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In the rocky intertidal environment, the frequency and duration of heatwaves have
increased over the last decade, possibly due to global climate change. Heatwaves
often result in lethal or sub-lethal disturbances in benthic animals by changing their
metabolic activities. In this study, we investigated the impacts of extreme heatwave
stress on the hemocyte functions of Mytilisepta virgata and subsequent mortality to gain
a better understanding of the potential causes and consequences of mass mortality
events in this mussel during summer. We discriminated three types of hemocytes in
the hemolymph, granulocytes, hyalinocytes, and blast-like cells, using flow cytometry
and revealed that granulocytes were the major hemocyte involved in cellular defensive
activities, such as phagocytosis and reactive oxygen species (ROS) production. For the
experiment, mussels were exposed to a 40◦C air temperature for 12 h per day over
5 days under laboratory conditions as a simulated semi-diurnal tidal cycle. Mortality
began to occur within 3 days after beginning the experiment, and all mussels had died
by the end of the experiment. Flow cytometry indicated that the mussels exposed to
high air temperatures produced significantly more ROS than did the control mussels
within 2 days after the onset of the experiment, which may have caused oxidative stress.
Such high levels of ROS in the hemolymph increased DNA damage in hemocytes after
3 days of exposure and decreased the phagocytosis of hemocytes 4 days after the
experiment began. The observed mortality and decline in immune capacity suggested
that an extreme heat event occurring in the rocky intertidal ecosystem during summer
could exert sublethal to lethal impacts on macrobenthic animals.

Keywords: climate change, heatwaves, intertidal mussel, lethal and sub-lethal responses, hemocyte, indoor
mesocosm

INTRODUCTION

Over the last century, the earth has experienced a steady increase in temperature due to
global climate change (IPCC, 2018). Concurrent with global warming, an increase in the
intensity and frequency of extreme high-temperature events, referred to as heatwaves, have
been observed worldwide (Easterling et al., 2000; Meehl and Tebaldi, 2004; Oliver et al., 2018;
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Smale et al., 2019; Perkins-Kirkpatrick and Lewis, 2020).
Heatwaves are prolonged periods of extremely high temperatures
for a particular region (Robinson, 2001). Extreme heatwaves
occur occasionally worldwide. The earth’s average temperature
in 2018 was the fourth highest in 140 years (2018 heat wave,
2021). The summer of 2018 in the Northern Hemisphere, such
as Europe, North America, and Northeast Asia, experienced
extremely high temperatures (2018 heat wave, 2021). For
example, in Northeast Asia, including South Korea, Japan, and
China, the highest air temperature during the summer of 2018
was >40◦C (2018 Northeast Asia heat wave, 2021). The frequency
of extreme heatwaves is expected to increase due to global
warming (Perkins-Kirkpatrick and Lewis, 2020).

Extreme heatwaves can negatively affect several biological
processes, drastic changes in the ecosystem’s structure and
function, and the marine ecosystem’s goods and services
(Amorim et al., 2020; Weiskopf et al., 2020; Weitzman et al.,
2021). Heatwaves particularly affect intertidal shores, one of
the most thermally variable and stressful habitats, resulting
in lethal or sub-lethal disturbances in benthic organisms
(Pansch et al., 2018; Dzwonkowski et al., 2020). Sessile
invertebrates inhabiting the rocky intertidal zone are particularly
vulnerable to heat due to prolonged cyclic exposure to
air during low tide. Several studies have demonstrated that
heatwaves are responsible for the mass mortality events in
sessile invertebrates, such as barnacles [Semibalanus balanoides
(Wethey, 1984)], limpets [Lottia scabra (Sutherland, 1970;
Harley, 2008)], and mussels [Mytilus californianus (Harley,
2008), M. galloprovincialis (Petes et al., 2007), and M. edulis
(Suchanek, 1978; Tsuchiya, 1983; Seuront et al., 2019)]. Various
eco-physiological disturbances caused by heatwaves have been
reported in marine invertebrates. A marked decline in energy
reserves was reported in the marine gastropod Thalotia conica
from Wirrina Cove in South Australia after exposure to
several heatwaves (Leung et al., 2017). Heatwaves interrupt
the spawning of the purple sea urchin Strongylocentrotus
purpuratus (Shanks et al., 2019). Amorim et al. (2020) reported
reduced phagocytic capacity and increased oxidative stress
in hemocytes from the bivalve Scrobicularia plana during
exposure to a heatwave.

Marine bivalves are often used as sentinel species in coastal
environmental monitoring, as changes in environmental quality
are often well preserved in their cells and tissues (Donaghy
et al., 2009a, 2010; Vazzana et al., 2016, 2020; Parisi et al., 2017;
Kim et al., 2020). The sensitivity of bivalves to environmental
stressors is driven by the different structural and functional
characteristics of their circulating hemocytes (Pipe and Coles,
1995; Auffret, 2005; Renault, 2015). Hemocytes are the primary
cellular mediators of the defense system in marine bivalves that
recognize and destroy invasive foreign material by phagocytosis,
encapsulation, and production of reactive oxygen species (ROS)
(Cheng, 1981; Hine, 1999; Donaghy et al., 2015). Accordingly,
numerous studies have determined hemocyte activities in clams,
oysters, and mussels using flow cytometry or microscopy to
understand the effects of stressors caused by environmental
changes (Donaghy et al., 2010, 2016; Donaghy and Volety, 2011;
Hong et al., 2016).

Intertidal mussels are widely used as sentinel species in coastal
environmental monitoring because they are ubiquitous fauna,
able to provide a spectrum of responses to environmental stress,
live a sedentary life that may explain the spatiotemporal changes
in their habitat (Goldberg, 1975; Farrington et al., 2016; Beyer
et al., 2017). The purplish bifurcate mussel Mytilisepta virgata
(= Septifer virgatus) is distributed widely in the upper rocky
intertidal zone of the northwest Pacific region from Hong Kong
to northern Japan (Benard et al., 1993; Iwasaki, 1995; Kawai
and Tookeshi, 2004; Lutaenko and Noseworthy, 2019; Lee
et al., 2020). Similar to other mussels, the purplish bifurcate
mussel has been used as a sentinel species in environmental
monitoring studies due to its abundance and high tolerance
to environmental stressors (Liu and Morton, 1994; Wang and
Dei, 1999; Blackmore, 2001; Han et al., 2020). Under an intense
heatwave, M. virgata may be more susceptible than other sessile
benthic organisms, as they inhabit the upper intertidal area where
they are exposed to the atmosphere for a prolonged period
during low tide.

We attempted to understand the effect of extreme thermal
stress caused by heatwaves on the immune capacity of M. virgata
by exposing the mussel to an experimentally simulated heatwave
condition for several days. Since heatwaves approaching 40◦C
have been occurring in Northeast Asia (2018 Northeast Asia
heat wave, 2021), we set 40◦C as a heatwave condition in this
study. We determined hemocyte parameters, including the total
hemocyte count (THC), phagocytic activity, hemocyte DNA
damage, and ROS production, using flow cytometry. Here, we
report the hemocyte responses of mussels exposed to extreme air
temperatures and discuss the potential sublethal and lethal effects
of extreme heatwave stress on upper intertidal sessile organisms.

MATERIALS AND METHODS

Sampling Effort
The purplish bifurcate mussels used in the experiment were
collected from a rocky intertidal beach on the south coast of Jeju
Island (33◦14′25′′N, 126◦19′53′′E) during March and April 2019
(Figure 1). The mussels were transported to the laboratory within
2 h under cool conditions (4–6◦C) and maintained in a tank with
aerated seawater (salinity 32; water temperature 20◦C) over 48 h
to minimize physiological stress induced during sampling and
transportation. The length of the shell (i.e., the longest axis of the
shell) of the mussels used in the experiment ranged from 32.1 to
43.7 mm, with a mean of 37.5 mm.

Hemocyte Characterization
Hemolymph Collection
Hemolymph was collected from the adductor muscle using a
syringe fitted with a 22 G × 11/4′′ needle. The hemolymph
was filtered through 60-µm nylon mesh and then transferred
directly into microtubes on ice to minimize aggregation of
the hemocytes. Twenty mussels were used to characterize the
hemocyte parameters by light microscopy and flow cytometry.
All subsequent analyses were performed individually.
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FIGURE 1 | Map showing the location of the mussel sampling sites. Mytilisepta virgata were collected from the rocky intertidal area of Hwansun, located on the
southern coast of Jeju Island.

Characterization of the Hemocytes by Light
Microscopy
The protocol was adapted from Hong et al. (2019). The harvested
hemolymph was placed on glass poly-L-lysine-coated slides
and incubated for 30 min in a humidity chamber at room
temperature. The adherent hemocytes were fixed in absolute
methanol and stained with the Hemacolor reagent (Merck,
Darmstadt, Germany). The morphology of the stained hemocytes
was examined under a light microscope, and the images were
digitized using a digital camera. The cell and nucleus diameters
were measured from the digitized images prepared using image
analysis software (Image J 1.43u).

Characterization of Hemocytes by Flow Cytometry
The hemocyte parameters, including hemocyte type and count,
phagocytic and oxidative capacities, and lysosome content, were
analyzed using the CytoFLEX flow cytometer (Beckman Coulter,
Brea, CA, United States) equipped with two active lasers (488-
and 639-nm) and four channels to detect fluorescence. The flow
cytometric protocols were adapted from Yang et al. (2015).

The hemocyte type and count were determined using the
fluorescent dye SYBR Green I (Sigma-Aldrich, St. Louis, MO,
United States), which binds to double-stranded DNA. The
hemocyte subtypes were discriminated by relative cell size
and the internal complexity obtained from the forward- and
side-scatter detectors. The total hemocyte count (THC) was
expressed as the number of cells/mL hemolymph. The phagocytic
capacity of the hemocytes was determined based on the
capacity of the hemocytes to internalize fluorescence-labeled
latex beads (2 µm diameter; Polysciences Inc., Warrington,
PA, United States). The phagocytic capacity was expressed
as the percentage of cells that engulfed beads. Finally, the
oxidative capacity of the hemocytes was evaluated using
the 2′7′-dichlorodihydrofluorescein diacetate fluorescent probe
(Invitrogen, Carlsbad, CA, United States). Oxidative capacity was

expressed as the level of green fluorescence in arbitrary units
(A.U.). The phagocytic and oxidative activities of the hemocytes
were induced for 180 min in the dark at room temperature. The
number of lysosomes in the hemocytes was determined using
the LysoTracker Red fluorescent staining solution (Molecular
Probes, Sunnyvale, CA, United States), which permeates the
hemocyte membrane and stains the lysosomal compartments.
The number of lysosomal components in the hemocytes was
expressed as the red fluorescence level in A.U.

Heatwave Exposure Experiment
Experimental Setup
Figure 2 demonstrates the experimental setup used in the
heatwave exposure experiment. A total of 100 randomly selected
mussels were kept in a 10-L plastic container filled with
7 L aerated seawater. The experimental tank was placed in a
laboratory incubator, and the air temperature was held constant
at 40◦C. The mussels were acclimated for 6 days to laboratory-
simulated tidal cycles (two low and two high tides per day),
corresponding to the typical semi-diurnal tidal regime in the
sampling area. An electric water pump moved the water between
the primary tank with mussels and the reservoir tank. The
pump drained the water in the primary tank to a level exposing
the mussels during the simulated low tide and pumped the
water from the reservoir tank back into the primary tank to
submerge the mussels during high tide. An analog timer was
used to regulate the water between the primary and reservoir
tanks every 6 h. As a control, 100 mussels were kept in a
10-L plastic container filled with 7 L aerated seawater held at
room temperature (20◦C). The seawater in the reservoir tank
was changed every day during low tide conditions. Air and
seawater temperature and salinity were recorded using YSI 85
multi-parameter probes (Rickly Hydrological Co., Columbus,
OH, United States). We did not feed the mussels during the
experiment. Prior to the experiment, five mussels from the
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FIGURE 2 | Experimental setups used in the heatwave exposure experiment.

control tank were used to measure the hemocyte response before
exposure. Table 1 summarizes the air and seawater temperatures
and salinity determined at each sampling time.

The analyses were started 6 h after the end of the first
high tide. From then on, the mussels were collected every
12 h at the end of one cycle of low tide and high tide. The
experiment was conducted until 126 h after exposure when all

mussels perished. To determine immune capacity, hemolymph
was collected from five randomly selected individuals under
each experimental condition after 6, 18, 30, 42, 54, 66, 78, 90,
102, and 114 h. The mussels used to collect hemolymph were
removed from their respective experimental tanks. Mortality
rates of mussels were recorded in each tank during each
sampling period.
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TABLE 1 | Air and seawater temperature and salinity of the experimental conditions were determined at each sampling time.

Exposure time(h) Control Heatwave exposure

Air temperature (◦C) Water temperature (◦C) Salinity Air temperature (◦C) Water temperature (◦C) Salinity

6 20.1 21.0 32.3 40 31.8 32.1

18 20.3 21.9 32.4 40 31.5 33.1

30 20.4 21.5 32.4 40 30.6 33.4

42 20.2 21.1 32.4 40 31.1 32.5

66 20.4 20.9 32.2 40 30.8 32.6

78 20.1 20.9 32.4 40 31.0 33.1

90 20.3 21.4 32.3 40 30.1 32.4

102 20.3 21.1 32.4 40 31.5 32.1

114 20.4 20.9 32.1 40 31.1 33.8

126 20.2 20.9 32.2 40 31.5 33.4

Hemocyte Parameter Analysis by Flow Cytometry
The THC, hemocyte DNA damage, phagocytic capacity, and
ROS production of individual mussels were determined using
the CytoFLEX flow cytometer. THC, phagocytic capacity,
and ROS production were measured as described in Section
“Characterization of hemocytes by flow cytometry.”

The percentage of hemocytes containing fragmented DNA was
determined as a ratio of the hemocytes in the sub-G0 phase (i.e.,
hemocytes containing fragmented DNA) to hemocytes in the G1
stage in the circulating hemolymph using the red fluorescence
detector on the flow cytometer. For the assay, 100 µL hemolymph
was mixed with 900 µL cold ethanol and incubated overnight
at 20◦C. After washing with phosphate-buffered saline (0.15 M
NaCl, pH 7.5), the fixed and washed hemocytes were incubated
with 5 µL 10 mM RNase A for 30 min at room temperature
to remove RNA. The hemocytes were stained with propidium
iodide (final concentration = 50 µg/mL) for 30 min in the
dark at room temperature. The percentage of the sub-G1 cell
population was estimated from the flow cytometry histogram
plotting the hemocyte count (y-axis) versus the amount of DNA
in the cells at different cell cycle phases (x-axis, propidium iodide
fluorescence intensity).

Statistical Analysis
We used Sigma plot 14.5 (Systat Software, Inc., San Jose, CA,
United States) for the statistical analyses. Data were tested for
normality and homogeneity of variance to meet the assumptions
of parametric statistics. One-way analysis of variance (ANOVA)
followed by Tukey’s HSD test was conducted to compare
the cell and nucleus diameters and nucleus/cell (N/C) ratio
among hemocyte types. The Student’s t-test was conducted
to compare the phagocytic capacity, oxidative capacity, and
lysosomal contents of the granulocytes with those of the
hyalinocytes. To evaluate hemocyte response over time, one-way
ANOVA followed by Tukey’s HSD test was used to compare the
hemocyte parameters of the mussels among time points within
each experimental group. In addition, significant differences in
the hemocyte parameters of the mussels between the control
and treated groups were detected using Student’s t-test. A P-
value < 0.05 was considered significant.

RESULTS

Hemocyte Types
The light microscopic analysis revealed that M. virgata had three
distinct types of hemocytes in the hemolymph, as in other marine
bivalves [Mytilus coruscus (Yang et al., 2015), Crassostrea gigas
(Donaghy et al., 2010), C. ariakensis (Donaghy et al., 2009b),
C. nippona (Hong et al., 2014), Saccostrea kegaki (Hong et al.,
2013), S. glomerata (Aladaileh et al., 2007), Ostrea circumpicta
(Hong et al., 2013), Hyotissa hyotis (Hong et al., 2013),
Anodonta cygnea (Jamili et al., 2009)], including granulocytes,
hyalinocytes, and blast-like cells (Figure 3). The granulocytes
contained numerous granules in the cytoplasm, and several long
pseudopodia were attached to the surface. The hyalinocytes
included long pseudopodia on the cell surface, while none or a
few pseudopodia were in the cytoplasm. The blast-like cells were
small and round, with very thin cytoplasm. The flow cytometry
analysis discriminated the three distinct types of hemocytes
based on their relative cell size and internal complexity. The
THC ranged from 0.4 × 106 to 2.7 × 106 cells/mL with a
mean of 1.3 × 106 cells/mL (Table 2). Granulocytes were the
most abundant (56.5%) cells in the hemolymph, followed by
hyalinocytes (29.3%) and blast-like cells (12.6%, Table 2).

Table 3 summarizes the size of the cells and the nucleus
and the nucleus/cell size ratio of the three types of hemocytes,
as determined from the light microscopic images. The cell and
nucleus size significantly differed among the three hemocyte
types, the largest of which were hyalinocytes (mean = 12.96 µm),
while blast-like cells were the smallest (mean = 5.62 µm). The
nucleus sizes of the granulocytes, hyalinocytes, and blast-like cells
were 3.50, 4.36, and 3.98 µm. Consequently, the nucleus/cell
size ratio of blast-like cells (0.71) was significantly higher (one-
way ANOVA, P < 0.05) than those of granulocytes (0.40) and
hyalinocytes (0.34).

Immunological Activities
Both granulocytes and hyalinocytes exhibited some phagocytic
activity, while blast-like cells did not. The phagocytic capacity
of granulocytes (39%) was significantly higher than that of
hyalinocytes (7.4%, Student’s t-test, P < 0.05, Figure 4A).
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FIGURE 3 | Three hemocyte types from Mytilisepta virgata were determined using a combination of flow cytometry and light microscopy. N, nucleus.

The oxidative capacity was significantly higher in granulocytes
(6.4 × 104 A.U.) than hyalinocytes (3.2 × 104 A.U., Student’s
t-test, P < 0.05, Figure 4B). Granulocytes (1.7 × 105

A.U.) contained significantly more lysosomes than hyalinocytes
(0.7 × 105 A.U., Student’s t-test, P < 0.05, Figure 4C).
Granulocytes exhibited higher phagocytic activity, oxidative
capacity, and lysosomal content compared with hyalinocytes.
Based on the flow cytometry analysis, granulocytes were the
main hemocytes involved in M. virgata cellular defense, while
blast-like cells may not be directly involved in the cell-mediated
immune response.

Effects of Heatwave Stress
Cumulative Mortality
No mortality was observed over the 126-h experiment in the
control tank. In contrast, mortality began to occur 66-h after

TABLE 2 | Total hemocyte count (THC), mortality, and percentage of
each population.

N Mean ± SE Min Max

THC (cells/ml) 20 1.3 × 106
± 1.5 × 105 3.5 × 105 2.7 × 106

Mortality (%) 20 0.9 ± 0.2 0.2 4.5

Granulocytes (%) 20 56.5 ± 1.8 44.2 79.0

Hyalinocytes (%) 20 29.3 ± 1.9 11.6 45.5

Blast-like cells (%) 20 12.6 ± 1.5 4.4 35.6

the start of the experiment in the heat-exposed tank (7.1%,
Figure 5). Then, the cumulative mortality increased dramatically,
and all mussels died within 126 h after the initiation of heatwave
stress (Figure 5).

Total Hemocyte Count
Before the experiment, the THC in the mussels ranged from
0.8 × 106 to 1.4 × 106 cells/mL, with a mean of 1.1 × 106

cells/mL (Figure 6A). The THC of the control mussels did not
vary significantly during the experiment. In contrast, the THC of
the heatwave-exposed mussels fluctuated 30 h after the onset of
the experiment. After 6 h of exposure, the THC of the mussels
in the heatwave tank increased significantly (1.7 × 106 cells/mL,
Student’s t-test, P < 0.05) compared with the control, and then
declined to a value (0.8 × 106 cells/mL) similar to that of the
control at 30 h (Figure 6A). From 30 to 114 h after the onset of
the experiment, the THC did not differ significantly between the
heatwave-exposed and control mussels, ranging from 0.8 × 106

to 1.4× 106 cells/mL (Figure 6A).

Reactive Oxygen Species Production
At the beginning of the experiment, ROS production by
hemocytes ranged from 0.7× 105 to 2.2× 105 A.U., with a mean
of 1.4 × 105 A.U. (Figure 6B). Over the 114 h experiment, the
ROS production by hemocytes in the control mussels remained
stable, ranging from 1.4 × 105 A.U. (42 h) to 2.8 × 105 A.U.
(114 h; Figure 6B). In contrast, the ROS production of hemocytes
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TABLE 3 | Cell and nucleus diameters and nucleus/cell (N/C) ratio.

N Cell (µm) Nucleus (µm) N/C ratio

Mean ± SE Min Max Mean ± SE Min Max Mean ± SE Min Max

Granulocytes 20 8.93b
± 0.31 6.50 11.80 3.56b

± 0.15 3.09 5.98 0.40b
± 0.02 0.30 0.62

Hyalinocytes 20 12.96a
± 0.43 9.83 15.75 4.36a

± 0.15 3.59 5.90 0.34c
± 0.01 0.24 0.46

Blast-like cells 10 5.62c
± 0.18 4.55 6.22 3.98ab

± 0.14 3.55 4.81 0.71a
± 0.02 0.61 0.80

Different letter (a–c) represent significant (one-way ANOVA, P < 0.05) differences among hemocyte types.

FIGURE 4 | (A) Phagocytosis capacity, (B) oxidative capacity, and (C) lysosomal contents in granulocytes and hyalinocytes of Mytilisepta virgata determined by flow
cytometry. Values are presented as the mean ± standard error. Different letters in the columns represent significant (t-test, P < 0.05) differences between the
granulocytes and hyalinocytes.

in the mussels exposed to heatwave stress increased rapidly
from the beginning of the experiment (1.4 × 105 A.U.) to 18 h
(4.0 × 105 A.U.) and then to 42 h (4.3 × 105 A.U.; Figure 6B).
Then, ROS production by the hemocytes in the treated mussels
declined to that in the control mussels (Figure 6B).

Hemocyte DNA Damage
The percentage of fragmented DNA (sub-G0/G1) in the
hemocytes before the experiment ranged from 9.0 to 18.9%,
with a mean of 13.3% (Figure 6C). Over the 114 h experiment,
the percentage of damaged DNA remained stable in the
control mussels, ranging from 3.6% (18 h) to 16.9% (66 h;

FIGURE 5 | Cumulative mortality of Mytilisepta virgata. Mortality was
monitored after 6, 18, 30, 42, 54, 66, 78, 90, 102, 114, and 126 h under
heatwave exposure.

Figure 6C). However, the percentage of damaged DNA in the
heatwave-exposed mussels was significantly higher (Student’s
t-test, P < 0.05) from 78 h (20%) to the end of the experiment
(i.e., 114 h, 31.6%; Figure 6C).

Phagocytic Capacity
The granulocytes displayed limited phagocytic capacity, and the
hyalinocytes and blast-like hemocytes were not actively engaged
in phagocytosis. At the beginning of the experiment, the mean
phagocytic capacity of the granulocytes was 40.2% (Figure 6D).
The phagocytic capacity of granulocytes from the control mussels
remained stable over the 114 h experiment, ranging from 36.2
to 54.8% (Figure 6D). In contrast, the phagocytic capacity of
the heatwave-exposed mussels decreased significantly at 18 h,
from 38.5 to 25.8% (Student’s t-test, P < 0.05; Figure 6D). The
phagocytic capacity of the mussels in the heatwave exposure tank
recovered after 30 h, and there was no significant difference from
that of the control mussels until 90 h. The phagocytic capacity of
the heatwave-exposed mussels decreased again, beginning at 30 h
until the end of the experiment (19.4%, Figure 6D).

DISCUSSION

In this experiment, the 40◦C air temperature set for the heatwave
stress increased the seawater temperature from 20 to 30◦C.
Accordingly, the M. virgata used in this study were exposed
to 40◦C air and 30◦C seawater every 6 h over 6 days. The
onset of mussel mortality occurred 66 h after exposure to the
heatwave, and all mussels in this treatment perished between
114 and 126 h. Several studies have documented the lethal water
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FIGURE 6 | (A) Total hemocyte count, (B) reactive oxygen species (ROS)
production, (C) phagocytosis capacity, and (D) DNA damage of hemocytes of
Mytilisepta virgata. Values are presented as the mean ± standard error.
Asterisk (*) represents significant (t-test, P < 0.05) differences between control
and treatment. Different letters (a–d) on histograms indicate statistical
(one-way ANOVA, P < 0.05) differences among exposure times within each
experimental group.

and air temperatures for Mytilus species. Caciun (1980) reported
that 30◦C is a lethal water temperature for M. galloprovincialis
living in the sublittoral zone of the Baltic Sea. The lethal water
temperature for M. edulis has been estimated to be 25–28◦C
on the east coast of the United States (Well and Gray, 1960;

Wallis, 1975; Gonzalez and Yevich, 1976; Incze et al., 1980).
Jansen et al. (2007) demonstrated that the median lethal air
temperature for Mytilus species in a 24 h experiment is 30–
31◦C. Although no studies are available on the lethal temperature
of Mytilisepta species, Tsuchiya (1983) reported that the heat
tolerance of Mytilisepta (Septifer) in the upper intertidal zone
is higher than that of Mytilus in the lower intertidal zone. In
agreement with Tsuchiya (1983), our data suggest that the lethal
air temperature and lethal seawater temperature of M. virgata are
relatively higher than the previously reported lethal temperatures
of Mytilus species.

Studies on the hemocyte responses of marine mollusks
are useful for evaluating the physiological status of marine
mollusks against environmental disturbances (Pipe and Coles,
1995; Auffret, 2005; Renault, 2015). Accordingly, we analyzed the
hemocyte parameters of M. virgata to evaluate the physiological
response to thermal shock by simulating a heatwave during
a semi-diurnal tidal cycle. During the first day of heatwave
exposure, the THC of the mussels exposed to the heatwave
increased significantly from 1.1× 106 to 1.7× 106 cells/m, which
was more than twice as high as the control mussels. An increase
in the THC is considered a consequence of proliferation or
movement of cells from the tissues into the hemolymph in marine
bivalves, whereas decreases are likely due to cell lysis or increased
movement of cells from the hemolymph to the tissues (Pipe and
Coles, 1995; Matozzo et al., 2012). Several studies have reported
that acute temperature increases lead to an increased THC in
the circulating hemolymph of the mussel M. galloprovincialis
(Rahman et al., 2019), oyster Crassostrea gigas (Rahman et al.,
2019), cockle Katelysia rhytiphora (Rahman et al., 2019), clams
Chamelea gallina (Monari et al., 2007; Matozzo and Marin,
2011), Mactra quadrangularis (Yu et al., 2009), and Ruditapes
philippinarum (Paillard et al., 2004), and scallop Azumapecten
farreri (Chen et al., 2007). Chen et al. (2007) and Monari et al.
(2007) hypothesized that the increase in the THC in response
to an acute temperature increase could be a consequence of
mobilization of cells from the tissues to the hemolymph in
response to bacteria. Monari et al. (2007) observed a significant
number of bacteria surrounding the hemocytes of the clam
C. gallina exposed to a water temperature of 30◦C. Therefore,
the observed increase in the THC in the circulating hemolymph
during the first day of heatwave exposure in this study was
probably due to hemocytes mobilized from surrounding tissues
into the hemolymph in response to a large number of bacteria
in the hemolymph.

Thermal stress often induces excessive ROS production in the
circulating hemocytes of marine bivalves, including the mussels
M. edulis (Wu et al., 2016), M. galloprovincialis (Rahman et al.,
2019), and M. coruscus (Mackenzie et al., 2014), oyster C. gigas
(Hégaret et al., 2003; Rahman et al., 2019), cockle K. rhytiphora
(Rahman et al., 2019), and scallop C. farreri (Chen et al.,
2007). Excessive ROS production disrupts cellular structure and
function, resulting in fragmented DNA (Bolognesi and Cirillo,
2014; Nikitaki et al., 2015; Hong et al., 2019). In the present study,
the flow cytometry analysis indicated that the heatwave-exposed
mussels produced significantly more ROS compared with the
control mussels within 42 h of experimental onset. Furthermore,
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a drastic increase in DNA damage in hemocytes was observed in
mussels subjected to the heatwave conditions 72 h after onset of
the experiment, suggesting that heatwave stress triggers a high
level of ROS in hemocytes, which led to an increase in DNA
fragmentation in hemocytes.

Phagocytosis in marine bivalves is a major immune function
that is sensitive to internal and external stressors (Donaghy
et al., 2009a; Hégaret et al., 2011; Jauzein et al., 2013; Silva-
Aciares et al., 2013). In the present study, the phagocytic
capacity of the granulocytes from mussels exposed to high air
temperature significantly decreased 102 h after the experiment
started. Notably, the phagocytic capacity of the granulocytes from
the mussels under the heatwave condition decreased to one-
third of the values in control mussels. Similarly, Amorim et al.
(2020) reported that the clam Scrobicularia plana, exposed to
a marine heatwave environment with a water temperature of
8◦C, suffered significantly inhibited phagocytic activity. A sudden
increase in water temperature acts as a stressor that leads
to a substantial decrease in the phagocytic capacity of the
mussel M. galloprovincialis (Mosca et al., 2013), oysters C. gigas
(Gagnaire et al., 2006) and C. virginica (Hégaret et al., 2003), and
clams C. gallina (Monari et al., 2007) and M. veneriformis (Yu
et al., 2009). Gagnaire et al. (2006) highlighted that the decrease
in phagocytic capacity in C. gigas exposed to high temperatures
is due mainly to increased mortality of hemocytes. In this study,
the reduction in the phagocytic capacity of M. virgata exposed to
the heatwave coincided with increased hemocyte DNA damage.
The extent of DNA damage in M. virgata exposed to the heatwave
increased dramatically, from 11.9 to 20% within 66 h of exposure,
ultimately reaching 31.6% at 114 h. Therefore, a significant level
of DNA fragmentation occurred in hemocytes during this period
and may be responsible for the decreased phagocytic capacity of
M. virgata.

CONCLUSION

Mussels exposed to extreme heatwave stress exhibited a drastic
increase in ROS production and hemocyte DNA damage and
a significant decrease in phagocytic capacity within 5 days
of experimental onset, indicating that the cellular defensive

activities of M. virgata are susceptible to heatwaves. The mortality
and decreased immune capacity in this study suggest that
extreme heat events in the rocky intertidal ecosystem during
the summer may exert sublethal to lethal impacts on sessile
invertebrates. Furthermore, macrobenthic animals may become
more susceptible to secondary stressors in extreme heatwave
events in a global climate change scenario.
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