics, toxic mechanism, toxic effects, surface
modification, and functional group” or “nanoplastics, toxic
mechanism, toxic effects, and amino-modified” or “nanoplastics,
toxic mechanism, toxic effects, and carboxyl-modified” in
Science Direct database and Web of Science database from
January 2012 to December 2021. A total of 477 references
were obtained, including review articles and research articles.
Abstracts of the retrieved publications were reviewed separately
to screen the relevant literature. Only studies that involved
the toxic effects and/or toxic mechanisms of NPs researched
on organisms were selected for further analysis. Literature
that did not specify whether NPs were modified, or the
information of NPs was incomplete, or the toxic mechanisms
were not assessed based on organisms, were excluded. In
addition, a manual review of the reference lists of the selected
publications was conducted to recover articles not included
in the bibliographic search. Eventually, 6 review articles and
59 research articles (summarized in Table 1) were screened,
accounting for approximately 13.6% of the total. The numbers of
manuscripts talked about the functional groups including:−NH2
(48), −COOH (40), −COC (1), −SO3H (3), −CNH2NH2

+(1),
and bare NPs (19).

Cite Space software (5.8.R2, 64 bit) and Origin Pro 9.0
(Origin Lab Corp., Northampton, MA, United States) were used
to perform visualization and bibliometric analysis, mainly for
the number of annual publications and keyword co-occurrence
analysis. As shown in Figure 1, the number of published
articles on NPs increased from 2 in 2012 to 272 in 2021,
which indicated that the toxicity of NPs played important roles
in relevant studies. However, only 11 studies compared the
toxicities of NPs with different functional groups in 2021. The
co-occurrence network (Figure 2) showed that Caenorhabditis
elegan, Artemia franciscana, Daphnia magna, mussel, oyster,

and algae were the main species used in the previous
studies. The main toxic effects included growth, behavior,
apoptosis, and cytotoxicity. The main toxic mechanisms
discussed involved oxidative stress, accumulation, activation,
adsorption, ingestion, surface charge, size, aggregation, and
extracellular polymeric substance.

TOXIC EFFECTS OF NPS WITH
DIFFERENT FUNCTIONAL GROUP
MODIFICATIONS

Microorganisms
Microorganisms play important roles in the biological chain
as decomposers for the ecosystem (Liu et al., 2020). NPs can
penetrate into cells through microbial cell membranes and
destroy cell functions (Ning et al., 2021). The toxicity is greater
when the particle size is smaller (Miao et al., 2019). For example,
PS NPs of 100 and 200 nm had no effect on the growth of
Escherichia coli, whereas PS NPs of 30 nm had an increased
inhibition on bacterial growth (Ning et al., 2021).

Amino-modified NPs are usually positively charged, which
make it easier for them to get into the negatively charged
bio-membrane due to the electrostatic interaction (González-
Fernández et al., 2018; Tallec et al., 2018). Therefore, the
toxicity of amino-modified NPs was supposed to be higher than
that of carboxyl-modified NPs and bare NPs. However, to our
knowledge, only five manuscripts compared the toxicity of NPs
with different functional groups in microorganisms to date. PS-
NH2 NPs more strongly inhibited the growth of Synechococcus
and damaged the membrane integrity of Synechococcus than
PS-SO3H NPs (Feng et al., 2019). PS-NH2 NPs of 50 nm
produced a higher reactive oxygen species (ROS) level in
Halomonas Alkaliphilathan that bare PS NPs of 55 nm, and
the generated ROS may cross extracellular polymers (EPS) and
cause great damages (Sun et al., 2018). PS-NH2, bare PS, and
PS-COOH NPs caused cell membrane damage and induced
oxidative stress in activated sludge and biofilms, and PS-NH2
NPs induced the highest effect among them (Miao et al.,
2019; Qian et al., 2021). NPs inhibited the bacterial growth of
Escherichia coli in the order of PS-NH2 > PS-COC > PS-COOH
(Ning et al., 2021).

Algae and Plants
Algae-adsorbed NPs might be ingested by aquatic animals and
transmitted through the food chains, and ultimately result
in health risk to human beings (Heddagaard and Møller,
2019; Huang et al., 2020; Mateos-Cárdenas et al., 2021).
The potential risks of NPs to the algae in freshwater and
seawater have been well documented recently. The toxicity
of NPs to the algae was affected by exposure doses, particle
sizes, and types of functional groups (González-Fernández
et al., 2019). Exposure to carboxyl-modified NPs inhibited
the growth of Raphidocelis subcapitata, diatom, Chlorella
Vulgaris, Phaeodactylum tricornutum, and Rhodomonas baltica,
which was manifested in morphological changes, interference
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TABLE 1 | Summary of toxicity assessment of NPs with different functional groups.

Species NPs type Particle size Exposure
concentration

Toxic effects References

Microorganisms

Biofilms PS-bare 100 and 500 nm 5–100 mg/L Oxidative stress Miao et al., 2019

PS-NH2

PS-COOH

Activated sludge PS-bare 100 nm 100 mg /L Cell membrane damage and oxidative stress Qian et al., 2021

PS-NH2

PS-COOH

Halomonas alkaliphila PS-bare 55 nm 20–320 mg/L Inhibit growth and oxidative stress Sun et al., 2018

PS-NH2 50 nm

Synechococcus PS-NH2 50 nm 2–9 µg/mL Inhibit growth; damage the membrane integrity; changes in
metabolic; and oxidative stress

Feng et al., 2019

PS-SO3H 52.03 nm

Escherichia coli PS-bare 30–200 nm 4–32 mg/L Inhibit growth; oxidative stress; and DNA damage Ning et al., 2021

PS-NH2 200 nm

PS-COC

PS-COOH

Algae in freshwater

Pseudokirchneriella
subcapitata

PS-NH2 20 nm 10 mg/L Inhibition of photosynthesis and/or cell wall disruption Nolte et al., 2017

PS-COOH 110 nm

Raphidocelis
subcapitata

PS-COOH 88 nm 0.5–50 mg/L Interfere with mitosis and cell metabolism Bellingeri et al., 2019

Microcystis aeruginosa PS-NH2 50 nm 3.4 and 6.8 µg/mL Inhibit photosystem II efficiency; reduce organic substance
synthesis; induce oxidative stress; and enhance the
synthesis of microcystin

Feng et al., 2020

PS-SO3H – 100 µg/mL

Algae in seawater

Diatom PS-NH2 50 nm 0.05 and 5 µg/mL Inhibit photosynthesis and destroy lipid structure González-Fernández
et al., 2020

PS-NH2 500 nm 2.5 µg/mL Decrease in esterase activity and diminished neutral lipid
content

Seoane et al., 2019

Dunaliella tertiolecta PS-NH2 50 nm 5–50 µg/mL Inhibit growth and photosynthesis Bergami et al., 2017

PS-COOH 40 nm

Phaeodactylum
tricornutum

PS-COOH 60 nm 1–100 mg/L No toxic effects Grassi et al., 2020

Chlorella vulgaris PS-NH2 90, 200, and 300
nm

25–200 mg/L Inhibit photosynthesis and algal growth Khoshnamvand et al.,
2021

Rhodomonas baltica PMMA 50 nm 0.5–100 µg/mL Cell cycle injury; loss of membrane integrity; inhibition of
photosynthesis; and decrease cell viability

Gomes et al., 2020

PMMA-COOH 50 nm

Chlorella sp. PS-bare 217 nm 1 mg/L Eco-corona formation and decline the oxidative stress Natarajan et al., 2020

PS-NH2 217 nm

PS-COOH 220 nm

PS-NH2 200 nm 5 mg/L Reduced bioavailability of TiO2 and decrease oxidative
stress and enhance photosynthetic yield

Natarajan et al., 2021

PS-COOH

Terrestrial plants

Arabidopsis thaliana PS-NH2 200 nm 10, 50, and 100
µg/mL

Induced a higher accumulation of ROS and inhibit plant
growth and seedling development

Sun X. D. et al., 2020

PS-SO3H

PS-COOH 40 nm 0.029 g/L Accumulation of plastics at root surface and cap cells Taylor et al., 2020

8.3 × 1011 n/mL

Maize PS-NH2 22 nm 10–500 ng/spot Inhibit photosynthesis; inhibit growth; oxidative damage;
and upset metabolic balance

Sun H. et al., 2021

PS-COOH 24 nm

Wheat PS-COOH 40 nm 0.029 g/L Accumulation of plastics at root surface and cap cells Taylor et al., 2020

8.3 × 1011 n/mL

Aquatic animals in freshwater

Daphnia
magna-Zooplankton

PS-bare 100 nm 75 mg/L Stimulate the antioxidant system Lin et al., 2019

PS-n-NH2 50 and 100 nm 40 mg/L

(Continued)
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TABLE 1 | (Continued)

Species NPs type Particle size Exposure
concentration

Toxic effects References

PS-COOH 300 nm 70 mg/L

PS-p-NH2 110 nm 100 mg/L

PS(-CNH2NH2
+) 200 nm 50 and 150 mg/L Acute toxicity Saavedra et al., 2019

PS(-COO-)

Caenorhabditis
elegans-Zooplankton

PS-bare 35 nm 1–1000 µg/L Reproductive and gonadal developmental toxicity and
genotoxicity

Qu et al., 2019

PS-NH2

PS-bare 35 nm 1–100 µg/L Reproductive and gonadal developmental toxicity and
genotoxicity

Sun L. et al., 2020

PS-NH2

PS-COOH 200 and 500 nm 100 nm/L Reduce survival rate Yilimulati et al., 2020

PS-bare 50 and 60 nm 1–50 mg/L Effects on survival, growth, and reproduction Schultz et al., 2021

PS-NH2

PS-COOH

PS-bare 116.2 nm 1 and 10 µg/mL Change cellular behavior Kim et al., 2020

PS-COOH 110.6 nm

PS-NH2 120.2 nm

Brachionus calyciflorus-
Zooplankton

PS(-CNH2NH2
+) 200 nm 50 and 150 mg/L Acute toxicity Saavedra et al., 2019

PS(-COO-)

Coregonus lavaretus PS-COOH 50 nm 100 and 10000 pcs Decrease sperm motility and reduce offspring body mass
and impair swimming ability

Yaripour et al., 2021

Aquatic animals in seawater

Brachionus
plicatilis-Zooplankton

PS-NH2 50 nm 0.5–50 µg/mL Increase mortality rate Manfra et al., 2017

PS-COOH 40 nm

Ciona
robusta-Zooplankton

PS-NH2 50 nm 2–15 µg/mL Developmental toxicity and induced oxidative stress Eliso et al., 2020

PS-COOH 60 nm 5–100 µg/mL

Artemia franciscana-
Zooplankton

PS-NH2 50 nm 1 and 10 µg/mL Exfoliation; increase mortality rates; inhibit growth; inhibit
activity; and regulate clap and cstb gene expressions

Bergami et al., 2017

PS-COOH 40 nm

PS-NH2 50 nm 0.1–10 µg /mL Inhibit growth; inhibit gene expression; neurotoxicity; and
higher mortality rate

Varó et al., 2019

PS-NH2 50 nm 5–100 µg/mL Impair feeding, motility and multiple molting Bergami et al., 2016

PS-COOH 40 nm

Mytilus galloprovincialis
Lam.

PS-NH2 50 nm 1–50 µg/mL Stimulate increase in extracellular ROS and NO and induce
lysosomal damage and a dramatic decrease in
phagocytosis

Canesi et al., 2015

0.001–20 mg/L Induce malformations and a delay in development
dysregulation of transcription of genes and decrease in shell
length

Balbi et al., 2017

0.15 mg/L

1–50 µg/mL Increase cellular damage and ROS production and induce
lysosomal damage and a dramatic decrease in
phagocytosis

Canesi et al., 2016

10 µg/L Induce lysosomal release and a dramatic decrease in
phagocytosis

Auguste et al., 2020a

10 µg/L Dysregulation of transcription of genes and affect immune
function

Auguste et al., 2020b

Meretrix PS-NH2 100 nm 0.02–2 mg/L Inhibit growth; disrupt energy homeostasis; Digestive tubule
atrophy and necrosis; induce lysosomal damage; and
inhibit phagocytic activity

Liu et al., 2021

Sea urchin PS-NH2 50 nm 1–50 µg/mL Increase the appearance of malformations and
undeveloped embryos and effects on gene expression

Della Torre et al., 2014

PS-COOH 40 nm 2.5–50 µg/mL

PS-NH2 50 nm 1 and 5 µg/mL Induce lysosomal damage and a dramatic decrease in
phagocytosis

Bergami et al., 2019

PS-COOH 40 nm

PS-NH2 50 nm 5–25 µg/mL Induce lysosomal damage Marques-Santos et al.,
2018

Euphausia superba PS-NH2 50 nm 2.5 mg/L Increase molting and inhibit swimming activity Bergami et al., 2020

(Continued)
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TABLE 1 | (Continued)

Species NPs type Particle size Exposure
concentration

Toxic effects References

PS-COOH 60 nm

PS-COOH 40 nm

Crassostrea gigas PS-bare 50 and 500 nm 0.1–25 µmg/L Developmental toxicity and cytotoxicity Tallec et al., 2018

PS-NH2 50 nm

PS-COOH 50 nm

PS-NH2 100 nm 0.1–100 mg/L ROS generation González-Fernández
et al., 2018PS-COOH 100 nm

Mammalian animal

Mice PS-bare 100 nm 10 mg/mL Weight loss induce cell apoptosis; inflammation; structural
disorder; damage to the blood system; and lipid
metabolism disorders

Xu et al., 2021

PS-NH2

PS-COOH

PS@Bap 192 nm 0.5 mg/mL Protein corona and inhibit cell viability Ji et al., 2020

PS-bare 188 nm

Mammalian cells in vitro

Neonatal rat ventricular
myocytes

PS-NH2 50 nm 25 µg/mL Damage contractility, glycolytic homeostasis and the
mitochondrial activity of neonatal cardiomyocytes

Roshanzadeh et al.,
2021PS-COOH

Human cells in vitro

HepG2 PS-bare 50 nm 10, 50, and 100
µg/mL

Inhibit cell viability; destroy cell morphology; and damage
the antioxidant structure

He et al., 2020

PS-NH2

PS-COOH

Caco-2/HT29-MTX-
E12/THP-1

PS-bare 50 nm 1–50 µg/cm2 Reduce cell viability; cytotoxicity; and decrease metabolic
activity

Busch et al., 2020

PS-NH2

PS-COOH 50 and 500 nm 0.01–100 µg/mL No effect on cell viability Hesler et al., 2019

BEAS-2B PS-bare 60 nm 1–40 µg/mL Inhibit cell viability; increase ROS production; lead
endoplasmic reticulum stress; and induce Lysosomal,
autophagic cell death, and protein misfolding

Chiu et al., 2015

PS-NH2

PS-COOH

Calu-3 PS-bare 50 nm 0.3–32.3 µg cm−2 Decrease cell viability; induce genotoxicity; and increase
ROS production

Paget et al., 2015

PS-NH2

PS-COOH

Caco-2,
HT29-MTX-E1, RajiB
co-culture

PS-bare 50 and 100 nm 250 µg/mL Shift the translocation rates; protein corona; and membrane
integrity

Walczak et al., 2015

PS-NH2

PS-COOH

Caco-2, HT29 and
LS174T monocultures

PS-bare 60 nm 20–100 µg/mL Inhibit cell viability; induce apoptosis; and induce mucin
interaction and cell apoptosis

Inkielewicz-Stepniak
et al., 2018PS-NH2

PS-COOH

THP-1 PS-NH2 120 nm 1–100 µg/mL Inhibit cell viability and polarization and induce inflammation Fuchs et al., 2016

PS-COOH

THP-1 PS-bare 50 nm 0.3–32.3 µg cm−2 Decrease cell viability; induce genotoxicity; and increase
ROS production

Paget et al., 2015

PS-NH2

PS-COOH

Human erythrocytes PS-COOH 200 nm 50–2000 particles
cell−1

Sensitivity to osmotic, mechanical, oxidative and
complement lysis

Pan et al., 2016

Astrocyte 131N PS-NH2 50 nm 100 µg/mL Induce apoptosis and lysosomal cell death; cell membrane
damage

Wang et al., 2013

PS-COOH 40 nm

Brain capillary
endothelial cells

PS-COOH 40, 100, and 200
nm

25–100 µg/ mL Affect cell viability; particle uptake; induce inflammation;
and no cell death

Raghnaill et al., 2014

Human endothelial PS-COOH 20, 40, 100, 200,
and 500 nm

10–100 µg/mL Cell viability, particle localization, lysosome function and
integrity

Fröhlich et al., 2012

Alveolar cells PS-NH2 50 nm 100 µg/mL Interfere the mechanoadaptive capacity of alveolar cells;
cyclic stretch induces higher ROS levels in alveolar cells
treated with PS-NPs; and upregulate pro-apoptotic gene
expressions

Roshanzadeh et al.,
2020

PS-COOH
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FIGURE 1 | Total annual publications and publications from 2012 to 2021
related to this manuscript indexed in Science Direct and Web of Science.

with mitotic cycle, reduction in chlorophyll content, and
photosynthetic efficiency (Bellingeri et al., 2019). PS-NH2 NPs
with diameters of 90 and 200 nm decreased the biomass and
the content of chlorophyll a in Chlorella Vulgaris, and mall-
sized PS-NH2 NPs were more toxic than large-sized ones
(Khoshnamvand et al., 2021).

Positively charged NPs induced higher toxicology on
the algae than negatively charged NPs, which was also due
to the electrostatic interaction with bio-membrane. For
example, PS-NH2 NPs had higher adsorption ratios on
the cell surface of the algae than bare PS and PS-COOH
NPs, which limited the material transfer, gas exchange, and
energy transfer in diatom (Seoane et al., 2019; González-
Fernández et al., 2020). PS-NH2 NPs more significantly
inhibited the photo-system efficiency than PS-COOH NPs
in Pseudokirchneriella subcapitata (Nolte et al., 2017) and
PS-SO3H NPs in Microcystis aeruginosa (Feng et al., 2020).
Poly methyl methacrylate (PMMA) caused a higher impact
on cellular and physiological parameters than PMMA-COOH
(Gomes et al., 2020).

Land-based sources have been considered an important long-
term sink for NPs (Rochman, 2018). NPs could accumulate
and aggregate on the leaves of land-based plants, transfer from
leaves to stems, and finally to roots (Yu et al., 2021). However,
the toxicity of NPs to land-based plants was poorly understood
although three relevant studies were reported recently. PS-
COOH NPs mainly accumulated on the root surface and cap cells
of Arabidopsis thaliana and wheat, rather than in roots (Taylor
et al., 2020). Compared with PS-COOH NPs, PS-NH2 NPs were
more present in roots, which resulted in a stronger inhibitory
effect on photosynthesis and growth of maize leaves; they also
activated a more obvious oxidative defense mechanism (Sun H.
et al., 2021). PS-NH2 NPs induced a higher accumulation of
ROS in Arabidopsis thaliana, and they inhibited the plant growth

and the seedling development more strongly than PS-SO3H NPs
(Sun X. D. et al., 2020).

Animals and Mammalian/Human Cells
in vitro
The functional groups of NPs influenced their toxicities to
zooplankton in fresh water and seawater (Saavedra et al., 2019;
Kim et al., 2020; Gola et al., 2021). PS-NH2 NPs enhanced
the gonad development, the reproductive capacity, and the
genotoxicity to nematode (Caenorhabditis elegan) compared with
bare PS NPs and PS-COOH NPs (Qu et al., 2019; Kim et al., 2020;
Sun L. et al., 2020; Yilimulati et al., 2020; Schultz et al., 2021).
Compared with PS-COOH NPs, PS-NH2 NPs induced higher
mortality in rotifers (Brachionus plicatilis) (Manfra et al., 2017);
PS-NH2 NPs caused more effects on the molting amount, the
developmental toxicity on larval Artemia franciscana (Bergami
et al., 2016, 2017; Varó et al., 2019), larval Ciona robusta (Eliso
et al., 2020), and Daphnia magna (Lin et al., 2019); they also more
significantly reduced the swimming activity of Euphausia superba
(Bergami et al., 2020).

As for other aquatic animals, pre-fertilization exposure of
sperm to PS-NH2 NPs decreased offspring size and swimming
performance in the European whitefish (Coregonus lavaretus)
(Yaripour et al., 2021). PS-NH2 NPs stimulated the increase in
extracellular ROS, induced lysosomal damage, and decreased
shell length in two kinds of mussels, Mytilus galloprovincialis
(Canesi et al., 2015, 2016; Balbi et al., 2017; Auguste et al.,
2020a,b) and Meretrix (Liu et al., 2021). Compared with PS-
COOH NPs, PS-NH2 NPs induced severe developmental defects
and genetic regulations in the development of sea urchin
(Paracentrotus Lividus) embryos (Della Torre et al., 2014).
Nevertheless, the controversial joint effects were obtained in
some cases. PS-COOH NPs had a significant increase in ROS
production in sperm cells of Crassostrea gigas, whereas PS-
NH2 NPs did not (González-Fernández et al., 2018). In contrast
to PS-COOH, positively charged PS-NH2 seemed to affect the
antioxidant and immune genetic responses differently and to
a lesser extent in coelomocytes of the Antarctic sea urchin
(Bergami et al., 2019).

Few studies have been conducted on their toxic effects on
mammals except Xu et al. (2021) reported that PS-NH2 NPs
significantly affected the body weight of mice compared with
PS-COOH NPs. Several in vitro studies on mammalian and
human cells have also confirmed the high toxicity of positively
charged NPs. PS-NH2 NPs were more highly internalized in
neonatal rat ventricular myocytes when compared with PS-
COOH NPs, which resulted in decreased myocardial contractility
(Roshanzadeh et al., 2021). PS-NH2 NPs accumulated more
than bare PS NPs in human hepatocellular carcinoma (HepG2)
cells, and caused greater oxidative damage than PS-COOH NPs
in HepG2 cells (He et al., 2020). PS-NH2 NPs increased the
cytotoxicity and induced cell apoptosis of human BEAS-2B (Chiu
et al., 2015), Calu-3 (Paget et al., 2015), Caco-2 (Walczak et al.,
2015; Busch et al., 2020), HT29-MTX-E12 (Inkielewicz-Stepniak
et al., 2018), THP-1 cell lines (Fuchs et al., 2016; Hesler et al.,
2019), and human alveolar cells (Roshanzadeh et al., 2020). On
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FIGURE 2 | Co-occurrence network of keywords extracted from the obtained literature. The size of each node represents the occurrence frequency of the
corresponding keyword.

the contrary, bare PS NPs and PS-COOH NPs did not or were in
a lesser extent.

TOXIC MECHANISM OF NANOPLASTICS
WITH DIFFERENT FUNCTIONAL GROUP
MODIFICATIONS

This manuscript summarizes the toxic effects of NPs with
different functional groups in various organisms. Most studies
focus on PS NPs, while research on other materials of NPs
is lacking. The above mentioned studies show that NPs with
different functional groups greatly impact on the toxicity of NPs,
but most groups are concentrated in amino (−NH2) and carboxyl
(−COOH) groups. Only a few studies have been performed
on the toxic effects of other functional groups. The surface
charge of NPs considerably contribute to the toxic mechanisms
of NPs (Banerjee and Shelver, 2020; Zhao et al., 2020). Positively

charged NPs (PS-NH2) usually induce stronger toxicity than
bare NPs and negatively charged NPs (PS-COOH, PS-SO3H
NPs, and PS-COC).

In general, the stimulatory effect of exogenous particles
causes granulocytosis to generate ROS in organisms (Qin et al.,
2021). Significant decreases in the cell viability and the changed
membrane integrity due to the generation of ROS and other
cellular parameters are common toxic mechanisms in the
microorganisms, algae, plants, animals, and mammalian/human
cells in vitro we reviewed above. Positively charged NPs are more
likely to interact with the cell membranes due to the negative
charges of cell surfaces and cell walls; thus, they will generate
more ROS (Sun X. D. et al., 2020), which will result in more
effects on oxidative stresses, changes in membrane permeability,
and destruction of cell function; they even induce cell apoptosis
(Pan et al., 2016; Ning et al., 2021).

Nevertheless, the differences of toxicity mechanisms affected
by charged groups of NPs still exist among different species. For
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microorganisms, the toxic mechanism is limited to the membrane
disruption via the generated ROS (Sun et al., 2018), because
larger particles cannot be internalized. Algae and plant cells
are affected mainly by the adsorption of NPs to the surface
through disrupted/damaged membrane, aquaporins, and cell
pores, and further cause ROS generation and sequentially damage
to the photosynthesis system (Sun H. et al., 2021). As for
animal/human cells, the cellular processes of NPs internalized
into lysosomesis are also related to their different surface charges
(Fröhlich et al., 2012; Raghnaill et al., 2014). Negative NPs can
escape from lysosomes and interact with cellular components
to trigger cellular stress (Wang et al., 2013; Marques-Santos
et al., 2018; Matthews et al., 2021), whereas Positive NPs
destabilize lysosomes and initiate a cascade of cellular damage
via ROS generation due to the proton sponge hypothesis (Nel
et al., 2009). Thus, the cellular process of NPs in animals
and human beings might be more complicatedly affected by
their charged groups.

The eco-corona on the surface of NPs will be stimulated
through coating different components of natural organic matters
(NOMs; Grassi et al., 2020). The eco-corona formation enhances
the aggregation of the NPs and accompanied with the decreased
effective surface area, which will reduce the toxic impact of
NPs (Bergami et al., 2017). The formation of the eco-corona
is also influenced by the surface charge of NPs (Saavedra
et al., 2019). Negatively charged NPs are more effective to
form the eco-corona in the presence of EPS than positively
charged NPs, which helps them in more significantly lessening
the oxidative stress and cytotoxic impact on biological cells
(Natarajan et al., 2020, 2021). However, the characteristics of
the surrounding environment will significantly influence the
biological effects of eco-corona on NPs. For example, PS-
NH2 NPs are usually better dispersed than PS-COOH NPs
in nature seawater (Della Torre et al., 2014; Bergami et al.,
2019). Yet the abundance and composition of NOMs vary
significantly across different seawater bodies. Humic acids (HA),
one of the main compositions of NOMs in seawater, was
found to stabilize negatively charged NPs due to electrostatic
repulsion between negative charges and steric effect, whereas it
induced PS-NH2 NPs to agglomerate (Wu et al., 2019). Thus,
the controversial joint effects might be obtained in marine
organisms in some cases (González-Fernández et al., 2018;
Bergami et al., 2019).

In addition, the types and charges of surface chemical
modification will affect the formation of the protein corona on
NPs (Ji et al., 2020). The protein corona might be formed on the
surface of NPs when they enter the physiological environment
(Li et al., 2020). The formation of the protein corona in the
serum is considered as a general protective effect from the
potential cytotoxicity of NPs (Coglitore et al., 2019), because
they reduce NP surface energy by non-specific adsorption, which
leads to the lowered membrane adhesion and uptake efficiency
(Lesniak et al., 2013). Positively charged NPs usually adsorb more
plasma proteins than negatively charged NPs, which cause more
opportunities for them to form the protein corona (Liu et al.,
2019). Thus, positively charged NPs are hypothesized to weaken
their toxicity more than negatively charged NPs. However,

the formation of a PS-NH2-protein corona in hemolymph
serum (HS) increased the short term cellular damage and ROS
production of PS-NH2 toward immunocytes (Canesi et al.,
2016), because NP-protein complexes were hypothesized to
function as recognizable molecular patterns to be cleared by
phagocytic cells (Hayashi et al., 2013). In addition, the enhanced
formation of the protein corona on positively charged NPs
will promote their “Trojan-horse effect” on other pollutants
(Matthews et al., 2021). The studies on the biological effects
of NPs with the protein corona are still in the initial stage.
Most of recent results obtained were in vitro, which do not
entirely reflect a realistic exposure scenario in vivo. More
efforts should be contributed on the specific cell biological
behavior of various NPs in the real environment, not limited
to their effects on cell uptake efficiency and biocompatibility
(Qin et al., 2021).

CONCLUSION AND RESEARCH
PROSPECTS

In sum, amino-modified polystyrene nanoparticles (PS-NH2)
usually induce stronger toxicity than modified NPs, due to their
positively charge characteristics. Positively charged NPs are more
likely to interact with the cell membranes and generate more
ROS than negatively charged NPs, which is mainly due to the
negative charges of cell surfaces and cell walls. Nevertheless, there
are still some differences existed among different species in the
toxicity mechanisms of NPs affected by charged groups. The
biological effects of NPs with the eco-corona and protein corona
also contribute a lot to their differentiate toxic mechanisms.
The exact environmental distributions of these functional group-
modified NPs are unclear to date due to the limitations of
quantitative detection. The mass balance of NPs between intake
and excretion in organisms is also far from being established.
Thus, the transmission of these modified NPs on organisms needs
to be further researched. Reducing the inherent toxicity of NPs
will be an urgent topic due to the substantial environmental
problems they induced. The effect of NPs in the long-term
exposure and in reality should also be explored.
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