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Deoxyribonucleic acid methylation and gene transcription have been proved as two

underlying mechanisms involved in rapid plastic response to environmental stresses.

However, it remains elusive on how DNA methylation regulates gene transcription

under acute and recurring environmental challenges to form the stress memory, further

contributing to invasion success during range expansions. Using a model invasive

species Ciona robusta, we investigated the regulatory roles of DNA methylation on

gene transcription and their contribution to the formation of stress memory at 30

genes under acute and recurring osmotic challenges simulated during the invasion

process. We found the bimodal distribution of methylation level for the 68 mCpGs

identified across all the genes after challenges, but only five sites were significantly

correlated with the expression of their corresponding genes. These genes participated

in the biological processes of Ca2+ transport and metabolism of lipid and proline. At

the DNA methylation level, we found two early-responding and four tardy-responding

sites of stress memory and these sites were functionally related to genes involved in

the biosynthesis of proline, metabolism of lipid, and transport of taurine and Ca2+.

At the transcriptional level, three tardy-responding and five early-responding memory

genes were involved in the transport of ions, regulation of water channels, biosynthesis

of taurine, and metabolism of lipid. Altogether, the findings here suggest that DNA

methylation and gene transcription should work in concert to facilitate the formation

of stress memory, thus further improving the performance of invaders under recurring

environmental challenges during biological invasions.

Keywords: biological invasion, DNA methylation, gene transcription, rapid response, stress memory

INTRODUCTION

Nowadays, species constantly suffer from various environmental challenges derived from multiple
interacting factors such as global climate change and frequent anthropogenic activities. The ability
of species to rapidly respond and adapt to fluctuating environments is pivotal for their survival,
particularly for invasive species. During the multi-stage invasion process, invaders are constantly
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and inevitably challenged by acute and recurring environmental
stresses (Zhan et al., 2017; Li et al., 2020). Taking shipping-
mediated range expansions as an example, marine invaders
adhered to the hull of shipping vessels or sucked into ballast
tanks must endure severe environmental challenges during
subsequent shipping voyages such as salinity and temperature
fluctuations ∼15% and ∼20◦C, respectively (Briski et al., 2013).
Such dramatic environmental fluctuations can be recurring
during the whole shipping voyage such as during ballast water
exchanges and environmental changes in trans-oceans (Ibrahim
and El-Naggar, 2012; Gollasch and David, 2021). However, the
underlying mechanisms of rapid environmental adaptation and
assimilation still remain elusive.

Recent studies have largely dissected the crucial roles of
phenotypic plasticity in rapid environmental response and
adaptation (Heckwolf et al., 2020; Liew et al., 2020; Huang
and Zhan, 2021). Among several well-studied mechanisms for
phenotypic plasticity, DNA methylation represents a rapidly
functional strategy by effectively regulating multiple downstream
biological processes such as gene expression (Ozaki et al., 2017).
For the marine invader Ciona savignyi, remarkable divergence of
genome-wide DNAmethylation patterns could be rapidly (∼1 h)
detected after acute osmotic and thermal stresses, suggesting
DNA methylation as a potential facilitator of rapid response
under environmental challenges (Huang et al., 2017). For the
lizard colonizing new habitats, alterations in DNA methylome
were functionally related to the genes responsible for rapid
response to environmental shifts (Hu et al., 2019). Methylation
of inducer of CBF expression 1 (ICE1), a transcription factor
required for activation and regulation of the C-repeat (CRT)-
binding factor (CBF) pathway under cold conditions, was verified
to participate in rapid response and adaptation of plant species
(Xie et al., 2019, 2020). All the available evidences support that
DNA methylation-mediated phenotypic plasticity could produce
adaptive phenotypes more rapidly, thus “buying time” for genetic
adaptation to catch up under rapidly changing environments
(Heckwolf et al., 2020). Interestingly, organisms could remember
past environmental stresses and respondmore rapidly or robustly
under the subsequent same stresses, a phenomenon termed as
“stress memory” (Ding et al., 2012). Several studies have revealed
the existence of DNA methylation-mediated stress memory

Abbreviations: mCpGs, methylated CpG sites; Igf2, insulin-like growth

factor 2; CTAB, cetyltrimethylammonium bromide; NCBI, national center for

biotechnology information; HISAT2, hierarchical indexing for spliced alignment

of transcripts 2; CHG, CHG trinucleotide, where H stands for A, T or

C; CHH, CHH trinucleotide, where H stands for A, T or C; PNPLA8,

patatin like phospholipase domain containing 8; PLA2G6, phospholipase A2

group VI; NKCC, Na-K-Cl cotransporter; KCNN2, potassium calcium-activated

channel subfamily N member 2; NHE, sodium-hydrogen exchanger; CACNA1S,

calcium voltage-gated channel subunit alpha1 S (L-type); NCC, sodium-chloride

transporter; SHMT2, Serine hydroxymethyltransferase 2; DGAT1, diacylglycerol

O-acyltransferase 1; GLDC, glycine decarboxylase; CSAD1, cysteinesulfinic acid

decarboxylase; MOGAT2, monoacylglycerol O-acyltransferase 2; NKA, Na+-K+-

ATPase; ACC, Acetyl-CoA carboxylase; CACNA1I, calcium voltage-gated channel

subunit alpha1 I (T-type); CACNA1C, calcium voltage-gated channel subunit

alpha1 C (L-type); UTR, untranslated region; EGR2, early growth response protein

2; IBM1, increase in BONSAI methylation 1; BDNF, brain-derived neurotrophic

factor; FOXA2, forkhead box A2.

under environmental cues. For rice cultivars, DNA methylation
could regulate the activity of transposable elements and gene
expression to cope with the recurring drought stresses (Kou
et al., 2021). DNA methylation-mediated stress memory could
also contribute to the enhanced tolerance for Boea hygrometrica
under recurring dehydration stresses via upregulation ofmemory
genes related to the accumulation of oligosaccharides and
vacuolar amino acids (Sun et al., 2021).

Despite the fact that the functions of phenotypic plasticity
in rapid environmental response have been well-accepted, its
downstream regulatory roles are still under hot debates (Foret
et al., 2012; Neri et al., 2017; Li et al., 2018, 2021; Smith
et al., 2020). In a “standard” model, the methylation of CpG
islands within promoter region is generally correlated with
the transcriptional repression (Halpern et al., 2014). However,
the role of promoter methylation in transcriptional quiescence
has been increasingly questioned. For the mouse Igf2 gene,
DNA hypermethylation of a differentially methylation region
within promoter was associated with its active transcription
(Murrell et al., 2001). During the endodermal development,
hypermethylation of one CpG island within Forkhead box A2
(FOXA2) promoter might contribute to the active transcription
of this gene (Halpern et al., 2014). In contrast to the
widely studied functions of promoter methylation, the role
of gene body methylation is still uncertain and perplexing,
as it has been reported to be involved in negative/positive
regulations at the transcript levels, alternative splicing, mitigation
of transcriptional noise, and maintenance of transcriptional
homeostasis (Foret et al., 2012; Neri et al., 2017; Li et al.,
2018, 2021). Collectively, these results suggest that the regulatory
roles of DNA methylation in transcription might be far more
complicated than what we have known. Given that DNA
methylation is tightly correlated with the regulation of gene
expression, we hypothesize that DNAmethylationmight regulate
the transcription of key genes under acute and recurring
stresses and further facilitate the formation of stress memory.
Indeed, our previous study have already identified two memory
genes involved in the DNA methylation pathway, i.e., DNA
methyltransferase 3a1 (DNMT3a1) and ten-eleven translocation
protein 1 (TET1) and the transcriptional memory of which might
facilitate the formation of DNA methylation-mediated stress
memory under recurring environmental stresses (Fu et al., 2021).
However, it remains largely unknown upon which downstream
memory genes might be regulated by DNA methylation and
further contributes to the formation of stress memory.

The highly invasive tunicate Ciona robusta (C. robusta), which
is presumably native to the Northwest Pacific, could tolerate
various environmental conditions and has successfully invaded
coastal areas worldwide (Caputi et al., 2007). Recently, this
invader has successfully colonized a Red Sea Marina, suggesting
its rapidly responding ability to harsh environments of extreme
temperature and salinity (Shenkar et al., 2017; Chen et al., 2018).
Salinity can greatly affect multiple crucial biological processes
of marine organisms such as survival, growth, and particularly
reproduction (Epelbaum et al., 2009). For marine organisms
under osmotic pressure, the maintenance of intracellular osmotic
homeostasis can be accomplished by regulation of salt stress
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effectors such as aquaporins (AQPs), ions, and free amino acids
and are generally accompanied by increased energy expenditure
to fuel those processes (Meng et al., 2013; Frouin et al., 2018).
These salt stress effectors are indispensable for transport and
metabolism of osmolytes or facilitating water transport, thus
playing crucial roles in acclimation to osmotic stresses (Towle
et al., 2011; Meng et al., 2013; Pu and Zhan, 2017; Liu et al.,
2019). Hence, in this study, we selected 30 genes involved in
the transport of water and osmolytes (ions and free amino
acids) as well as metabolism of lipid and energy (Table 1) and
simulated the acute and recurring hyperosmotic stresses during
the invasion process in a controlled experimental system. For the
transport of water molecules, we selected 4 AQP encoding genes
(Table 1) that could facilitate the transport of water molecules
through lipid bilayers (Madeira et al., 2016). For the regulation of
inorganic and organic osmolytes, we focused on genes involved
in transport of Na+, K+, Ca2+ as well as metabolism of taurine,
proline, and glycine (Table 1). These salt stress effectors have
been demonstrated to be the main driving force for maintaining
intracellular homeostasis (Towle et al., 2011; Meng et al., 2013;
Pu and Zhan, 2017; Liu et al., 2019). Since the transport of
certain osmolytes is energy consuming, genes related to fatty acid
metabolism were chosen to investigate the molecular response
of energy metabolism under recurring hyperosmotic stresses
(Table 1). By integrating the DNA methylation data and gene
expression data of these candidate genes, we aim to study the
regulatory roles of DNA methylation on gene transcription and
further characterize how such regulatory relationships contribute
to rapid response and formation of stress memory under
recurring environmental stresses during successful invasions into
different saline environments.

MATERIALS AND METHODS

Sample Collection
Mature C. robusta individuals were collected from the artificially
established substrates in Longwangtang, Dalian, Liaoning
Province, China (38◦49′19′′N, 121◦24′28′′E) and subsequently
domesticated for 3 days under ambient conditions. Details with
respect to the domestication were described in our previously
published study (Fu et al., 2021).

To simulate the recurring hyperosmotic pressure encountered
in the invasion process, we conducted repetitive stress treatment
(Figure 1). In brief, C. robusta individuals were challenged with
osmotic stress (40%) for 72 h (S1 stage), followed by 24 h of
recovery in ambient conditions (R stage), and subsequently
challenged with osmotic stress (40%) again for another 72 h (S2
stage). Healthy individuals were collected at the time points of
0, 24, and 48 h of the S1 stage, 24 h of the R stage, and 24
and 48 h of the S2 stage. To minimize the effect of genetic
composition on DNA methylation and transcription, all the
individuals were randomly collected from different pieces of
artificially established substrates. Six biological replicates were
collected at each sampling time point, but failed samples after
sequencing library construction were discarded for downstream
analyses. Somatic muscles were dissected and then immediately
preserved in 100% ethanol for DNA extraction and flash frozen

in liquid nitrogen for RNA extraction. All the preserved samples
were stored at−80◦C before downstream analyses.

Nucleic Acid Isolation, Library
Construction, and Sequencing
Genomic DNA (gDNA) was isolated using the classical CTAB-
phenol-chloroform method. The quality and quantity of each
DNA sample were assessed by agarose gel electrophoresis and
Qubit R© 2.0 (Thermo Fisher Scientific, Massachusetts, USA).
To obtain the DNA methylation data, we constructed whole-
genome bisulfite sequencing (WGBS) libraries following the
instruction of the EZ DNA Methylation-GoldTM Kit (Zymo
Research, California, USA). After library construction, insert
size was measured using the Agilent 2100 Bioanalyzer (Agilent
Technologies, California, USA). Each library was quantified
again with the StepOnePlusTM Real-Time PCR System (Applied
Biosystems, Waltham, Massachusetts, USA) to ensure the
effective nucleic acid concentration.

Total RNA was extracted using Trizol reagent (Ambion,
Massachusetts, USA) according to the instruction of the
manufacturer and then treated with DNase to remove potential
genomic DNA contamination. The purity, quantity, and
integration of each RNA sample were assessed by the
NanoPhotometer R© (Implen, California, USA), the Qubit R©

3.0 Fluorometer (Life Technologies, California, USA), and the
Agilent 2100 Bioanalyzer (Agilent Technologies, California,
USA). RNA sequencing (RNA-seq) libraries were prepared
following the instruction of the NEBNext R© UltraTM RNA Library
Prep Kit for Illumina R© (New England Biolabs, Massachusetts,
USA). Insert size was measured using the Agilent 2100
Bioanalyzer (Agilent Technologies, California, USA). Each
library was quantified again with the CFX96 Touch Real-Time
PCR Detection System (Bio-Rad Laboratories, California, USA)
to ensure the effective nucleic acid concentration. All the WGBS
and RNA-seq libraries were sequenced on the Illumina HiSeq
X Ten Sequencing System (Illumina, California, USA) with the
PE150 strategy.

Identification of Candidate Genes
We selected 30 genes involved in the transport of ions, free amino
acids, water, as well as lipid metabolism, and investigated rapid
response of DNA methylation dynamics of these genes under
recurring hyperosmotic stresses (Table 1). These genes have been
previously demonstrated to be involved in the regulation of
cellular osmotic homeostasis as well as acclimation or adaptation
to saline environment of various aquatic ecosystems (Towle et al.,
2011; Meng et al., 2013; Pu and Zhan, 2017; Frouin et al., 2018;
Liu et al., 2019). We downloaded complete sets of amino acid
sequences of candidate genes from the Ghost database (http://
ghost.zool.kyoto-u.ac.jp/default_ht.html). To further confirm
the identity of our candidate genes, amino acid sequences of
candidate genes were submitted to the National Center for
Biotechnology Information (NCBI) Batch CD-Search tool for
protein domain analysis. Genes with amino acid sequences
harboring a full set of conserved domains were retained as
candidate genes (Table 1).

Frontiers in Marine Science | www.frontiersin.org 3 December 2021 | Volume 8 | Article 800745

http://ghost.zool.kyoto-u.ac.jp/default_ht.html
http://ghost.zool.kyoto-u.ac.jp/default_ht.html
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Fu et al. Methylation-Transcriptional Responses to Stresses

TABLE 1 | Summary information of the candidate genes.

No. Gene name Gene ID Strand Location Methylation

status

Category Protein name

1 AQP8.1 KY.Chr5.896 - Chr5:6063859-6067063 Unmethylated Water channels Aquaporin

2 AQP8.2 KY.Chr8.934 - Chr8:5543080-5546683 Unmethylated Water channels Aquaporin

3 AQP8.3 KY.Chr12.726 + Chr12:5414593-5419853 Unmethylated Water channels Aquaporin

4 AQP9 KY.Chr9.915 + Chr9:6716859-6720841 Unmethylated Water channels Aquaporin

5 NKA_subunit_α3 KY.Chr10.109 + Chr10:682210-704358 Unmethylated Ion channels ATPase Na+/K+ transporting

subunit α 3

6 NKA_subunit_β1β2 KY.Chr7.143 + Chr7:911943-918546 Unmethylated Ion channels ATPase Na+/K+ transporting

subunit beta 3

7 NCC KY.Chr8.243 - Chr8:1445180-1449355 Methylated Ion channels Sodium/chloride transporter

8 KCC KY.Chr3.71 - Chr3:380624-405369 Methylated Ion channels Potassium/chloride transporter

9 NKCC KY.Chr1.2431 - Chr1:14078199-14089102 Methylated Ion channels Sodium/potassium/chloride

transporters

10 NHE KY.Chr3.832 - Chr3:5561516-5568273 Methylated Ion channels Sodium/hydrogen exchanger

11 KCNN2 KY.Chr10.1272 + Chr10:7087505-7108418 Methylated Ion channels Potassium calcium-activated

channel subfamily N member 2

12 CACNA1C KY.Chr4.431 - Chr4:2232795-2252310 Methylated Ion channels Calcium voltage-gated channel

subunit α1C (L-type)

13 CACNA1S KY.Chr13.308 + Chr13:2808316-2846746 Methylated Ion channels Calcium voltage-gated channel

subunit α1S (L-type)

14 CACNA1I KY.Chr6.419 - Chr6:2973301-2993901 Methylated Ion channels Calcium voltage-gated channel

subunit α1I (T-type)

15 CSAD.1 KY.Chr3.209 - Chr3:1379888-1384905 Methylated Free amino acid metabolism Cysteinesulfinic acid

decarboxylase

16 CSAD.2 KY.Chr5.230 + Chr5:1536831-1542998 Methylated Free amino acid metabolism Cysteinesulfinic acid

decarboxylase

17 TAUT.1 KY.Chr2.1087 + Chr2:3871085-3872903 Unmethylated Free amino acid metabolism Solute carrier family 6 member 6

18 TAUT.2 KY.Chr6.120 - Chr6:910852-913127 Methylated Free amino acid metabolism Solute carrier family 6 member 6

19 PYCR1.1 KY.Chr3.73 + Chr3:415340-419549 Unmethylated Free amino acid metabolism Pyrroline-5-carboxylate

reductase 1

20 PYCR1.2 KY.Chr4.36 - Chr4:464913-468183 Methylated Free amino acid metabolism Pyrroline-5-carboxylate

reductase 1

21 PRODH2 KY.Chr2.1589 + Chr2:7182737-7188154 Methylated Free amino acid metabolism Proline dehydrogenase 2

22 GLDC KY.Chr5.691 - Chr5:4572689-4585496 Methylated Free amino acid metabolism Glycine decarboxylase

23 SHMT1 KY.Chr8.1313 + Chr8:7819180-7824442 Unmethylated Free amino acid metabolism Serine

hydroxymethyltransferase 1

24 SHMT2 KY.Chr1.2420 - Chr1:13991005-13998207 Methylated Free amino acid metabolism Serine

hydroxymethyltransferase 2

25 MOGAT2 KY.Chr2.1292 + Chr2:5301101-5304342 Methylated Energy and lipid metabolism Monoacylglycerol

O-acyltransferase 2

26 DGAT1 KY.Chr13.35 - Chr13:112819-131272 Methylated Energy and lipid metabolism Diacylglycerol

O-acyltransferase 1

27 PNPLA8 KY.Chr4.1031 + Chr4:5534947-5539904 Methylated Energy and lipid metabolism Patatin like phospholipase

domain containing 8

28 PNPLA2 KY.Chr3.1731 - Chr3:11175628-11177687 Methylated Energy and lipid metabolism Patatin like phospholipase

domain containing 2

29 PLA2G6 KY.Chr6.94 - Chr6:749298-754628 Methylated Energy and lipid metabolism Phospholipase A2 group VI

30 ACC KY.Chr3.365 + Chr3:2146204-2171891 Methylated Energy and lipid metabolism Acetyl-CoA carboxylase

Quantification of DNA Methylation Levels
and Identification of Stress-Responsive
Sites
Raw reads were trimmed and quality controlled using
Trimmomatic version 0.39 (Bolger et al., 2014) and

FastQC version 0.11.9 (Babraham Institute, https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/), respectively.
The Bismark 2.0 pipeline was used to extract methylation

status of individual cytosines (Krueger and Andrews, 2011).

Specifically, clean reads were aligned to the latest C. robusta
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FIGURE 1 | Schematic illustration of the experimental design. After acclimation for 3 days, healthy Ciona robusta (C. robusta) individuals were randomly selected for

subsequent hyperosmotic stress experiment. C. robusta individuals were treated with hyperosmotic stress (40%) for 72 h (S1 stage), then transferred into ambient

condition (30%) for 24 h (R stage), and finally subjected to another round of hyperosmotic stress (40%) for 72 h (S2 stage). Short vertical black lines with blue dots

represent sampling time points and the letter “n” represents the number of biological replicates at each time point.

reference genome (HT version, http://ghost.zool.kyoto-u.
ac.jp/default_ht.html) using bismark, deduplication was
performed using deduplicate_bismark, and methylation
status of individual cytosines were extracted using
bismark_methylation_extractor with default parameters.
Bisulfite conversion efficiency of each sample was calculated
by aligning clean reads against lambda genome using
Bismark 2.0 (Krueger and Andrews, 2011). Samples with
conversion efficiencies higher than 99% were used in
subsequent analyses.

Subsequently, cytosine reports produced by the Bismark 2.0
pipeline were read using the R package “methylKit” to obtain

methylation data of individual CpGs. To be specific, CpGs
with read coverage <5 were discarded. To obtain methylation

status of individual CpG sites, percMethylation function in
“methylKit” was used to calculate the methylation levels. The R

package “GenomicRanges” was used to select the methylation
data for the candidate genes. Differential methylation analysis

was performed using calculateDiffMeth function in “methylKit”

package using the chi-squared test (p < 0.05). CpG sites
with methylation levels significantly differentiated between the

control group (0 h) and any of the hyperosmotic treatment
groups (24/48/120/144 h) as well as the recovery group (96 h)
(p < 0.05) were considered as stress-responsive sites and genes
harboring stress-responsive sites within gene body and promoter
regions were considered as DNA methylation-related stress-
responsive genes (DMSG). In this study, gene body region
is defined as an entire region from the transcription start
site (the location where DNA is being transcribed by RNA
polymerase) to the transcription end site (the location where
the transcription of DNA terminates) and promoter region
is defined as 2,000 bp upstream of transcription start sites.
Histogram of site methylation levels of the candidate genes
was illustrated using the “hist” function in “graphics” package.
The variation of site methylation levels among samples was
illustrated with principal component analysis (PCA) using
“prcomp” function built in the R Stats Package and “ggord”
R package.

Quantification of Gene Expression Levels
Raw reads were trimmed and quality controlled using
trimmomatic version 0.39 (Bolger et al., 2014) and FastQC
version 0.11.9 (Babraham Institute, https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/), respectively. Clean reads were
then aligned to the C. robusta genome using HISAT2 pipeline
(Kim et al., 2019). StringTie version 2.1.4 (Kovaka et al., 2019)
and DESeq2 version 1.30.0 (Love et al., 2014) were used in the
calculation of raw read counts and identification of differentially
expressed genes (DEGs), respectively. Candidate genes with
log2FoldChange value > 1 and q value < 0.05 in comparison to
the control group were considered as DEGs. The expression level
of each gene in each sample was quantified by transcripts per
kilobase million (TPM) and was subsequently used in PCA to
illustrate the variation of gene expression levels among samples.

Identification of CpG Sites and Genes
Involved in Stress Memory
We analyzed DNA methylation variation and gene expression
trends over time series to identify mCpGs and gene clusters that
were potentially involved in the formation of stress memory.
An online platform, OmicShare (https://www.omicshare.com/),
was used to perform the analysis. We adapted the category of
memory genes defined by Ding et al. (2012) and Georgoulis
et al. (2021) and hereon assigned CpG sites and genes involved
in the formation of stress memory into five categories: (1)
faster-responding sites/genes with more rapid response during
the S2 stage; (2) tardy-responding sites/genes with postponed
response during the S2 stage; (3) stronger-responding sites/genes
with greater amplitude during the S2 stage; (4) early-responding
sites/genes that merely responded during the S1 stage; and (5)
late-responding sites/genes that merely responded during the
S2 stage.

Correlation of DNA Methylation With
Corresponding Gene Expression Levels
To interrogate the regulatory role of DNA methylation
on gene transcription, we correlated methylation levels of
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stress-responsive sites with expression levels of corresponding
genes using samples from the control group and each of the
hyperosmotic treatment groups as well as the recovery group.
The Spearman’s correlation coefficient was calculated using the
R function “cor.test” at the significance level of p < 0.05. The R
package “ggplot2” was used to perform linear regression analysis
and validate the relationship between methylation levels of
significantly correlated stress-responsive sites and corresponding
gene expression levels.

RESULTS

Feature-Dependent DNA Methylation of
Candidate Genes
We obtained 29,683,794 clean reads per sample on average,
among which 6,930,066 reads were mapped to the C. robusta
genome (HT version), covering ∼89% of the whole genome at
a mean depth of 15× coverage. Cytosines in C. robusta genome
were methylated in three different sequence contexts, with ∼28,
7.8, and 7.9% of all the CpG, CHG, and CHH sites being
methylated, respectively.

Overall, 21 out of 30 candidate genes were methylated and
the rest nine genes were completely unmethylated, including
genes encoding AQPs, ATPase Na+/K+ transporting subunit
(NKA_subunit_α and NKA_subunit_β1β2), taurine transporter
1 (TAUT1), serine hydroxymethyltransferase 1 (SHMT1), and
pyrroline-5-carboxylate reductase 1.1 (PYCR1.1), suggesting
that the regulation of these genes was independent of DNA
methylation (Figure 2; Supplementary Table 1).

We detected a total of 68 mCpGs across 21 methylated genes,
with 53 and 15 mCpGs located within gene bodies and promoter
regions, respectively (Figure 2; Supplementary Table 1).
Methylated sites within each gene ranged from 1 to 8.
Specifically, merely 1 mCpG was detected within PNPLA8,
PLA2G6, NKCC, KCNN2, NHE, and PNPLA2. In contrast, the
gene body of CACNA1S was enriched with 8 methylated sites.
The methylation patterns of the 68 CpG sites were bimodal,
with pronounced hypo- and hypermethylation peaks around
0–10 and 80–90%, respectively (Supplementary Figure 1). We
observed that the majority (20/21) of the genes were methylated
either within promoter regions or gene body regions (Figure 2).
Three genes, including PYCR1.2, PNPLA2, and NCC, were
methylated within promoter regions rather than gene body
regions, whereas the rest of the methylated genes (except for
SHMT2) was methylated within gene bodies instead of promoter
regions, suggesting that DNA methylation of our candidate
genes should depend on the genomic feature (i.e., promoter or
gene body) (Figure 2).

Stage-Specific Dynamic Response of DNA
Methylation
To investigate whether the recurring hyperosmotic challenges
induced the differentiation of DNA methylation patterns,
PCA was performed using methylation levels of all the
CpG sites and stress-responsive CpG sites, respectively
(Supplementary Figures 2A–E; Figures 3A–E). The results

indicated that DNA methylation patterns could not be evidently
differentiated between the control group and the hyperosmotic
treatment groups (Supplementary Figures 2A,B,D,E;
Figures 3A,B,D,E).

A total of 26 stress-responsive sites within 14 genes were
identified (Figure 2), with eight and 18 stress-responsive sites
located within promoter regions and gene bodies, respectively
(Figure 2), illustrating a higher proportion of stress-responsive
sites within promoter regions (8/18) when compared to gene
bodies (18/53). In addition, we identified mCpGs that mutually
responded during both the S1 or S2 stages as well as stage-specific
mCpGs that merely responded during either S1 or S2 stages. On
terms of DMSG, nine genes responded significantly during the
S1 stage, among which SHMT2 responded specifically during
the S1 stage, whereas the remaining eight genes simultaneously
responded during the R or S2 stage (Figure 2). For the S2
stage, a total of 8 DMSGs responded significantly, including
three stage-specific responding genes (DGAT1, PLA2G6,
and GLDC), and five genes that simultaneously responded
(Figure 2). All these results demonstrate that the dynamic
responses of CpG methylation were stage specific, suggesting a
complex regulatory role of DNA methylation under recurring
environmental stresses.

Distinct Transcriptional Responses During
the S1 and S2 Stages
Overall, recurring hyperosmotic stresses clearly separated
individuals from the control group and the hyperosmotic
treatment groups along PC1, accounting for 55.16–69.86%
of the variance (Supplementary Figures 2F,G,I,J). Recovery
for 24 h (96 h) inclined to restore the overall transcriptional
pattern of our candidate genes to that of the ambient
condition (Supplementary Figure 2H). For the transcriptional
patterns of DMSGs, individuals from the control group and
the hyperosmotic treatment groups were clearly separated
along PC1, accounting for 77.96–86.93% of the variance
(Figures 3F,G,I,J). During the R stage, transcription of DMSGs
could not be differentiated along PC1, illustrating transcriptional
restoration during the recovery period (Figure 3H).

A total of 13 genes were significantly differentially expressed
(Figure 4). A total of five genes responded significantly during
both the S1 and S2 stages, among which AQP8.2 and AQP8.3
were significantly downregulated, whereas CSAD1, TAUT2,
and MOGAT2 were significantly upregulated, indicating
persistent regulation of water channels, metabolism of
taurine, and lipid under recurring hyperosmotic stresses
(Figure 4). We also detected stage-specific DEGs. Genes
encoding aquaporin 9 (AQP9) and glycine decarboxylase
(GLDC) significantly responded during the S1 stage, whereas
genes encoding potassium/chloride transporter (KCC), serine
hydroxymethyltransferase 2 (SHMT2), and phospholipase A2
group 6 (PLA2G6) responded specifically during the S2 stage,
implying that distinct mechanisms were involved in rapid
response when challenged with environmental stresses for the
first time and for the multiple times (Figure 4). Unexpectedly,
most of the genes involved in the regulation of ion homeostasis
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FIGURE 2 | Heatmap depicting differential methylation levels of all the CpG sites between the control group (0 h) and each of the hyperosmotic treatment groups

(24/48/120/144 h) as well as the recovery group (96 h). The mean methylation difference of each CpG site between two groups was calculated using weighted read

coverage and the statistical significance of methylation differences was determined using the chi-squared test. CpG sites with methylation levels significantly

differentiated between two groups (p < 0.05) were considered as stress-responsive sites and were denoted by black frames in the heatmap. Color scales represent

differentially methylation levels in the treatment group in comparison with the control group.

were not identified as DEGs, whereas genes involved in the

metabolism of free amino acids such as TAUT, CSAD1, and

CSAD2 were significantly differentially expressed, suggesting

that the regulation of free amino acids might be a more
important mechanism of rapid response during the invasion
process (Figure 4).

Time-Dependent Variation of DNA
Methylation and Gene Expression Levels
To identify memory methylation sites and memory genes
involved in the formation of stress memory, we performed
time series analysis based on DNA methylation and gene
expression and compared the variation of methylation
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FIGURE 3 | Principal component analysis (PCA) of methylation levels of stress-responsive sites and corresponding gene expression levels. (A–E) Represent PCA

based on methylation levels of stress-responsive sites. (F–J) Represent PCA based on transcriptional levels of genes harboring stress-responsive sites. Red, blue, and

purple dots indicate samples from the control group (0 h) and the hyperosmotic treatment groups (24/48/120/144 h) as well as the recovery group (96 h), respectively.

Each ellipse represents a 95% confidence region.

levels and gene expression levels between the S1 and S2

stages (Figure 5). Time series analysis based on methylation

levels identified two early-responding sites and four tardy-

responding sites involved in the formation of stress memory
(Figures 5A,B). Two early-responding sites, i.e., TAUT1.CpG1
and MOGAT2.CpG1, were upmethylated during the S1 stage,

but subsequently returned to the unmethylated status during
the R and S2 stages (Figure 5A). For four tardy-responding
sites (PYCR1.2.CpG7, PNPLA2.CpG1, CACNA1S.CpG8, and
PNPLA8.CpG1), the upmethylation of these sites was postponed
by recurring hyperosmotic stresses, suggesting that these
four sites might be more insensitive to recurring stresses
(Figure 5B).

At the transcriptional level, we identified eight genes
that facilitated the formation of stress memory, including
three tardy-responding genes and five early-responding genes
(Figures 5C–E). For three tardy-responding genes, i.e., NKA
subunit β1β2, AQP8.1, and AQP8.2, the gene expression levels
were immediately downregulated after hyperosmotic stress
treatment during the S1 stage; however, recurring hyperosmotic
stresses postponed the downregulation of these genes during
the S2 stage (Figure 5C). Hyperosmotic stress initiated the
upregulation of ACC, CACNA1I, GLDC, and CSAD2 and
downregulation ofNKCC during the S1 stage; however, recurring
hyperosmotic stresses did not provoke altered transcriptional

patterns of the five early-responding genes during the S2 stage
(Figures 5D,E).

Potential Regulatory Role of DNA
Methylation on Gene Transcription
To investigate the impact of stress-responsive methylated
sites on the transcription of corresponding genes, we
eventually identify five significantly correlated sites including
ACC.CpG3, CACNA1C.CpG1, PNPLA2.CpG1, DGAT1.CpG1,
and PYCR1.2.CpG3 (Figure 6). During the S1 stage, we
identified three significantly correlated sites. ACC.CpG3 and
CACNA1C.CpG1 located in the introns of ACC and CACNA1C,
respectively (Figures 6A,B). These two sites were significantly
downmethylated when challenged with hyperosmotic stress
for 24 h for the first time, whereas the transcriptional levels of
ACC and CACNA1C were significantly upregulated, suggesting
the negative correlation between the DNA methylation levels
of ACC.CpG3, CACNA1C.CpG1, and the transcription level of
corresponding genes (Figures 6A,B). At 48 h during the S1 stage,
the DNA methylation level of PNPLA2.CpG1 was positively
correlated with the transcription level of PNPLA2 (Figure 6C).
The gene expression level of PNPLA2 was upregulated by
hyperosmotic stress, whereas the DNA methylation level of
PNPLA2.CpG1 varied at a wide range, with that of most samples
upregulated in comparison with the control group (Figure 6C).
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FIGURE 4 | Expression profiles of candidate genes under recurring

hyperosmotic stresses. Color scales represent log2FoldChange values in the

hyperosmotic treatment groups in comparison with the control group. The size

of the circle indicates the statistical significance of gene expression differences

between two groups. Black circles denote significantly differentially expressed

genes with p < 0.5 and log2FoldChange value > 1.

During the S2 stage, we did not detect any significantly
correlated sites at 24 h; however, after hyperosmotic stress
treatment for a longer time period (48 h), the DNA methylation
levels of DGAT1.CpG1 and PYCR1.2.CpG3 were significantly
correlated with the transcriptional levels of their corresponding
genes (Figures 6D,E). For DGAT1.CpG1 located within 3’UTR
of DGAT1, DNA methylation levels of the sites and expression
levels of its corresponding gene were upregulated by recurring
hyperosmotic stress treatment for 48 h, suggesting a positive
correlation between methylation level and gene transcription
level (Figure 6D). PYCR1.2.CpG3 was located within promoter
region and was in close proximity to transcription start site. In
contrast to DAGT1.CpG1, the expression level of PYCR1.2 was
inversely correlated with the methylation level of PYCR1.2.CpG3.
The methylation level of PYCR1.2.CpG3 was significantly
downregulated, whereas the transcriptional level of PYCR1.2 was
upregulated, suggesting that downmethylation of PYCR1.2.CpG3
could potentially enhance the proline anabolism under recurring
hyperosmotic stress (Figure 6E).

DISCUSSION

Various acute and recurring environmental stresses during range
expansions largely threaten the survival of invasive species.

Thereby, rapid response to recurring environmental stresses is
pivotal to invasion success and may underlie subsequent long-
term adaptation. In this study, we investigated the dynamic
variation of both the DNA methylation and transcription
patterns of key genes involved in response to recurring osmotic
stresses, explored the regulatory roles of DNA methylation
modification in alteration of gene transcription, and finally tested
whether DNA methylation could mediate the formation of stress
memory in the invasion process.

Feature-Dependent Distribution of mCpGs
The evolutionary transition of DNA methylation patterns
from invertebrates to vertebrates has long been the focus of
evolutionary biology. Generally, vertebrate genomes are overall
globally and heavily methylated, with CpG sites within promoters
and enhancers of housekeeping genes remain unmethylated
(Okamura et al., 2010; Keller et al., 2016), whereas invertebrate
genomes tend to be sparsely methylated, with methylated
regions mostly located within gene bodies and interspersed with
unmethylated regions (Keller et al., 2016; Xu et al., 2019). As
a result, promoter methylation within invertebrate genomes
has been overlooked for a long period of time. Recently,
several studies revealed the ubiquitous existence of promoter
methylation in invertebrate genomes and further suggested that
promoter methylation within invertebrate genomes might be of
functional significance (Saint-Carlier and Riviere, 2015; Keller
et al., 2016; Xu et al., 2019). In this study, we detected mCpGs
within both the promoter and gene body regions, an observation
consistent with previous studies (Suzuki et al., 2007; Okamura
et al., 2010; Saint-Carlier and Riviere, 2015). Except for SHMT2,
CpGs were methylated within either promoter regions or gene
bodies, suggesting the feature-dependent distribution of mCpGs
within the C. robusta genome. Additionally, promoter regions
had a higher proportion of stress-responsive sites (8/15, 53.3%) in
comparison with gene bodies (18/53, 34.0%), implying the crucial
roles of promoter methylation in response to environmental
stresses in invertebrate genomes.

Resilience of Gene Transcription
Akin to ecological resilience, transcriptional resilience has been
proposed to depict the recovery of gene expression after a
relatively long period of stresses (Seneca and Palumbi, 2015).
Seneca and Palumbi (2015) revealed that genes experiencing fast
transcriptional recovery were associated with low bleaching in
corals and, thus, might contribute to the physiological health
and response ability of coral colonies under thermal stresses.
For seagrass Zostera marina, thermal stress induced disparate
transcription patterns in southern and northern populations that
historically inhabited different thermal environments (Franssen
et al., 2011). However, the transcriptional pattern of the
southern population immediately recovered to that of the
ambient condition, whereas the transcriptional level of the
northern population failed to recover, suggesting that the
resilience of transcriptome could facilitate thermal adaptation
of populations that historically inhabited a warmer marine
environment (Franssen et al., 2011). In this study, we found
that after 48 h of hyperosmotic treatment, the transcriptional
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FIGURE 5 | Time series analysis based on DNA methylation level and gene expression levels. The y-axis represents variation of mean methylation levels (A,B) and

mean gene expression levels (C–E) between two groups. (A) Early-responding sites that specifically regulated during the S1 stage. (B) Tardy-responding sites with

postponed response during the S2 stage. (C) Tardy-responding genes with postponed transcription during the S2 stage. (D,E) Early-responding genes that

specifically regulated during the S1 stage. Red solid lines represent the general variation trend of site methylation levels and dashed lines represent DNA methylation

variation trend of each mCpG.

pattern during the S1 stage tended to recover to that of
the ambient condition in comparison with hyperosmotic
treatment for 24 h. Such recovery of gene expression might re-
establish the baseline of gene expression and contribute to the
maintenance of transcriptional homeostasis and normal cellular
function (Seneca and Palumbi, 2015), enhancing the chance of
successful invasions.

Methylation of CpG Sites Within Introns of
ACC and CACNA1C Inversely Regulated
Gene Transcription
The methylation levels of two sites, ACC.CpG3 and
CACNA1C.CpG1 located in the introns, were significantly
negatively correlated with the expression levels of these 2 genes.
Specifically, the DNA methylation levels were significantly
downregulated by the hyperosmotic treatment at 24 h; in
contrast, the corresponding gene expression levels were
upregulated (Figures 6A,B). Introns were proposed as gene
regulators, as they had cis-regulatory elements essential for
gene expression (Stemmler et al., 2005; Rose, 2019). Unoki
and Nakamura (2003) reported that the methylation of intron
1 of EGR2 gene conferred the enhancer-like activity and,
thus, might be related to the high level of gene expression.
In Arabidopsis, methylation of a large intron in IBM1
orthologs was indispensable for the accumulation of IBM1-
L transcript that encodes H3K9 demethylase (Rigal et al.,
2012). However, contrasting results were obtained in several
species such as European sea bass, where methylation levels
of the first intron exhibited a clear inverse relationship
with gene expression levels (Anastasiadi et al., 2018). In

several diseases, the methylation of intronic CpGs was also
validated to be involved in downregulation or silencing of
disease-related genes (Zhang et al., 2010; Ozaki et al., 2017;
Nam et al., 2020). Thereby, we proposed that hyperosmotic
stress induced alterations in DNA methylation status of
ACC.CpG3 and CACNA1C.CpG1 and such alterations might
interfere with potential gene regulatory elements in proximity
to these two sites, resulting in the upregulation of ACC
and CACNA1C.

The expression patterns of ACC under hyperosmotic stress
differed among species. In red-eared slider turtle, the expression
level of ACC was downregulated when exposed to elevated
salinities (Hong et al., 2019). In contrast, the upregulation of
ACC under hyperosmotic stress was observed in multiple species
such as Chanos chanos and Dunaliella salina (Hu et al., 2015;
Panahi et al., 2019). In addition, ACC was reported to respond
to a wide range of abiotic stresses (Kumar et al., 2017; Wu et al.,
2020; Liu et al., 2021). All these results suggest the important
and fundamental function of ACC. ACC encodes acetyl-CoA
carboxylase, an enzyme that catalyzes the initial rate-limiting step
of fatty acid biosynthesis (Ho et al., 2017). Thus, the expression
of ACC was indispensable for the synthesis of fatty acid and
energy mobilization (Chen et al., 2019). Osmotic stresses could

shift fatty acid composition by generating more long-chain and
monosaturated fatty acids and some of these fatty acids are

susceptible to peroxidation (Reglero et al., 2009; Qureshi et al.,
2013). In this study, ACC was upregulated at 24 h during the
S1 stage, suggesting an increase in energy demands required for
osmoregulation and subsequently enhanced lipid metabolism to
meet such demands.
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FIGURE 6 | Linear regression analysis based on DNA methylation levels of significantly correlated stress-responsive sites and corresponding gene expression level.

(A,B) Represent linear regression analysis based on DNA methylation levels of ACC.CpG.3 and CACNA1C.CpG.1 and corresponding gene expression levels at 24 h

during the S1 stage. (C) Represent linear regression analysis based on DNA methylation levels of PNPLA2.CpG.1 and corresponding gene expression levels at 48 h

during the S1 stage. (D,E) Represent linear regression analysis based on DNA methylation levels of DGAT1.CpG.1 and PYCR1.2.CpG.1 and corresponding gene

expression levels at 48 h during the S2 stage. Genomic features in the parenthesis denote the exact genomic feature of each CpG sites. Red dots denote samples

from the control group and turquoise dots denote samples from the treatment groups. The pale turquoise shadow represents a 95% confidence region.

CACNA1C encodes the calcium voltage-gated channel subunit

alpha1C (L-type), which forms the pore of voltage-dependent
calcium channel and facilitates the influx of Ca2+ into cells.

Calcium ion has been demonstrated to regulate biological

processes such as cell motility, membrane lipid peroxidation,
cell signaling, muscle contraction, lipid metabolism, gene

transcription, and many others (Allen and Beck, 1986; Kader
and Lindberg, 2010; Bootman, 2012; Campo et al., 2014; Frouin
et al., 2018). The multifunctional nature of calcium ion suggests
its potential roles in stress resistance or tolerance. In this study,

we observed upregulation of CACNA1C at 24 h during the S1
stage, suggesting the enhanced influx of calcium ions into cells.

Increase in the intracellular Ca2+ concentration would regulate

downstream biological processes such as cell signaling, muscle
contraction, and lipid metabolism, eventually facilitating the

rapid response of C. robusta to hyperosmotic stresses.

Methylation of CpG Site Within 3’UTR of
DGAT1 Positively Regulated Gene
Transcription
In this study, the DNA methylation level of DGAT1.CpG1 was
positively correlated with the expression level of DGAT1 at 48 h
during the S2 stage. Interestingly, DGAT1.CpG1 was located
within the 3’UTR of DGAT1, suggesting that methylation of
3’UTR might be functionally related to its gene transcription.
During the evolutionary course of animals, the number of
protein coding genes remained relatively consistent between
species; however, 3’UTR of messenger RNAs (mRNAs) boosted
both in length and number, regulating mRNA translation,
stability, localization, and protein–protein interactions (Mayr,
2016, 2019). An empirical study revealed that hypermethylation
of 4 CpGs within 3’UTR of the TrkB-T1 gene decreased
the activity of luciferase in reporter cells, suggesting that the
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methylation of 3’UTR was negatively correlated with the TrkB-
T1 transcriptional level (Maussion et al., 2014). Studies using
omics approaches identified both the repressing and inducing
roles of 3’UTR on gene expression in cancers (Beltrami et al.,
2017; McGuire et al., 2019). Similarly to introns, 3’UTR was
also proposed to possess cis-regulatory elements that affect the
transcription, stability, or localization of cognate transcripts. Lau
et al. (2010) observed a switch from shorter to longer 3’UTR of
the BDNF gene during the activation of hippocampal neurons
and longer 3’UTR enabled flexible regulation of transcripts
through binding different mRNA-associated proteins. Thereby,
we proposed that recurring hyperosmotic stresses could induce
alterations in DNA methylation status of DGAT1.CpG1 and
such alterations might interfere with potential gene regulatory
elements in proximity to the site, resulting in the upregulation
of DGAT1.

DGAT1 encodes the diacylglycerol O-acyltransferase 1, which
catalyzes the synthesis of triglyceride using diacylglycerol and
fatty acyl-CoA as substrates (Liu et al., 2009). DGAT1 is widely
expressed in various tissues, with a significantly higher expression
level in tissues including skeleton muscle, adipose tissue, and
heart (Liu et al., 2009). Overexpression of DGAT1 was verified
to increase intramuscular fat deposition (Thaller et al., 2003).
Besides its well-known function in hydrolyzing triglyceride into
fatty acids, DGAT1 also enables the reversible conversion from
hydrolyzed fatty acids into triglyceride, protecting endoplasmic
reticulum (ER) from lipotoxic stresses, and related adverse effects
(Chitraju et al., 2017). In addition, DGAT1-deficient mice had
increased insulin sensitivity, suggesting the potential role of
DGAT1 in modulating glucose metabolism (Chen, 2006). In
this study, the upregulation of DGAT1 at 48 h during the S2
stage suggests the enhanced triglyceride synthesis that might
participate in the protection of ER from lipotoxic stresses and
regulation of glucose metabolism. Considering the intertwining
role ofDGAT1 in various biological processes, the regulatory role
of DGAT1 under salinity stresses might be far more complicated
than we have realized so far.

Dual Functions of Promoter Methylation in
Regulation of Gene Expression
Deoxyribonucleic acid methylation within promoters is well-
known for its role in repressing gene transcription (Smith
et al., 2020). In a “standard” model, promoter methylation
represses gene transcription via either direct interference with
the binding of transcription factors or indirect recruitment
of chromatin remodeling complexes (Smith et al., 2020).
However, such a model has been increasingly challenged,
as hypermethylation within promoters has been reported
to be entangled with gene activation (Olson and Roberts,
2014; Smith et al., 2020). FOXA2 is a transcription factor
that regulates pancreatic gene expression and endoderm
development. Smith et al. (2020) demonstrated that the
transcription of FOXA2 could be negatively regulated by a
CpG island within FOXA2 promoter, hence the methylation
of such a CpG island subsequently abolished the repressive
effect on gene transcription, suggesting an alternative role

of promoter hypermethylation in gene activation. In oysters,
promoter regions with a high proportion of methylated sites
were discovered in highly expressed genes, suggesting the positive
relationship between promoter methylation and gene expression
(Olson and Roberts, 2014).

In this study, we detected 2 CpG sites within promoter regions
(PNPLA2.CpG1 and PYCR1.2.CpG3) that could serve as potential
repressors/facilitators of gene expression. At 48 h during the
S1 stage, both the DNA methylation level of PNPLA2.CpG1
and transcription of this gene were upregulated, suggesting
that the methylation of PNPLA2.CpG1 could potentially serve
as facilitator of gene expression. PNPLA2 encodes patatin-
like phospholipase domain containing protein 2, which is
the rate-determining enzyme that catalyzes the initial step
of triglyceride lipolysis (Janssen et al., 2013). In the human
genome, PNPLA2 normally expresses at a low level across
tissues, but can be induced by environmental signals (Wilson
et al., 2006). In a pufferfish, high salinity stresses induced
a significant decline in triglyceride concentration, suggesting
that the response to high salinity stresses can be an energy-
consuming process and genes responsible for triglyceride
catabolism can be upregulated to meet the energy demands
(Wen et al., 2021). In line with the aforementioned evidence,
the upregulation of PNPLA2 during the S1 stage in this
study might satisfy the increased energy consumption under
hyperosmotic stresses.

In contrast to PNPLA2.CpG1, the DNA methylation level
of PYCR1.2.CpG3 was negatively correlated with its gene
expression level. Hence, PYCR1.2.CpG3 might serve as a
potential repressor of gene expression. PYCR1.2 is responsible
for encoding pyrroline-5-carboxylate reductase 1, an enzyme
catalyzing the rate-limiting step of proline synthesis from
pyrroline-5-carboxylate (Xiao et al., 2020). Proline has been
testified to play essential roles in various biological processes
such as osmotic adjustment, redox homeostasis, radical
scavenging, and cell signaling (Servet et al., 2012; Patriarca
et al., 2021). As a compatible solute, proline enables living
cells to adjust osmotic homeostasis and cell volume without
overaccumulation of inorganic osmolytes, thus protecting
organisms from fluctuations of osmotic pressure. In oysters
challenged with hyperosmotic stresses, both the PYCR1
transcription and accumulation of proline were enhanced,
suggesting that active transcription of PYCR1 enabled higher
accumulation of proline to respond to hyperosmotic stresses
(Meng et al., 2013). In consistence with oysters, we detected
significant upregulation of PYCR1.2, suggesting the enhanced
proline biosynthesis to balance the intracellular and extracellular
osmotic potential and counteract cell volume shrinkage
under recurring hyperosmotic stresses (Chen and Jiang, 2010;
Wiesenthal et al., 2019).

Deoxyribonucleic Acid Methylation and
Gene Transcription Facilitated the
Formation of Stress Memory
Stress memory was initially discovered in plant species that
suffered from frequent drought stresses and those species
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can remember past adverse environmental cues and alter
their responses during subsequent stresses (Ding et al., 2013).
Analogous to plant species, invasive species are inevitably
and constantly challenged by recurring environmental stresses
during the invasion process. Avramova (2015) suggested that
different response pathways might be activated during single
and repetitive stresses at the molecular level. In this study,
we identified stress-responsive sites that mutually responded
during both the S1 and S2 stages as well as stage-specific sites
that merely responded during either the S1 or S2 stage. Stress-
responsive sites that mutually responded during the S1 stage
and the S2 stage might play essential and fundamental roles,
whereas stage-specific stress-responsive sites might participate in
the distinct regulatory mechanisms involved during the S1 and
S2 stages.

We identified two early-responding sites and four tardy-
responding sites that facilitated the formation of stress
memory under recurring hyperosmotic stresses. The two
early-responding sites, located within gene bodies of TAUT2
and MOGAT2, might participate in the dynamic regulation
of taurine transport and synthesis of diacylglycerol during
the S1 stage (Yang and Nickels, 2015; Wen et al., 2018). The
four tardy-responding sites were located within promoter
regions of PYCR1.2 and PNPLA2 as well as gene bodies of
CACNA1S and PNPLA8, suggesting that the regulation of
biological processes such as proline anabolism and hydrolysis of
triglycerides might be postponed during subsequent recurring
stresses (Janssen et al., 2013; Kim et al., 2016; Xiao et al.,
2020).

At the transcriptional level, we identified eight memory
genes, including three tardy-responding genes and five early-
responding genes. For the three tardy-responding genes (NKA
subunit β1β2, AQP8.1, and AQP8.2), we observed a postponed
downregulation of these candidate genes under recurring
hyperosmotic stresses. NKA subunit β1β2 is a molecular
chaperone that is crucial for maintaining the structure and
regulating the transport properties of NKA subunit α (Geering,
2008). The postponed downregulation of NKA subunit β1β2
during the S2 stage might contribute to a more stable structural
stability of NKA subunit α under recurring hyperosmotic
stresses. AQPs are well-known for its function as bidirectional
transporters of water molecules (Madeira et al., 2016). The
transcriptional behaviors of AQPs under hyperosmotic stresses
varied between species. For example, the transcription of AQP8
was enhanced in response to salinity acclimation in Anguilla
anguilla and Oreochromis mossambicus, whereas contrasting
evidence also accumulated in species such as Oreochromis
niloticus (Cutler et al., 2009; Ronkin et al., 2015). Such disparate
expression profiles were possibly related to the contrasting
adaptive environments among species (Ronkin et al., 2015).
In this study, we observed postponed downregulation of
AQP81 and AQP82 during the S2 stage. Such postponed
alterations in transcription could contribute to the postponed
regulation of water channels under recurring hyperosmotic
stresses. In addition to tardy-responding genes, five early-
responding genes that specifically regulated during the S1 stage

might stimulate the degradation of glycine and synthesis of
fatty acid and taurine and mediate the transport of Na+,
K+, Ca2+, and Cl−. Collectively, the memorial behavior of
the 6 CpG sites and the transcriptional memory of the eight
genes might work in concert, facilitating the formation of
stress memory and improving the performance of C. robusta
under repetitive stresses. Despite that all the results in this
study are obtained in the invasive species, C. robusta, stress
memory might also be involved in the plastic response to
environmental challenges in a wide range of taxa such as
intertidal organisms that experience recurrent environmental
stresses daily. Thus, the findings in this study offer new insights
into the molecular mechanisms of plastic response widely
existing in marine organisms.

CONCLUSION

In this study, we selected 30 genes potentially involved
in rapid response to hyperosmotic stresses to study the
regulatory roles of DNA methylation on corresponding gene
transcription and further investigated their roles in the formation
of stress memory. Among all the 68 CpG sites, significant
correlation between DNA methylation and gene expression
was detected at only 5 CpG sites, thus challenging the
generally accepted regulatory role of DNA methylation on
gene expression. To further test this regulatory relationship,
genome-wide investigations are needed on more stress response
genes and the potentially causal relationship between these
two mechanisms should also be experimentally tested in the
future study.

At the DNA methylation level, we identified two types of
memory sites including two early-responding sites and four
tardy-responding sites. At the transcriptional level, we identified
two types of memory genes including three tardy-responding
memory genes and five early-responding memory genes. The
memory of these methylated sites and transcriptional memory
of these genes might work in concert to facilitate the formation
of stress memory, improving the performance of invasive species
under acute and recurring hyperosmotic stresses.
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